首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It is well established that ovarian steroids modulate gonadotropin secretion from anterior pituitary cells. It has been speculated that insulin and IGF-I might influence gonadotropin secretion. OBJECTIVE: To investigate the effects of IGF-I and estradiol alone, or combinations of IGF-I with insulin and estradiol on GnRH-stimulated LH release from female rat pituitary cells in serum-supplemented and serum-free culture conditions. METHODS: Pituitary cells were incubated for 24 h or 48 h with a series of increasing concentrations of IGF-I or estradiol and stimulated with 1 nmol/l GnRH for 3 h. To determine the interaction of IGF-I and estradiol on GnRH-stimulated LH secretion, cells were exposed to increasing concentrations of IGF-I and 100 pmol/l estradiol for 24 h. We also investigated the effects of combined treatment with IGF-I and insulin on GnRH-stimulated LH secretion. RESULTS: Our findings indicate that long-term IGF-I treatment (24 h) alone has a significant augmenting effect on GnRH-stimulated LH release in serum-free medium only, with a maximum at low concentrations (10 and 100 pmol/l). Estradiol significantly increased GnRH-induced LH release in a dose-dependent manner. The extent of GnRH-stimulated LH secretion by long-term estradiol treatment (24 h) was significantly greater in serum-supplemented (+42%) medium than in serum-free medium. Estradiol facilitated IGF-I-primed LH responses to GnRH in serum-free medium. In contrast, in serum-supplemented medium, the facilitating potential of estradiol was lower. We also found that, in GnRH-stimulated cells, LH release was augmented by insulin treatment, in contrast to quiescent cells that had been pretreated with 100 pmol/l IGF-I alone and 1 nmol/l insulin alone. CONCLUSIONS: IGF-I and to a lesser extent insulin stimulate GnRH-induced LH secretion from pituitary gonadotrophs. This action is enhanced by estradiol treatment of the cells. However, the well known stimulatory action of estradiol on LH secretion is dependent on the presence of growth factors.  相似文献   

2.
The mechanism whereby gonadal steroids modulate GnRH-stimulated LH secretion by primary cultures of chicken pituitary cells was investigated. Estradiol (10(-8) M), testosterone (10(-7) M), and progesterone (10(-7) M) inhibited LH release stimulated by GnRH (10(-7) M) by 56%, 61%, and 53%, respectively, and the inhibitory effects required prolonged preincubation (24-48 h) with the steroids. The steroids inhibited the spike (0-3 min) and plateau (9-30 min) phases of LH release to a similar degree. The ED50 values of estradiol, testosterone, and progesterone for inhibition of GnRH-stimulated LH release were 7 x 10(-11), 2 x 10(-9), and 1 x 10(-9) M, respectively. Estradiol, testosterone, and progesterone inhibited the maximal LH response to GnRH, but the ED50 of GnRH (4 x 10(-9) M) was not altered by steroid pretreatment. Steroid pretreatment did not cause a change in cellular LH content, suggesting that the steroids do not inhibit LH synthesis. Combinations of two or three of the steroids were not additive, suggesting that all three steroids affect GnRH-stimulated LH release via the same mechanism. In experiments investigating their mechanism of action, the steroids inhibited LH release stimulated by GnRH and Ca2+ ionophore A23187, but generally had no effect on the responses to phorbol ester (12-O-tetradecanoylphorbol-13-acetate), forskolin, K+, Bay K8644, or veratridine. Estradiol inhibited GnRH-stimulated 45Ca2+ efflux, but its inhibitory effect on GnRH-induced inositol phosphate production was not significant. Estradiol had no effect on binding of 125I-[His5,D-Tyr6]GnRH to a pituitary cell preparation. These findings suggest that the site of steroid modulation of GnRH action is distal to binding of GnRH to its receptor, and that the inhibitory effects are exerted at two intracellular sites: 1) the coupling events linking receptor activation to mobilization of Ca2+, and 2) a site distal to Ca2+ mobilization.  相似文献   

