首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STATEMENT OF PROBLEM: Bonded densely sintered aluminum oxide ceramic restorations such as Procera AllCeram laminates rely on a strong and long-term durable resin bond. Air particle abrasion and a phosphate-modified resin luting agent have the potential to provide such bonds to aluminum oxide ceramics, but their efficacy on the Procera AllCeram intaglio surface is unknown. The inherent microroughness of this surface may influence bond strengths, because micromechanical interlocking is a main contributor for adhesion of resins to ceramic materials. PURPOSE: This study evaluated the bond strength of a phosphate-modified resin luting agent with and without silanization to an air particle-abraded Procera AllCeram intaglio surface compared with a conventional resin-bonding system before and after artificial aging. MATERIAL AND METHODS: Sixty square (10 x 10 x 2 mm) specimens of Procera AllCeram alumina ceramic with the Procera intaglio surface were air particle abraded with aluminum oxide. Composite cylinders (2.9 mm in diameter and 3.0 mm in width) were fabricated with Z-250 composite and bonded to the ceramic specimens with either Panavia 21 TC or Rely X ARC (control) and their corresponding bonding/silane coupling agents. In addition, Panavia was used without silanization as suggested in similar studies. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested with a universal testing machine (MPa) until fracture. The 180-day specimens were subjected to thermocycling at 2000 cycles every 30 days (12,000 cycles total). Data were analyzed with 1-way analysis of variance and Tukey's multiple comparison (alpha=.05). Failure modes were examined with a light microscope (original magnification x 25). RESULTS: Differences between short-term and long-term groups were highly significant (P=.000). Bond strength with Rely X ARC and its silane coupling agent (22.75 +/- 4 MPa) decreased significantly (P=.000) after artificial aging (3.32 +/- 3.62 MPa). Panavia 21 after silanization revealed significantly different (P=.003) early (21.42 +/- 4.3 MPa) and late (16.09 +/- 2.37 MPa) bond strengths but achieved the highest bond strength after artificial aging. Bond strengths of Panavia without silanization both early (8.06 +/- 2.1 MPa) and late (6.91 +/- 2.49 MPa) were not significantly different. Failure modes were mainly adhesive at the ceramic surface for all groups. CONCLUSION: Panavia 21 in combination with its corresponding bonding/silane coupling agent can achieve an acceptable resin bond to the air particle-abraded intaglio surface of Procera AllCeram restorations after artificial aging, which had mixed effects on the other investigated groups. The conventional resin luting agent revealed the most dramatic decrease in bond strength.  相似文献   

2.
This study evaluated the effect of 1% hydrofluoric acid (HF) treatment on the bonding of an adhesive cement (Panavia F 2.0) to an indirect resin composite (Estenia C&B). Pairs of composite disks (10 and 8 mm in diameter by 3 mm thickness) were prepared. Adhesive surfaces were pretreated with either airborne particle abrasion or HF etching before being soaked for 30 seconds, five minutes or 10 minutes, with or without application of silane coupling agent. Adhesive specimens were fabricated by cementing a pair of treated disks. Shear bond strength was determined before and after 50,000 times of thermocycling (4 and 60 degrees C). All data were statistically analyzed using two-way ANOVA and Bonferroni's test (a=0.05). Bond strength achieved with five minutes of HF etching (18.3+/-1.1 MPa) was significantly higher (P=0.0025) than that obtained with airborne particle abrasion followed by application of silane coupling agent (14.3+/-1.8 MPa) after thermocycling.  相似文献   

