首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1–S4 voltage sensor segment of homologous Domain 4. Amino acid residues in the “extracellular” facing regions of the S2 and S3 transmembrane segments of Nav1.3 and Nav1.7 seem to be major determinants of Nav subtype selectivity and to confer differences in species sensitivity to these inhibitors. The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.Voltage-gated sodium (Nav) channels play an important role in the generation and propagation of electrical signals in excitable cells (13). Eukaryotic Nav channels are heteromeric membrane proteins composed of a pore-forming α-subunit and auxiliary β-subunits (3, 4). The mammalian genome encodes nine distinct α (Nav1.1–1.9) and four β subunits (3). The α-subunit comprises four homologous domains (D1–D4), each of which contains six transmembrane segments (S1–S6) (35). The S5 and S6 segments form the central pore separated by the SS1 and SS2 segments, which form the ion selectivity filter at its extracellular end. The S1 to S4 segments form the voltage sensor (35).Both naturally occurring and synthetic pharmacological modulators of sodium channel have been identified (611), and for many, their site of interaction has been defined. For example, the marine toxin TTX inhibits several Nav subtypes by interacting with amino acid residues within the SS1–SS2 segments that define the outer pore of the channel (12, 13). In contrast, the polypeptide α- and β-scorpion venom toxins, which enhance sodium channel activation or delay inactivation, and spider venom toxin sodium channel inhibitors like Protx II interact with specific residues on the S1–S4 voltage sensor regions within homologous Domain 2 (i.e., β-scorpion toxins, Protx II) or Domain 4 (i.e., α-scorpion toxins, anemone toxins) of the channel (8, 1418). Many synthetic small molecule inhibitors of Nav channels, including local anesthetic, antiepileptic, and antiarrhythmic agents, are believed to interact with amino acid residues within the S6 segment in Domain 4, which forms part of the pore lining and is structurally highly conserved across subclasses of mammalian Nav channels (11, 1922). This structural homology probably accounts for many clinically used local anesthetics and related antiepileptic and antiarrhythmic inhibitors, exhibiting little or no selectivity across the nine subtypes of mammalian Nav channels (23). In the clinic this absence of subtype selectivity can result in toxicities associated with unwanted interactions with off-target Nav channels (e.g., cardiac toxicity due to inhibition of cardiac Nav1.5 channels) (24, 25). Therefore, because of their importance in normal physiology and pathophysiology, identification of selective pharmacological modulators of Nav channels is of considerable interest to the scientific and medical communities (9, 23, 2629). For example, in addition to the therapeutic utility of sodium channel inhibitors described above, there has been recent interest in potentially targeting inhibition of specific Nav channel subtypes (i.e., Nav1.7, Nav1.8, and Nav1.3) for the treatment of pain (9, 3032).The present study describes the characterization of a class of subtype selective sodium channel inhibitor that interacts with a unique site on the voltage sensor region of homologous Domain 4. This inhibitory interaction site differs from previously reported inhibitor binding sites for TTX and local anesthetic-like modulators (11, 12).  相似文献   

2.
Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins.Encoded by 10 different genes, Nav channel α-subunits regulate excitable membrane depolarization and are therefore central to metazoan physiology (1). Nav channel function is critical for neuronal firing and communication (1, 2), cardiac excitation–contraction coupling (3), and skeletal and intestinal function (4, 5). The impact of Nav channel function for human biology has been elegantly defined by nearly two decades of studies directly linking Nav channel gene variants with human disease. To date, the field of human Nav channelopathies has exploded to include wide spectrums of neurological [epilepsy (1), pain (6), ataxia (7)] and cardiovascular diseases (8) as well as myotonia congenital (9) and even irritable bowel syndrome (5). Though the majority of these diseases are based on gene variants in Nav channel transmembrane segments that affect the channel pore or channel gating (10), a new paradigm for Nav channelopathies has emerged based on variants that alter association of Nav channels with essential regulatory proteins. To date, human Nav channel gene variants linked with neurological and cardiovascular disease have not only provided new insight on the pathophysiology of excitable cell disease, but also identified and/or validated key in vivo Nav channel regulatory pathways [syntrophin (11), ankyrin-G (12, 13), Nav β1 (14), calmodulin (15), protein kinase A (16), and CaMKIIδ (17, 18)]. However, in many cases, whereas animal and cellular findings may strongly support the role of regulatory proteins for human Nav channel function, human variants that may serve to validate the association have remained elusive, likely due to redundancy of signaling pathways or extreme severity of the disease.Identified in the retina nearly two decades ago, fibroblast growth factor homologous factors (FHFs; FGF11–14) are a family of signaling proteins with key roles in ion channel regulation (19). Distinct from canonical FGFs that are secreted and bind to extracellular FGF receptors, FGF11–14 lack signal sequences and thus regulate intracellular targets. Currently, Nav channels are the most characterized FHF target (2022), and recent structural data mapped the FHF binding site to the Nav channel C terminus (23, 24). Notably, FHFs display multiple roles in Nav channel regulation, including expression, trafficking, and channel gating. However, each FHF appears to show unique regulatory roles for Nav channel regulation that are cell type and Nav channel isoform dependent. Though FHF signaling is complex, the roles of FHFs in vertebrate physiology are clearly illustrated by dysfunction of FHFs in human disease. To date, FHF loci have been linked with spinocerebellar ataxia 27, X-linked mental retardation, and cardiac arrhythmia (2527). In animals, FHF deficiency results in severe neurological phenotypes associated with altered Nav channel function (28). Despite the overwhelming biochemical, functional, and in vivo animal data linking Nav channels and FHF proteins, and in contrast to many other Nav channel regulatory pathways, there are surprisingly little data linking human Nav channel variants with FHFs in any disease.Here we provide, to our knowledge, the first evidence that human Nav channel gene variants that alter FHF binding result in potentially fatal human disease. We describe a five-generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Genetic testing revealed a SCN5A variant, resulting in p.H1849R, in affected family members. The identified SCN5A variant p.H1849R is novel and located at a site in the Nav1.5 C-terminal domain identified to associate with FHFs. Notably, the human p.H1849R variant markedly altered interaction with FHFs, and functional analysis of the variant identified Nav1.5 p.H1849R as a gain-of-function variant. Further, consistent with LQT3 phenotypes observed in the family, expression of this variant resulted in prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, our findings define a previously unidentified mechanism for human Nav channelopathies based on loss of Nav1.5 association with FHF proteins and further confirm the critical link between these intracellular proteins and Nav channels in excitable cells.  相似文献   

3.
Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na+ (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action.General anesthetic agents have been in use for more than 160 y. However, we still understand relatively little about their mechanisms of action, which greatly limits our ability to design safer and more effective general anesthetic agents. Ion channels of the central nervous system are known to be key targets of general anesthetic agents, as their modulation can account for the endpoints and side effects of general anesthesia (14). Many families of ion channels are modulated by general anesthetic agents, including ligand-gated, voltage-gated, and nongated ion channels (2, 57). Mammalian voltage-gated Na+ (NaV) channels, which mediate the upstroke of the action potential, are regulated by numerous inhaled general anesthetic agents (814), which generally cause inhibition. Previous work showed that inhaled general anesthetic agents, including sevoflurane, isoflurane, desflurane, and halothane, mediate inhibition by increasing the rate of Na+ channel inactivation, hyperpolarizing steady-state inactivation, and slowing recovery from inactivation (11, 1518). Inhibition of presynaptic NaV channels in the spinal cord is proposed to lead to inhibition of neurotransmitter release, facilitating immobilization—one of the endpoints of general anesthesia (14, 19, 20). Despite the importance of NaV channels as general anesthetic targets, little is known about interaction sites or the mechanisms of action.What is known about anesthetic sites in NaV channels comes primarily from the local anesthetic field. Local anesthetic agent binding to NaV channels is well characterized. These amphiphilic drugs enter the channel pore from the intracellular side, causing open-channel block (21). Investigating molecular mechanisms of mammalian NaV channel modulation by general anesthetic agents has been complicated by the lack of high-resolution structures of these channels as a result of their large size and pseudotetrameric organization. However, the recent discovery of the smaller, tetrameric bacterial Na+ channel family has provided an invaluable tool to characterize the structural features of NaV channels and investigate their interactions with general anesthetic agents at the molecular level (22, 23). Several bacterial Na+ channels have been crystallized (2427). These channels have a classical domain structure in which helices S1–S4 form the voltage sensor domain (VSD), S5 and S6 form the pore, and the S4–S5 linker connects the voltage sensor to the pore domain. One notable structural feature is the presence of “fenestrations” or hydrophobic tunnels through the pore domain (24).Although crystal structures are not yet reported, the bacterial Na+ channel NaChBac has been extensively characterized by electrophysiology (22, 2836). Additionally NaChBac exhibits conserved slow open channel block in response to local and general anesthetic agents (15, 37). These anesthetic agents reduce peak current and accelerate current decay, making it conceivable that local and general anesthetic agents could share a site of action in NaChBac. The local anesthetic binding site identified in the central cavity of the mammalian NaV1.2 channel, which mediates open channel block, is partially conserved in NaChBac (37, 38). A recent molecular dynamics (MD) modeling study found that isoflurane, which inhibits NaChBac (15), interacts with multiple regions of this channel, including the pore, the selectivity filter, and the S4–S5 linker/S6 interface (39). Although the importance of these interactions on the modulation of mammalian NaV channels remains to be determined, the available data indicate that NaChBac is currently one of the best starting points to investigate the mechanisms of action of sevoflurane.Here, we investigated NaChBac to gain structural insight into the mechanisms of inhaled anesthetic modulation of NaV channels. The focus of this work is sevoflurane because this anesthetic is commonly used in clinical settings and is a known inhibitor of several mammalian NaV channels (NaV 1.4, 1.7, and 1.8) (11, 13). A three-pronged approach incorporating MD simulation, whole-cell patch-clamp electrophysiology, and kinetic modeling suggests that sevoflurane acts on multiple sites to alter gating and permeation. Whereas the effect on gating results from modulating activation and inactivation gating at low concentrations (0.2 mM), the permeation effect is apparent at high concentrations (2 mM) and results from open channel block (2 mM). Although the net inhibitory effect of these multisite interactions is consistent with anesthetic-induced reduction of neuronal firing, general anesthesia does not simply result from a global reduction in firing. General anesthesia depends on complex mechanisms throughout the brain, which include increases and decreases in firing (3). Thus, precisely how Na+ channel activation by sevoflurane fits into the global effects of anesthesia remains to be seen. The present work helps elucidate the molecular mechanism of sevoflurane action on NaV channels.  相似文献   

4.