3.
The feedback effects of testosterone (T) and estradiol (E2) on FSH and LH secretion were compared in dispersed pituitary cells from adult male rats perifused with pulses of GnRH. Cells were stimulated with 10 nM GnRH for 2 min every 1 h. T (10 nM) pretreatment for 24 h reduced the amplitude of FSH and LH pulses to 77 +/- 4% (mean +/- SE) and 47 +/- 3% of control values, respectively (P less than 0.01), whereas 6-h T treatment was without effect. By contrast, interpulse secretion of FSH was increased after 24 h T to 184 +/- 7% of the control value (P less than 0.01), but interpulse LH release was unchanged (104 +/- 5%). E2 (0.075 nM) treatment of pituitary cells reduced GnRH-stimulated FSH and LH release within 2 h to 75 +/- 2% and 73 +/- 3% of control values, respectively (P less than 0.01). E2 pretreatment for 24 h stimulated (P less than 0.025) GnRH-induced FSH (136 +/- 10%) and LH (145 +/- 8%) release and also increased (P less than 0.01) interpulse FSH (127 +/- 5%) and LH (145 +/- 8%) secretion. These data indicate that the suppression of FSH and LH secretion by T in males is due in part to a direct effect on the pituitary. The findings that T suppresses GnRH-stimulated FSH less than LH, and that T stimulates interpulse FSH, but not LH, provide evidence for differential regulation of FSH and LH secretion by T. The dissimilar actions of T on GnRH-stimulated pulses and interpulse gonadotropin secretion suggest that interpulse secretion is unrelated to stimulation by GnRH, although its physiological significance is unknown. Since E2, in physiological levels for males, increased pituitary FSH and LH secretion, the suppression of gonadotropin secretion by E2 in vivo in males may result from an effect on the hypothalamic pulse generator; however, additional studies are needed before extending these conclusions to higher mammals and men.  相似文献   

4.
Estrogens increase both basal and LHRH-induced LH release in rat anterior pituitary cells in culture. Following 48 h of preincubation with 1 nM 17 beta-estradiol, the maximal LH response to LHRH is increased 1.5-fold while the ED50 value of LHRH action is decreased 2.5-fold from 500 to 200 pM. The maximal 3-fold stimulation of 0.3 nM LHRH-induced LH release by 17 beta-estradiol is exerted at a KD value of 14.4 pM. Keoxifene (300 nM) completely blocks the potent stimulatory effect of 17 beta-estradiol up to 1 nM, the highest concentration of the estrogen used. As shown by the complete reversal of the stimulatory effect of 0.1 and 1.0 nM 17 beta-estradiol by keoxifene at IC50 values of 7.7 and 34 nM respectively, the antiestrogen interacts competitively with 17 beta-estradiol at the estrogen binding site. When present alone, keoxifene shows no estrogenic activity. The present data show that keoxifene acts as a pure antiestrogen on the control of LHRH-induced LH release in rat pituitary gonadotrophs.  相似文献   

5.
OBJECTIVE: Growth factors and ovarian steroids modulate LH-secretion from pituitary gonadotrophs. Our previous studies demonstrated that long-term IGF-I treatment enhanced LH-secretion from female rat pituitary cells and estradiol facilitated this effect. The effects of estradiol on LH secretion are time-dependent. Short-term treatment inhibited, long-term treatment enhanced GnRH-induced LH-secretion in serum-containing medium. Here we tested the short-term actions of IGF-I and its interaction with estradiol and whether IGF-I is a prerequisite for the negative effect of short-term estradiol treatment in female rat pituitary cells. DESIGN: Pituitary cells were incubated with a series of increasing concentrations of estradiol (1 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM and 100 nM) for 4 h, IGF-I (10 pM, 100 pM, 1 nM and 10 nM) for 4 h and 14 h and their combinations for 4h in serum-free medium, and then stimulated with 1 nM GnRH during the last 3h of incubation. To clarify the role of IGF-I, cells were incubated simultaneously with estradiol, IGF-I and antibody against IGF-I. LH was measured by radioimmunoassay. RESULTS: Short-term IGF-I treatment did not modify basal or GnRH-induced LH-secretion. Short-term treatment with estradiol did not affect basal or GnRH-induced LH-secretion in serum-free medium. The addition of 100 pM IGF-I to serum-free medium established the negative effect of estradiol short-term treatment on GnRH-induced LH-secretion. The addition of IGF-I antibody fully abolished the negative effect of estradiol. CONCLUSIONS: In conclusion, effects of IGF-I on LH-secretion in female rat pituitary cells require long-term treatment. The negative effect of estradiol short-term treatment on GnRH-induced LH-secretion is dependent on serum-containing medium or the addition of 100 pM IGF-I to serum-free medium.  相似文献   