3.
The purpose of this study was to evaluate the bond strength of rebonded mechanically retentive ceramic brackets. Twenty new and 100 sandblasted rebonded ceramic brackets (Clarity, 3M Unitek, Monrovia, Calif) were bonded to 120 extracted human premolars with composite resin and divided into 6 equal groups according to how the bracket bases were treated: (1) new brackets, (2) rebonded/sandblasted, (3) rebonded/sandblasted/sealant, (4) rebonded/sandblasted/hydrofluoric acid (HF), (5) rebonded/sandblasted/HF/sealant on bracket base, and (6) rebonded/sandblasted/silane. Shear bond strength of each sample was tested with a testing machine. Results showed that the new brackets group had the highest mean strength (15.66 +/- 7.05 megapascals [MPa]), followed by the rebonded/sandblasted/sealant group (7.65 +/- 5.62 MPa), the rebonded/sandblasted/silane group (5.94 +/- 5.33 MPa), the rebonded/sandblasted group (2.97 +/- 2.29 MPa), the rebonded/sandblasted/HF group (1.22 +/- 1.66 MPa), and the rebonded/sandblasted/HF/sealant group (0.82 +/- 1.16 MPa). Statistical analysis showed that only the rebonded/sandblasted/sealant group was comparable with the new brackets group in bond strength (P >.05). It was concluded that in the process of rebonding mechanically retentive ceramic brackets, (1) new brackets have the highest mean bond strength when compared with rebonded brackets, (2) the bond strength of sandblasted rebonded brackets with sealant is not significantly different from new brackets, (3) silane does not increase bond strength of rebonded brackets significantly, and (4) HF treatment on sandblasted rebonded brackets significantly decreases bond strength.  相似文献   

4.
Micro-shear bond strength of dual-cured resin cement to glass ceramics.   总被引:4,自引:0,他引:4  
OBJECTIVES: The aim of this study was to investigate the effects of sandblasting, etching, and a silane coupling agent on the ability of dual-cured resin cement to bond to glass ceramics designed for in indirect adhesive restoration. METHODS: A cast glass ceramic (Olympus Castable Ceramics) with a crystalline phase consisting of mica and beta-spondumene was selected as the substrate material. The glass surfaces, which were sandblasted, polished, or etched with phosphoric acid or hydrofluoric acid (HF), were bonded with a dual-cured resin cement (Panavia Fluoro Cement) using a dentin adhesive system (Clearfil SE Bond), both with and without a silane coupling agent. A micro-shear bond test was carried out to measure the bond strength of the resin cement to the glass surface. Each glass surface was bonded and tested using the shear test. In addition, surfaces with the bonding removed after the shear bond test, the adhesive interface between the glass and cement, and an etched glass surface without any bonding, were studied morphologically using scanning electron microscopy or field emission scanning electron microscopy. RESULTS: Usage of a silane coupling agent effectively raised the bond-strength values of resin cement (Fisher's PLSD, P<0.01). The effectiveness of using phosphoric acid etching to improve bonding was not clear (Fisher's PLSD, P>0.01). HF-etching for 30s seemed to over-etch the glass surface, resulting in adverse effects on bonding (Fisher's PLSD, P<0.01). SIGNIFICANCE: The micro-shear bond strength between Olympus Castable Ceramics and resin cement can be increased by the silane coupling agent used along with an acidic primer.  相似文献   

5.
The purpose of this study was to evaluate the shear bond strengths of three dual-cured resin luting cements (Linkmax HV, Panavia Fluoro Cement, and RelyX ARC) to glass-infiltrated alumina-reinforced ceramic material and the effect of four silane coupling agents (Clearfil Porcelain Bond, GC Ceramic Primer, Porcelain LinerM, and Tokuso Ceramic Primer) on the bond strength. The two type-shaped of In-Ceram alumina ceramic glass-infiltrated specimens were untreated or treated with one of the four ceramic primers and then cemented together with one of the three dual-cured resin luting cements. Half of the specimens were stored in water at 37 degrees C for 24 h and the other half thermocycled 20,000 times before shear bond strength testing. Surface treatment by all silane coupling agents improved the shear bond strength compared with non-treatment. The specimens treated with Clearfil Porcelain Bond showed significantly greater shear bond strength than any of the other three silane coupling agents regardless of resin luting cements and thermocycling except for the use of Panavia Fluoro Cement at 20,000 thermocycles. When the alumina-reinforced ceramic material was treated with any silane coupling agent except GC Ceramic Primer and cemented with Linkmax HV, no significant differences in bond strength were noted between after water storage and after 20,000 thermocycles. After 20,000 thermocycles, all specimens except for the combined use of Clearfil Porcelain Bond or GC Ceramic Primer and Linkmax HV and GC Ceramic Primer and Panavia Fluoro Cement showed adhesive failures at the ceramic-resin luting cement interface.  相似文献   