6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) releases LH and FSH from anterior pituitary cells. Although this effect is relatively weak, it has a strong sensitizing action on GnRH-induced gonadotropin secretion. Here we investigated the possibility that ovarian steroids, which are well-known modulators of LH secretion, interact with PACAP and GnRH in pituitary gonadotrophs. Rat pituitary cells were treated for 48 h with vehicle, 1 nmol/l estradiol, 1 nmol/l estradiol + 100 nmol/l progesterone or 48 h with 1 nmol/l estradiol and 4 h with 100 nmol/l progesterone. The cells were stimulated for 3 h with 1 nmol/l GnRH or 100 nmol/l PACAP. Estradiol treatment alone enhanced basal as well as GnRH- or PACAP-stimulated LH secretion. LH release was facilitated by additional short-term progesterone treatment. Long-term treatment with estradiol and progesterone led to reduced LH responses to GnRH and PACAP. Neither treatment paradigms affected cAMP production. However, estradiol treatment led to enhanced cAMP accumulation in quiescent or GnRH-stimulated cells. PACAP-induced increases of cAMP production were inhibited by estradiol treatment. After 7-h preincubation with 10 nmol/l PACAP, cells responded with enhanced LH secretion to GnRH stimulation. When steroid pretreatment was performed the responsiveness of gonadotrophs to low concentrations of GnRH was still increased. In contrast, at high concentrations of GnRH the sensitizing action of PACAP on agonist-induced LH secretion was lost in steroid-treated cells. There were no significant differences between the steroid treatment paradigms. It is concluded that estradiol but not progesterone acts as a modulator of adenylyl cyclase in gonadotrophs. The stimulatory effect of estradiol is thought to be involved in its sensitizing action on agonist-induced LH secretion. The inhibitory effect of estradiol on PACAP-stimulated adenylyl cyclase activities seems to be responsible for the loss of its action to sensitize LH secretory responses to GnRH.  相似文献   

7.
L S Frawley  J D Neill 《Endocrinology》1984,114(2):659-663
The negative feedback effect of estrogen on LH secretion has been difficult to demonstrate in monolayer cultures of rat pituitary cells. The purpose of the present study was to establish the experimental conditions required for manifestation of this response and, in the process, to develop models for investigating the actions of steroids on pituitary cells. Both dynamic and static incubation systems were used. For perifusion experiments, trypsin-dispersed pituitary cells from rats at random stages of the estrous cycle were attached to glass coverslips with poly-L-lysine, incubated for 48 h, and then mounted in Sykes-Moore chambers. In each of these experiments, two chambers were perifused concurrently: one with medium containing 1.8 X 10(-10) M 17 beta-estradiol and the other with medium alone. GnRH (4.2 X 10(-9) M) was coinfused for 5 min out of every hour, and samples of perifusate were collected as 5-min fractions for assay of LH. Estrogen treatment significantly (P less than 0.01) suppressed LH release in response to the first five GnRH pulses compared to the control value. The inhibition was most pronounced early in the perifusion, but had disappeared by 6 h. These results demonstrate that estradiol exerts a potent but transient inhibition of GnRH-induced LH release in monolayer cultures of rat pituitary cells. In a subsequent set of experiments, we modified a static incubation system to assess sequentially the biphasic effects of estrogen on LH release by the same group of cells. Cultures of rat pituitary cells that had been established 42 h previously were treated simultaneously for 3 h with 17 beta-estradiol (3.7 X 10(-10) M) and various concentrations of GnRH (5 X 10(-10) to 1 X 10(-7) M) to measure the inhibitory effects of the steroid on LH secretion. This experiment was repeated on the same cells after 27 h of steroid exposure to estimate the facilitory actions of estrogen on LH release. The negative feedback of estrogen was demonstrable in static cultures of rat pituitaries provided that the period of estrogen exposure and duration of incubation were brief. Moreover, the results indicate that the same groups of cells can be used on consecutive days to investigate the inhibitory and stimulatory effects of estrogen on LH secretion. Experiments with cultures of monkey pituitary cells yielded similar results. Taken together, these findings indicate that cultured pituitary cells are responsive to the biphasic actions of estradiol and demonstrate the utility of two model systems for investigating these phenomena.  相似文献   

8.
We used a pituitary cell perifusion system to investigate the time course and selectivity of the inhibin effect on pulsatile GnRH-stimulated LH and FSH release. Dispersed pituitary cells from 7- to 8-week-old male rats were perifused on a Cytodex bead matrix and stimulated with 10 nM GnRH for 2 min every hour for 8-11 h. The addition of a preparation of inhibin partially purified from primate Sertoli cells reduced pulsatile FSH release within 2 h. After removal of inhibin from the perifusion medium, the effect was reversed within 3 h. GnRH-stimulated LH release was also influenced by inhibin, although the decline in LH was less than that in FSH (80 +/- 3% vs. 68 +/- 4% of control; P less than 0.025). Smaller doses of inhibin suppressed GnRH-induced FSH secretion, but had no effect on LH release. Further, prolonged incubation of pituitary cells with inhibin at the higher dose reduced its FSH inhibitory effect and eliminated the effect on LH. These results indicate that inhibin can reduce both LH and FSH secretion in vitro, although the specificity and magnitude of the effect are a function of both the dose and duration of inhibin treatment. Further, the actions of inhibin and GnRH on the pituitary may be interrelated.  相似文献   

9.
10.
11.
Gonadal steroids act at the pituitary to regulate gonadotropin-releasing hormone (GnRH) receptor number and the responsiveness of gonadotropes to GnRH and can act at post-receptor sites to modulate Ca(2+)-mediated and protein kinase C-mediated signal-transducing pathways. However, such effects have been seen in the mixed cell population of primary cell cultures and may involve indirect effects on cells other than gonadotropes. Here, steroid effects on a recently described gonadotrope-derived cell line (alpha T3-1 cells) have been assessed. In these cells estradiol, progesterone, testosterone and corticosterone all exerted trophic effects. Estradiol increased [3H]thymidine incorporation with an EC50 of 10(-12) to 10(-11) M and this effect was blocked by keoxifene, an estrogen receptor antagonist. Estradiol also reduced binding of [125I]buserelin (EC50 approximately 10(-11) M), an effect which appears to reflect a reduction in GnRH receptor number rather than a change in Kd. Estradiol also shifted the dose-response curve for GnRH-stimulated inositol phosphate (IP) accumulation rightward, increasing the EC50 for this GnRH effect by approximately 20-fold. Accordingly estradiol acts directly upon alpha T3-1 cells not only to reduce GnRH receptor number, but also to reduce the efficiency of coupling of residual GnRH receptors to second messenger generation.  相似文献   