6.
OBJECTIVES: This study investigated the influence of a silica-coating method on the resin bond of two different resin composite cements to the intaglio surface of Procera AllCeram densely sintered, high-purity, alumina ceramic restorations after long-term storage and thermocycling. METHOD AND MATERIALS: Densely sintered alumina ceramic specimens were fabricated with the intaglio surface of the Procera AlICeram coping and randomly divided into five adhesive groups (100 total specimens). Resin composite cylinders were bonded either to the untreated or to the tribochemical silica/silane-coated ceramic surface with either a conventional Bis-GMA resin cement or a resin composite containing an adhesive phosphate monomer (Panavia 21) in combination with their corresponding bonding/silane coupling agents. Panavia was also used without silanization to the untreated ceramic surface (control). Subgroups of 10 specimens were stored in distilled water for either 3 (baseline) or 180 days prior to shear bond strength testing. The 180-day samples were subjected to repeated thermocycling for a total of 12,000 cycles. Data were analyzed with one-way analysis of variance and Tukey's multiple comparison. RESULTS: Silica coating significantly increased overall bond strength to Procera AllCeram. RelyX ARC and silica coating revealed the highest bond strength at baseline. Long-term storage and thermocycling significantly decreased overall bond strength. Two groups revealed the significantly highest bond strength values after artificial aging: Panavia 21 with its silane/bonding agent to the original ceramic surface and Panavia 21 to the silica-coated ceramic surface. CONCLUSION: The use of a resin composite containing an adhesive phosphate monomer either in combination with a silane coupling/bonding agent or after tribochemical silica/silane coating revealed the highest long-term shear bond strength to the intaglio surface of Procera AllCeram restorations.  相似文献   

7.
The purpose of this study was to evaluate the bond strengths of some resin luting cements of two different all ceramic materials (In-Ceram, IPS-Empress). Composite cylinders 3.2 x 2 mm were prepared on the ceramic surfaces for a shear test. Four ceramic surface treatments were performed. (i). As received, (ii). grinding with diamond bur, (iii). sandblasting with 50 microm alumina grit and (iv). HF acid treatment and sandblasting with 50 microm alumina grit. Ceramic specimens were treated with one of the four methods and then cemented together with each of the two luting agents. The tested luting cements were Panavia F and Clearfil Se Bond (CSeB). The CSeB demonstrated the highest bond strength (59.95 MPa) regardless of the ceramic blocks. The average of load to fracture the In-Ceram blocks luted with Panavia F cement was 25.89 MPa. The mean shear bond strength of IPS Empress blocks luted with Panavia F cement was 10.31 MPa. Grinding the surface with a diamond bur for In-Ceram blocks luted with Panavia-F was 30.93 MPa and with CSeB was 77.04 MPa. For IPS-Empress blocks these values decreased to 12.39 MPa for Panavia-F and 30.84 MPa for CSeB. Acid etching of the surfaces with HF acid demonstrated a weak tendency to improve bond strength (In-Ceram-->Panavia-F= 14.59 MPa and CSeB=59.32 Mpa; IPS-Empress--> Panavia-F=5.85 MPa and CSeB= 23.33 MPa).  相似文献   

8.
STATEMENT OF PROBLEM: The few available studies on the resin bond to zirconium-oxide ceramic recommend airborne-particle abrasion and modified resin luting agents containing adhesive monomers for superior and long-term durable bond strengths. It is unknown whether this regimen can also be successfully applied to the intaglio surface of a commercial zirconia-based all-ceramic system. PURPOSE: The purpose of this study was to evaluate and compare bond strengths of different bonding/silane coupling agents and resin luting agents to zirconia ceramic before and after artificial aging. MATERIAL AND METHODS: Composite cylinders (2.9 mm x 3.0 mm) were bonded to airborne-particle-abraded intaglio surfaces of Procera AllZirkon specimens (n=80) with either Panavia F (PAN) or Rely X ARC (REL) resin luting agents after pretreatment with Clearfil SE Bond/ Porcelain Bond Activator (Group SE). In another group, Rely X ARC was used with its bonding/silane coupling agent (Single Bond/Ceramic Primer, Group SB). PAN without any bonding/silane agent (Group NO) was the control. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested. One hundred eighty-day-old specimens were repeatedly thermal cycled for 12,000 cycles between 5 and 60 degrees C with a 15-second dwell time. Data were analyzed with 1- and 2-way analysis of variance and the Tukey multiple comparisons test (alpha=.05). Failure modes were examined under original magnification x25. RESULTS: After 3 days, SE-REL (25.15 +/- 3.48 MPa) and SE-PAN (20.14 +/- 2.59 MPa) groups had significantly superior mean shear bond strengths (P=.0007) compared with either NO-PAN (17.36 +/- 3.05 MPa) or SB-REL (16.90 +/- 7.22 MPa). SE-PAN, NO-PAN, and SB-REL groups were not significantly different. Artificial aging significantly reduced bond strengths. After 180-day storage, SE-PAN (16.85 +/- 3.72 MPa), and SE-REL (15.45 +/- 3.79 MPa) groups demonstrated significantly higher shear bond strengths than NO-PAN (9.45 +/- 5.06 MPa) or SB-REL (1.08 +/- 1.85 MPa) groups. The modes of failure varied among 3-day groups but were 100% adhesive at the ceramic surfaces after artificial aging. CONCLUSION: Artificial aging significantly reduced bond strength. A bonding/silane coupling agent containing an adhesive phosphate monomer can achieve superior long-term shear bond strength to airborne-particle- abraded Procera AllZirkon restorations with either one of the 2 resin luting agents tested.  相似文献   