12.
The GnRH antagonist antide is among the most promising "third generation" compounds available for clinical evaluation. In primates, antide manifests prolonged (several weeks) and reversible inhibition of pituitary gonadotropin secretion after a single high dose injection. In the present study, we have examined the effects of antide on pituitary gonadotropin secretion in vitro. Dispersed anterior pituitary cells from adult female rats were plated (48 h; 5 x 10(5) cells/well), washed, and exposed to increasing concentrations of antide for up to 48 h. Media were removed, and cells were washed twice and then incubated with GnRH (1 x 10(-8) M) plus antide for 4 h. Media and cell lysates were assayed for LH/FSH by RIA. Antide had no effect on basal LH/FSH secretion at any dose tested (10(-6)-10(-12) M). In contrast, GnRH-stimulated LH/FSH secretion was inhibited by this GnRH antagonist in a dose- and time-dependent manner. When incubated simultaneously, antide blocked GnRH-stimulated gonadotropin secretion, with a maximal effect at 10(-6) M (ED50, 10(-7) M). Preincubation of pituitary cells with antide for 6-48 h before GnRH exposure shifted the dose-response curve to the left; the maximally effective dose was 10(-8) M; the ED50 was 10(-10) M antide after 48-h preincubation. Intracellular LH/FSH levels increased concomitant with the decrease in secreted gonadotropins. Total LH/FSH levels (secreted plus cell content) remained unchanged. The inhibition of LH secretion by antide was specific for GnRH-stimulated gonadotropin secretion; antide had no effect on K(+)-stimulated LH secretion. Moreover, antide had little or no residual effect on LH secretion; full recovery of GnRH responsiveness in vitro occurred within 4 h after removal of antide. Lineweaver-Burke analysis of antide inhibition of GnRH-stimulated LH secretion indicated that antide is a direct competitor of GnRH at the level of the pituitary GnRH receptor. In summary, antide is a pure antagonist of GnRH stimulation of gonadotropin secretion; no agonistic actions of antide were manifest in vitro. Moreover, antide has no apparent noxious or toxic effect on pituitary cells in culture; the actions of antide are immediately reversible upon removal of antide from pituitary gonadotropes. We conclude that the long term inhibition of gonadotropin secretion by antide in vivo is not due to deleterious effects of this compound at the level of the pituitary gonadotrope.  相似文献   

13.
To elucidate further the manner in which gonadal steroids influence the secretion of LH, we examined the effects of gonadectomy and the absence of functional androgen receptors on GnRH-induced LH release from dispersed rat anterior pituitary cells. Intact and gonadectomized (GNX) normal rats and androgen-resistant, testicular feminized (Tfm) animals from the King x Holtzman strain (a mutant strain that possesses defective androgen receptors) were used. Dispersed pituitary cells were perifused with Medium 199 during a 4-h equilibration period and then subjected to eight 2.5-min pulses of GnRH introduced at 30-min intervals at concentrations ranging from 0.03-100 nM. Basal LH secretion by cells from intact male and female rats was indistinguishable (P = 0.79) and was substantially lower (P less than 0.0001) than that by cells from GNX male and female animals. Basal LH secretion by cells from Tfm rats was significantly higher (P less than 0.01) than that by cells from intact animals, but lower (P less than 0.005) than that by cells from GNX animals. In response to GnRH, perifused pituitary cells from animals representing all experimental groups demonstrated concentration-dependent LH release. Pituitary cells from intact female rats showed an overall greater (P less than 0.05) response to GnRH than cells from intact male rats. Pituitary cells from Tfm rats demonstrated a greater GnRH-stimulated LH mean response than cells from intact male (P less than 0.0001) or intact female (P less than 0.0001) rats. Gonadectomy of male rats resulted in an overall GnRH-stimulated LH release similar to that exhibited by cells from gonadectomized female rats (P = 0.61). Cells from Tfm animals released more LH in response to GnRH than those from gonadectomized male and female rats (P less than 0.001). These data demonstrate that the release of LH in response to GnRH by pituitary cells from intact male rats (i.e. in the presence of androgen and functional androgen receptors) is less than that seen by cells from intact females rats. Since circulating levels of testosterone and estradiol are known to be elevated in the testicular feminized rat, the heightened GnRH-stimulated LH release by cells from such animals may reflect either the long term lack of androgenic influence and/or the combined effects of androgen resistance and elevated levels of circulating estrogens.  相似文献   