9.
OBJECTIVES: This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. METHODS: Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 microm Al(2)O(3) particles + silanization, (2) Silica coating with 110 microm SiO(x) particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 microm SiO(x) particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 degrees C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6mm(2). The bond strength tests were performed in a universal testing machine (cross-head speed: 1mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (alpha相似文献   

10.
Shear bond strength of resin cements to both ceramic and dentin   总被引:3,自引:0,他引:3  
STATEMENT OF PROBLEM: All ceramic restorations benefit from resin cement bonding to the tooth. However, the literature is unclear on which cement, ceramic conditioning treatment, and dentin bonding agent produce the highest and longest-lasting bond strength. PURPOSE: This in vitro study evaluated immediate and 6-month shear bond strengths between a feldspathic ceramic and 4 different resin cements with the use of 6 different surface-conditioning treatments. Shear bond strengths between the 4 resin cements and dentin also were measured. MATERIAL AND METHODS: Four hundred eighty discs (10 mm in diameter and 4 mm thick) of Ceramco II porcelain were randomly divided into 6 main groups (n = 80). The ceramic specimens received 6 different surface conditioning treatments before the application of resin cement. These surface treatments were sanding with 600-grit silicon carbide paper, microetching with aluminum oxide, sanding followed by silane application, microetching followed by silane application, hydrofluoric acid-etching, and hydrofluoric acid-etching followed by silane application. Each group then was subdivided into 4 subgroups (n = 20) for the application of 1 of 4 cements: Nexus, Panavia 21, RelyX ARC, and Calibra. All cemented specimens were tested under shear loading until fracture on a universal testing machine; the load at fracture was reported in MPa as the bond strength. Bond strengths were determined at 24 hours and after 6 months of specimen storage in a saline solution. For dentin-resin cement shear bond strength testing, dentin specimens were treated with dentin bonding agents, and a thin layer of resin cement was applied according to the manufacturer's directions. Prodigy composite was bonded to the cement. Shear bond strengths were determined as above and reported in MPa at fracture. Data were analyzed with 3-way analysis of variance (P<.01). RESULTS: Hydrofluoric acid-etching followed by silane application produced bond strengths (15.0 +/- 7.4 to 21.8 +/- 5.8 MPa) in the highest statistical group with all 4 cements at both 24 hours and 6 months (P<.01). Sanding with 600-grit silicon carbide paper and microetching with aluminum oxide produced the lowest bond strengths (0.0 to 4.0 +/- 3.5 MPa). At 24 hours and 6 months, there were no significant differences among the 4 cements when hydrofluoric acid-etching was followed by silane application. Both auto- and light-polymerized dentin bonding agents bonded better to dentin than dual-polymerized bonding agents. CONCLUSION: Within the limitations of this study, hydrofluoric acid-etching followed by silane application produced the best bonds at 24 hours and 6 months with all 4 cements. Auto- and light-polymerized adhesives were associated with higher bond strengths to dentin than dual-polymerized adhesives.  相似文献   

11.
STATEMENT OF PROBLEM: Reliable bonding between zirconia posts and composite resin core materials is difficult to achieve because of the smooth surface texture and lack of silica content of zirconia posts. PURPOSE: The purpose of this study was to evaluate the effect of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. MATERIAL AND METHODS: Eighty zirconia posts were divided into 4 groups (n=20). Specimens received 1 of 4 different surface treatments: group AIRB, airborne-particle abrasion; group TSC-SIL, tribochemical silica coating (CoJet system) and silanization (ESPE Sil); group AIRB-BSIL, airborne-particle abrasion and MDP-containing primer (Clearfil SE Bond Primer)/silane coupling agent (Clearfil Porcelain Bond Activator) mixture application; and group TSC-BSIL, tribochemical silica coating and MDP-containing primer/silane coupling agent mixture application. Average surface roughness (Ra) of zirconia posts produced by airborne-particle abrasion or silica coating was measured using an optical profilometer. Composite resin core foundations (Build-it FR) were formed using transparent acrylic resin tubes (12mm in length and 7mm in diameter). Each group was further divided into 2 subgroups of 10 specimens and stored in distilled water at 37 degrees C, either for 24 hours or for 150 days with 37,500 thermal cycles between 5 degrees C and 55 degrees C, with a dwell time of 30 seconds. Following water storage, the specimens were sectioned perpendicular to the bonded interface into 2-mm-thick post-and-core specimens under water cooling. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5mm/min. Debonded post surfaces were examined with SEM. Data were analyzed with 1- and 2-way ANOVA and Tukey multiple comparison tests (alpha=0.05). RESULTS: No significant differences were detected between the Ra values of airborne-particle-abraded and silica-coated specimens (P=.781). The short-term mean bond strengths for group TSC-BSIL (27.1 +/- 3.2 MPa) and TSC-SIL (25.2 +/- 2.4 MPa) were statistically higher (P<.001) than AIRB-BSIL (23.3 +/- 2.2 MPa). The relatively high bond strengths for groups TSC-BSIL and TSC-SIL decreased significantly after 150 days of water storage to 13.5 +/- 1.6 and 11.8 +/- 1.2 MPa, respectively (P<.001). Durable bonding was obtained only in group AIRB-BSIL (21.8 +/- 2.7 MPa), which was also the only group demonstrating predominantly cohesive failures in the core material after long-term water storage. CONCLUSIONS: Data suggest that the short-term high bond strength obtained with a silane coupling agent or MPD-containing primer/silane coupling agent mixture to silica-coated zirconia posts was decreased with water storage and thermal cycling, whereas a durable bond could be obtained when an MPD-containing primer/silane coupling agent mixture was applied to the airborne-particle-abraded post surface.  相似文献   

12.
OBJECTIVES: This study was conducted to evaluate the bond durability of three resin cements bonded to bovine dentine over a period of 3 years. METHODS: Ten bovine dentine specimens were tested for shear bond strengths with each of the following materials: Panavia 21, BISTITE resin cement, and MASA Bond (experimental resin cement) at 1 day, 6 months, 1 and 3 years after cementation of a composite rod. All specimens were stressed in shear at a crosshead speed of 1mm min(-1) until failure. The means of the bond strengths were compared statistically by two-way ANOVA and Fisher's PLSD test (P<0.05). The mode of failure was classified after fracture of the bonds by SEM observation. Results for the mode of fracture were analyzed using the Mann-Whitney U-test. RESULTS: The shear bond strengths (MPa+/-SD) for different times (1 day, 6 months, 1 and 3 years) were: Panavia 21 (15.2+/-3.6, 9.3+/-3.2, 8.5+/-2.1, 6.8+/-2.4), BISTITE (15.6+/-2.8, 11.0+/-1.4, 10.4+/-2.2, 9.0+/-2.7) and MASA Bond (29.6+/-9.5, 17.5+/-4.6, 19.6+/-4.5, 16.1+/-5.4). Panavia 21 and BISTITE strengths were significantly lower (P<0.05) at all times compared with MASA Bond, and 1 day strengths for all three materials were significantly higher (P<0.05) than 3 year strengths. Regarding the fracture modes after bond testing, there were statistical differences between the 1 day and the 1 year results for all cements (P<0.05). Although no Panavia 21 specimen showed complete cohesive failure in the demineralized dentine during the experiment, several BISTITE and MASA Bond specimens showed cohesive fracture in the demineralized dentine. For BISTITE, partially or complete demineralized dentine cohesive failures increased over time. CONCLUSIONS: The type of resin cement seemed to have an influence on the long-term durability of bonding to dentine.  相似文献   