14.
Phytoestrogens can produce inhibitory effects on gonadotropin secretion in both animals and humans. The aims of this study were 2-fold: 1) to determine in vivo whether genistein and coumestrol act on the GnRH pulse generator to suppress hypothalamic multiunit electrical activity volleys and associated LH pulses and/or on the pituitary to suppress the LH response to GnRH; and 2) to examine the effect of these phytoestrogens on GnRH-induced pituitary LH release in vitro and to determine whether estrogen receptors are involved. Wistar rats were ovariectomized and chronically implanted with recording electrodes and/or indwelling cardiac catheters, and blood samples were taken every 5 min for 7--11 h. Intravenous infusion of coumestrol (1.6-mg bolus followed by 2.4 mg/h for 8.5 h) resulted in a profound inhibition of pulsatile LH secretion, a 50% reduction in the frequency of hypothalamic multiunit electrical activity volleys, and a complete suppression of the LH response to exogenous GnRH. In contrast, both genistein (1.6-mg bolus followed by 2.4 mg/h for 8.5 h) and vehicle were without effect on pulsatile LH secretion. Coumestrol (10(-5) M; over 2 or 4 h) suppressed GnRH-induced pituitary LH release in vitro, an effect blocked by the antiestrogen ICI 182,780. It is concluded that coumestrol acts centrally to reduce the frequency of the hypothalamic GnRH pulse generator. In addition, the inhibitory effects of coumestrol on LH pulses occur at the level of the pituitary by reducing responsiveness to GnRH via an estrogen receptor-mediated process.  相似文献   

15.
In vitro pituitary perifusion experiments were conducted to examine the effect of ACTH and related peptides on basal and GnRH-stimulated gonadotropin release. Treatments of 5 X 10(-7) M ACTH-(1-39), ACTH-(1-24), or ACTH-(18-39) were examined for their ability to influence basal gonadotropin secretion and the subsequent response to a 10(-9)- or 10(-8) M GnRH challenge. Administration of the 1-39 or 18-39 peptide sequences of ACTH similarly stimulated the release of LH and FSH (P less than 0.01). ACTH-(1-24) had no effect on basal gonadotropin secretion. Pretreatment with ACTH-(1-39) inhibited the LH and FSH responses to 10(-9) and 10(-8) M GnRH (P less than 0.05). Suppression of the LH response to 10(-8) M GnRH (P less than 0.05) and the FSH response to 10(-9) M GnRH (P less than 0.05) was observed after ACTH-(1-24) treatment. The administration of ACTH-(18-39) had no significant effect on GnRH-induced gonadotropin release. PRL concentrations were not affected by any of the ACTH peptides. Exposure to 10(-10) M GnRH or 5 X 10(-7) M synthetic ACTH-(1-39) produced an equivalent stimulation of LH secretion. GnRH pretreatment enhanced (P less than 0.05), while ACTH-(1-39) diminished (P less than 0.05), the subsequent response to GnRH. The GnRH receptor antagonist [D-pGlu1, D-Phe2, D-Trp3,6]GnRH attenuated the LH and FSH responses to GnRH and ACTH-(1-39) (P less than 0.05). The results obtained in this study indicate that certain portions of the ACTH molecule may affect gonadotropin secretion, perhaps by interacting with the GnRH receptor.  相似文献   

16.
S B Waters  P M Conn 《Endocrinology》1992,130(4):2091-2100
Involvement of ionized cytosolic calcium ([Ca2+]i) and protein kinase-C (PKC) in GnRH-stimulated LH release was assessed by correlating measurable changes in [Ca2+]i and LH release in PKC-depleted and nondepleted gonadotropes. Primary cultures of anterior pituitary cells were loaded with the calcium-sensitive fluorescent dye fura-2 and placed in a perifusion chamber. GnRH pulses were delivered to the cells, and changes in fura-2 fluorescence and LH release were determined. The level of [Ca2+]i (assessed by fura-2) increased rapidly to a maximum within 20-40 sec, followed by a slower decline over the next minute (spike phase) to a sustained intermediate value (plateau phase). GnRH-stimulated LH release was unaffected by loading cells with fura-2. Both LH release and changes in [Ca2+]i were directly dependent on GnRH concentration. Pretreatment with the GnRH antagonist Antide (50 nM; [NAcD2Nal1-DpClPhe2-D3Pal3-Ser4-NicLys5-++ +DNicLys6-Leu7-ILys8-Pro9-DAla10]NH2 ) had no effect on basal [Ca2+]i or basal LH release, but did block both GnRH-stimulated calcium mobilization and GnRH-stimulated LH release. GnRH pretreatment (3.5 nM; 10 min) blocked the calcium spike phase, but not the plateau phase occurring in response to a GnRH pulse (10 nM; 5 min) delivered immediately after pretreatment. Inhibition of the calcium spike phase was transient (recovery within 15 min) and was dependent on pretreatment concentrations of GnRH. Calcium spike phase inhibition by GnRH pretreatment prevented increased LH release from PKC-depleted cells in response to a subsequent pulse of GnRH, but not from gonadotropes with normal levels of PKC. This suggests that initial LH release is dependent on changes in [Ca2+]i, but enhancement of LH release after periods of elevated GnRH concentrations may be dependent on PKC.  相似文献   