13.
PURPOSE: An important determinant of the clinical success of ceramic restorations is the bond strength of the luting agent to the seating surface and the prepared tooth structures. Manufacturers of ceramic systems frequently specify both the luting agent and preluting treatment of the seating surface of the crown. Procera AllCeram is an all-ceramic crown comprising a porcelain-veneered coping of densely sintered, high-purity aluminum oxide. This study evaluated the shear bond strength of 4 luting agents: zinc-phosphate, glass-ionomer, resin-modified glass-ionomer, and resin cement (dual cured) to Procera aluminum oxide coping material. The luting agents were subjected to different surface treatments: untreated, sandblasted, or silica coated by the Rocatec system. MATERIALS AND METHODS: Cylindric and cubic specimens of the coping material were luted together, and the shear force necessary to separate the cylinder from the cube was measured with a universal testing machine. The surfaces of the specimens were also analyzed. RESULTS: No significant differences were recorded for the shear bond strengths of the luting agents to the untreated aluminum oxide. Glass-ionomer and the resin-modified glass-ionomer cements had the highest values (4.2 +/- 2.5 MPa and 4.3 +/- 1.9 MPa, respectively), and the lowest were 3.3 +/- 2.3 MPa for the resin cement and 3.2 +/- 1.0 MPa for the zinc-phosphate cement. Similar results were recorded for the sandblasted aluminum oxide surfaces, except with the glass-ionomer, which was significantly higher (12.9 +/- 2.4 MPa). For all 4 luting agents, the highest shear bond strength values were recorded for the silica-coated specimens; the highest was for the resin cement, at 36.2 +/- 7.8 MPa. CONCLUSION: The bond strengths between resin cement and aluminum oxide specimens treated by the Rocatec system were significantly higher than those of the other materials and surface treatments evaluated.  相似文献   

14.
OBJECTIVES: This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application. METHODS: Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for 1 min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24h prior to sectioning. After sectioning the ceramic-cement blocks in x- and y-axis with a bonded area of approximately 0.6mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times)+water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha=0.05). RESULTS: Significant influence of the use of silane (p<0.0001), storage conditions (p=0.0013) and surface treatment were observed (p=0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APF treatment increased the results dramatically (14.5+/-4.2-17.4+/-4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic. SIGNIFICANCE: Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups.  相似文献   

15.
OBJECTIVE: The increased popularity of alumina-based restorations has resulted in an interest in proper adhesive techniques to assure a strong and predictable bond to these restorations. This study investigated the early bond strength of three different resin-cement systems to densely sintered alumina (aluminum-oxide ceramic) with and without the use of their corresponding silane coupling agent (silanization). METHOD AND MATERIALS: Ninety samples of densely sintered high-purity aluminum-oxide ceramic were randomly divided into three groups. Composite cylinders were bonded to the ceramic samples with three resin-cement/bonding-agent systems: Noribond DC (NOR), Panavia 21 EX (PAN), and Variolink II (VAR). Each resin-cement/bonding-agent system was used with and without their corresponding silane (SIL) coupling agent (n = 15). After fabrication, the specimens were stored in distilled water for 3 days at room temperature, and shear bond strength was tested. RESULTS: Application of the silane-coupling agent on sandblasted densely sintered alumina did not significantly influence bond strengths with PAN. Silanization significantly improved shear bond strengths with NOR and VAR. NOR-SIL and VAR-SIL revealed the statistically highest values, with NOR-SIL showing the highest mean bond strength of all groups. CONCLUSIONS: Silanization of sandblasted densely sintered alumina had mixed effects on the applied resin cements: It had no effect on the performance of the phosphate-modified resin cement PAN, but significantly improved shear bond strength of the Bis-GMA composite resin cements VAR and NOR. NOR-SIL revealed the highest overall mean bond strength.  相似文献   

16.
目的 探讨Al2O3喷砂处理对二氧化锆陶瓷表面粗糙度、元素构成及树脂粘接耐久能力的影响.方法 可切削二氧化锆陶瓷片试件60个经烧结、研磨、清洗后,30个试件表面在0.3 MPa压力下接受50 μm Al2O3颗粒喷砂处理20 s,形成喷砂后试件(另30个不喷砂试件为喷砂前试件).使用激光共聚焦显微镜对喷砂前、后的陶瓷表面粗糙度进行测量.使用X射线能谱仪对喷砂前、后的陶瓷表面元素成分进行定性定量分析.试件分为6组,每组10个:1、2组分别由喷砂前、后试件与常规树脂粘接剂(Duolink)粘接;3、4组分别由喷砂前、后试件分别与含磷酸酯类功能性单体的树脂粘接剂(Panavia F)粘接;5和6组分别由喷砂前、后试件经含磷酸酯类功能性单体的硅烷偶联剂(Clearfil Ceramic Primer)处理后与Panavia F粘接.各组试件分为两个亚组,分别经0、10 000次冷热循环后测量剪切粘接强度.使用单因素方差分析和独立样本t检验进行统计.结果 喷砂后陶瓷表面氧元素原子百分比[(65.03±1.48)%]显著低于喷砂前 [(75.85±1.61)%],锆元素原子百分比[(17.30±1.43)%]显著高于喷砂前[(9.62±0.29)%](P<0.001),同时表面粗糙度高于喷砂前(P<0.001).冷热循环降低了所有组粘接强度(P<0.001),其中1、2组试件在循环过程中全部脱落,3、5组粘接强度[(0.59±0.17)、(0.89±0.84)MPa]显著低于4、6组粘接强度[(14.63±3.03)、(16.64±1.90) MPa],6组粘接强度显著高于4组(P<0.001).所有试件粘接断裂模式均为陶瓷-粘接剂界面断裂.结论 Al2O3喷砂处理在增加二氧化锆陶瓷表面粗糙度和表面积的同时,也增加了表面锆元素的质量和原子百分比,从而提高了二氧化锆陶瓷与含磷酸酯类功能性单体的树脂粘接剂间的化学粘接耐久能力.
Abstract:
Objective To evaluate the effect of Al2O3 particles sandblasting on the surface roughness, element composition and resin bond durability of zirconia ceramic. Methods Sixty 2.5 mm thick computer aided design and computer aided manufacture(CAD/CAM) zirconia ceramic (Vita Inceram YZ) plates were fired, polished and cleaned. Half of polished ceramic plates was sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface roughness of polished and sandblasted ceramic surface were measured by 3D-laser scanning microscope, and the surface element weight and atom ratio of the ceramic surface were measured by energy disperse spectroscopy(EDS). Then polished and sandblasted ceramic plates were randomized into six groups. In Group 1 and 2 the polished and sandblasted ceramic plates were bonded irrespectively with conventional resin cement(DUOLINK) . In Group 3 and 4 the ceramic plates were bonded with resin cement containing MDP(Panavia F), In Group 5 and 6 the specimens were pretreated with silane coupler acitivated by MDP(Clearfil Ceramic Primer), then bond with Panavia F. The specimens of each test group were then divided into two subgroups, and to received shear test after 0 and 10 000 time thermal cycle. The data was analyzed by one-way ANOVA and independent t test. ResultsComparing with polishing, sandblasting reduced the oxygen atom and weight ratio of zirconia ceramic surface (P<0.001), and increased the zirconium atom and weight ratio (P<0.001), meanwhile increased the surface roughness (P<0.001). The bond strength between ceramic plates and resin cement in all test groups decreased after thermocycling (P<0.001). All specimen in test group 1 and 2 lost bond, and the bond strength of test group 3 and 5[(0.59±0.17), (0.89±0.84) MPa] were significantly lower than that of test group 4 and 6[(14.63±3.03), (16.64±1.90) MPa], and the bond strength of test group 6 were significanlty higher than that of test group 4. Conclusions Sandblasting improves durability of bond between zirconia ceramic and resin cement containing MDP, not only by increasing the roughness and area of ceramic surface, but also by changing its surface element composition to obtain more chemical bond.  相似文献   