17.
GnRH stimulates LH release from pituitary cells, and this process is calcium dependent. On the other hand, phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), a potent activator of calcium- and phospholipid-dependent protein kinase (protein kinase C), stimulates luteinizing hormone (LH) release from rat pituitary cells. To investigate the involvement of the calcium dependent process in LH release by TPA, the effects of calcium channel antagonists, verapamil and nifedipine, on TPA-mediated LH release were compared with those of a GnRH superagonist, [D-Ala6] des-Gly10-GnRH N-ethylamide (GnRHa) in cultured pituitary cells. Furthermore, pituitary cells saturated with 45Ca2+ were stimulated by GnRHa or TPA and calcium mobilization after the stimuli were monitored. The pituitary cells from adult male rats were dispersed by trypsin and cultured for 3 days. Cultured pituitary cells were incubated with GnRHa or TPA in the presence of increasing concentrations of verapamil or nifedipine for 3hrs, and LH released into medium was measured by RIA for rat LH. For 45Ca2+ experiment, 3 day-cultured pituitary cells were saturated with 45Ca2+ (10(6) cells/1 microCi/100 microliters) and incubated with secretagogues for the indicated times. Incubations were terminated by filtration, and the radioactivity on the filter was measured by a beta-counter. LH release was stimulated by 0.1 nM TPA, and the maximum response at 10 nM TPA was 50% of the LH response to GnRHa. A23187 also stimulated LH release in relatively high concentrations (10(-5)-10(-4) M), and no additive stimulatory effect was observed when a half-maximal dose of TPA (10(-9) M) was added with increasing concentrations of A23187. Verapamil partially inhibited both GnRHa- and TPA-stimulated LH release, and a similar inhibitory effect on LH release was observed when nifedipine was incubated with GnRHa or TPA, although high concentrations (10(-5)-10(-4) M) of nifedipine stimulated LH release induced by GnRHa and TPA. GnRHa and TPA stimulated 45Ca2+ influx into the cells, and its peak was observed 15 and 30 seconds after stimulation, respectively, while GnRH antagonist did not mobilize 45Ca2+ until 120 seconds after stimulation. These results suggest that TPA-stimulated LH release from pituitary cells involves a calcium dependent process as does GnRH-stimulated LH release.  相似文献   

18.
In several species, glucocorticoids act directly on the pituitary gonadotroph to suppress the gonadotrophin-releasing hormone (GnRH)-induced secretion of the gonadotrophins, especially LH. A mechanism for this action of these adrenal steroids has not been established, but it appears that the glucocorticoids influence LH release by acting on one or more post-receptor sites. This study investigated whether glucocorticoids disrupt GnRH-induced LH release by altering the liberation of arachidonic acid from plasma membrane phospholipids, a component of GnRH-induced LH release. Using perifused ovine pituitary tissue, it was established that exposure of gonadotrophs to 1-1000 nmol cortisol/l for 4 h or longer significantly reduced GnRH-stimulated LH release with the maximal inhibitory effect being observed after 6 h of exposure to cortisol. This suppressive effect of cortisol could be reversed by administration of arachidonic acid, which in its own right could stimulate LH release from ovine pituitary tissue. Furthermore, the inhibitory effect of cortisol on GnRH-stimulated LH release could be directly correlated with decreased pituitary responsiveness to GnRH-stimulated arachidonic acid liberation, consistent with our hypothesis that glucocorticoids can suppress GnRH-induced secretion of LH by reducing the amount of arachidonic acid available for the exocytotic response of GnRH.  相似文献   