17.
PURPOSE: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. MATERIALS AND METHODS: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37 degrees C for 150 days; group 3: 150 days of water storage followed by thermocycling (x 12,000, 5 degrees C to 55 degres C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. RESULTS: Group 1 showed a significantly higher microtensile bond strength value (26.2 + 1 MPa) than the other aging regimens (6.5 +/-1, 6.2 +/-2, 4.5+/-1, 4.3+/-1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). CONCLUSION: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.  相似文献   

18.
PURPOSE: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. MATERIALS AND METHODS: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-microm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37 degrees C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. RESULTS: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0+/-6.7 MPa) and group 3 (26.8+/-7.4 MPa) showed greater bond strength than group 1 (15.1+/-5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. CONCLUSION: The hypothesis was confirmed--the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.  相似文献   

19.
OBJECTIVES: The purpose of this in vitro study was to evaluate the tensile bond strength of adhesive bonding systems to the densely sintered alumina ceramic Procera, and its durability. METHODS: Plexiglas tubes filled with composite resin were bonded to Procera ceramic discs (99% Al2O3), which were either in their original state as supplied by the manufacturer or which were sandblasted for surface conditioning. Groups of 20 specimens were bonded in an alignment apparatus using 10 bonding methods. Subgroups of 10 bonded specimens were tested for tensile strength following storage in distilled water at 37 degrees C either for 3 days or for 150 days. In addition, the 150 days specimens were thermal cycled 37,500 times. The statistical analyses were conducted with the Kruskal-Wallis test followed by multiple pair-wise comparison of groups using the Wilcoxon rank sum test. RESULTS: Not sandblasted groups showed relatively poor initial bond strengths independent from bonding resins. During 150 days storage time all specimens in the not sandblasted groups debonded spontaneously. Moderate to relatively high initial bond strengths between 18 and 39 MPa were achieved to sandblasted specimens by using the PMMA luting resin Superbond C & B or the composite resin Variolink II or by silica coating and silanation in combination with Variolink II. However, in these groups after 150 days storage time the bond strength decreased significantly. The phosphate monomer containing composite resin Panavia 21 showed the highest bond strength to sandblasted Procera ceramic which did not decrease significantly over storage time. In addition, the bond strengths of sandblasted groups bonded with Variolink II after priming the ceramic with Alloy Primer or the silane Monobond S were relatively high and did also not decrease significantly after 150 days storage time. SIGNIFICANCE: Using ten bonding systems, a stable resin bond to Procera ceramic could be achieved after sandblasting and by using Panavia 21 or by using Variolink II after priming the ceramic with Alloy Primer or Monobond S.  相似文献   

20.
目的:利用薄片推出实验比较硅烷偶联剂和三种树脂粘接剂对纤维桩剪切粘接强度的影响.方法:60颗因牙周病等原因拔除的上颌单根前牙,根管治疗后行纤维桩修复的桩道预备.随机分为5组,每组12颗牙.分别采用下列粘接剂粘接Matchpost纤维桩:A组:Paracore粘接剂+偶联剂;B组:Paracore粘接剂;C组:Panavia F粘接剂+偶联剂;D组:Panavia F粘接剂;E组:Multilink N粘接剂+偶联剂.纤维桩粘接后,在牙根中部横向切割1.0mm层厚切片2个,在Zwick Z100材料试验机上行薄片推出试验(Push-Out Bond Test),记录失败载荷,计算剪切粘接强度,体视显微镜观察粘接失败类型.结果采用SPSS 11.5进行方差分析和χ2检验.结果:五组样本的剪切粘接强度(MPa)分别为A组:14.69±2.76;B组:9.46±3.11;C组:13.12±3.10;D组:10.40±3.30;E组:13.86±3.81,方差分析提示五组间差异有统计学意义(P <0.01).采用偶联剂处理时,Paracore粘接剂和Panavia F粘接剂与纤维桩间的剪切粘接强度均高于未用偶联剂处理者(P <0.05).采用偶联剂处理时,三种树脂粘接剂与纤维桩的剪切粘接强度间差异无统计学意义(P >0.05).五组粘接失败类型间差异有统计学意义(P <0.05),未采用硅烷偶联剂处理纤维桩表面者,出现纤维桩-粘接剂界面失败者增多.结论:在树脂粘接前,玻璃纤维桩表面氢氟酸酸蚀后,采用硅烷偶联剂处理可显著提高纤维桩与树脂粘接剂间的剪切粘接强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号