19.
J L Turgeon  D W Waring 《Endocrinology》1991,129(6):3234-3239
Progesterone addition to pituitary cells pretreated with estradiol leads within 45 min to an unambiguous augmentation of pulsatile GnRH-stimulated LH secretion. To investigate this rapid action, we established the kinetics of early events through manipulation of RNA synthesis, protein synthesis, and progesterone-receptor binding. Female rat pituitary cells cultured in medium containing charcoal-treated serum plus 0.2 nM estradiol were changed to 0.1% BSA-medium +/- 200 nM progesterone at time 0; at 90 and 150 min the cells were challenged with 1 nM GnRH 15-min pulses. The 3-fold augmentation of GnRH-stimulated LH secretion induced by progesterone was inhibited completely by simultaneous addition of 1 microM actinomycin D or emetine as was GnRH self-priming. In another series, the ability of cycloheximide to completely block progesterone augmentation was gradually diminished with delay of addition, but even 90 min after progesterone (30 min before GnRH pulse) cycloheximide resulted in 50% blockade of augmentation. In contrast, inhibition of RNA synthesis 60-90 min after progesterone introduction had little or no effect on progesterone augmentation. The temporal profile of inhibition by the progesterone antagonist RU486 was indistinguishable from that resulting from blockade of RNA synthesis and suggests that continual activation of the receptor is required for continued RNA synthesis. In summary: 1) both RNA and protein synthesis are required for GnRH self-priming; and 2) progesterone augmentation of GnRH-stimulated LH secretion requires RNA synthesis and synthesis of protein(s) which appear to be turning over rapidly, accumulating slowly, or both.  相似文献   

20.
The purpose of this study was to investigate the effects of lowering the extracellular calcium concentration on GnRH-stimulated LH glycosylation and LH translation, as measured by the incorporation of [3H]glucosamine (3H-Gln) and [35S]methionine (35S-Met) into immunoprecipitable LH. Cultured anterior pituitary cells, previously exposed to estradiol (5 X 10(-10) M) to maximize precursor incorporation were incubated for 4 h in normal calcium (2.5 mM) or low calcium medium (less than 15 microM) containing radiolabeled precursors with or without 1 nM GnRH. In the presence of normal calcium, GnRH significantly increased 3H-Gln-labeled LH in the medium (278%) and cells (290%), as well as total (cells plus medium) 3H- Gln LH (280%) compared to the control value (no GnRH). GnRH also significantly increased the 35S-Met LH released into the medium (164%) and total 35S-Met LH (186%) over control values. Depletion of extracellular calcium completely inhibited GnRH-stimulated 3H-Gln LH and 35S-Met LH production. Total immunoreactive LH (iLH), as measured by RIA, was also increased significantly by GnRH treatment in the presence of calcium, but this response was prevented by removal of calcium from the medium. Lowering extracellular calcium had no effect on cellular uptake or incorporation of 3H-Gln or 35S-Met into total trichloroacetic acid-precipitable protein. Approximately 80% of newly synthesized LH was released into the medium in all treatment groups independent of whether calcium or GnRH was present. The specific activity (disintegrations per min/microgram iLH) of radiolabeled LH released into the medium was significantly reduced by treatment with GnRH due to the large amount of unlabeled iLH released into the medium. However, when the cells were incubated in low calcium, the SA of 3H-Gln LH and 35S-Met LH in the medium was unaltered by GnRH, whereas GnRH-stimulated iLH release was inhibited. We conclude that GnRH stimulation of LH glycosylation and LH apoprotein synthesis involves extracellular calcium-dependent events, and the release of newly synthesized LH is closely coupled to LH biosynthesis and is less dependent on extracellular calcium, whereas the GnRH-stimulated release of previously synthesized, stored LH is dependent on extracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号