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. Mutations causing FHM type 3 have been identified in SCN1A, the gene encoding the Nav1.1 Na+ channel, which is also a major target of epileptogenic mutations and is particularly important for the excitability of GABAergic neurons. However, functional studies of NaV1.1 FHM mutations have generated controversial results. In particular, it has been shown that the NaV1.1-L1649Q mutant is nonfunctional when expressed in a human cell line because of impaired plasma membrane expression, similarly to NaV1.1 mutants that cause severe epilepsy, but we have observed gain-of-function effects for other NaV1.1 FHM mutants. Here we show that NaV1.1-L1649Q is nonfunctional because of folding defects that are rescuable by incubation at lower temperatures or coexpression of interacting proteins, and that a partial rescue is sufficient for inducing an overall gain of function because of the modifications in gating properties. Strikingly, when expressed in neurons, the mutant was partially rescued and was a constitutive gain of function. A computational model showed that 35% rescue can be sufficient for inducing gain of function. Interestingly, previously described folding-defective epileptogenic NaV1.1 mutants show loss of function also when rescued. Our results are consistent with gain of function as the functional effect of NaV1.1 FHM mutations and hyperexcitability of GABAergic neurons as the pathomechanism of FHM type 3.Epilepsy and migraine are common neurologic disorders that may have pathophysiological links (13). Mutations have been identified for some rare types of epilepsy and migraine (1, 46), opening a window for investigating their pathogenic mechanisms, which may provide useful information also about more common forms. The Na+ channel α subunit NaV1.1, encoded by the SCN1A gene, is the target of hundreds of epileptogenic mutations (79), and of mutations causing familial hemiplegic migraine type 3 (FHM-3), a rare subtype of migraine with aura characterized by hemiplegia during the attacks, which can also be caused by mutations of CaV2.1 Ca2+ channels and the α2 subunit of the Na+/K+ ATPase (FHM types 1 and 2) (1, 6). The results of most studies suggest that epileptogenic NaV1.1 mutations cause variable degrees of loss of function of NaV1.1, leading to reduced Na+ current and excitability in GABAergic neurons, and resulting in decreased inhibition in neuronal networks (1014). The most severe phenotypes (e.g., Dravet syndrome, an extremely severe epileptic encephalopathy) are in general caused by mutations that induce complete NaV1.1 loss of function, leading to haploinsufficiency (15). Thus, it has been hypothesized that a more severe loss of function would cause more severe epilepsy (8). Functional studies of NaV1.1 FHM mutations have generated more confusing results (1). For instance, we have reported gain-of-function effects for the mutant Q1489K causing pure FHM (16), and modulable gain-/loss-of-function effects for the mutant T1174S associated with FHM or mild epilepsy in different branches of the family (17). Overall, our results are consistent with a gain of function of NaV1.1 as the cause of FHM, which might induce cortical spreading depression (CSD), a probable pathomechanism of migraine, because of hyperexcitability of GABAergic interneurons (16). However, a study has reported loss of function for FHM hNaV1.1 mutants expressed in the human cell line tsA-201—in particular, complete loss of function for the L1649Q mutant because of lack of cell surface expression (18). L1649Q has been identified in a four-generation family with eight members presenting with FHM, without epilepsy or other neurologic symptoms (19); this is a puzzling result more consistent with a phenotype of severe epilepsy (7, 8). We have found that NaV1.1 epileptogenic mutations can induce loss of function by causing folding defects (20), which can be partially rescued by incubation of the transfected cells at lower temperatures (≤30 °C) or by molecular interactions (21, 22), as recently confirmed also for other epileptogenic NaV1.1 mutants (23, 24). We report here that L1649Q is a folding-defective mutant that, when partially rescued, is characterized by an overall gain of function, consistent with our hypothesis of FHM type 3 pathomechanism (16).  相似文献   

5.
A series of discrete decanuclear gold(I) μ3-sulfido complexes with alkyl chains of various lengths on the aminodiphosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2, has been synthesized and characterized. These complexes have been shown to form supramolecular nanoaggregate assemblies upon solvent modulation. The photoluminescence (PL) colors of the nanoaggregates can be switched from green to yellow to red by varying the solvent systems from which they are formed. The PL color variation was investigated and correlated with the nanostructured morphological transformation from the spherical shape to the cube as observed by transmission electron microscopy and scanning electron microscopy. Such variations in PL colors have not been observed in their analogous complexes with short alkyl chains, suggesting that the long alkyl chains would play a key role in governing the supramolecular nanoaggregate assembly and the emission properties of the decanuclear gold(I) sulfido complexes. The long hydrophobic alkyl chains are believed to induce the formation of supramolecular nanoaggregate assemblies with different morphologies and packing densities under different solvent systems, leading to a change in the extent of Au(I)–Au(I) interactions, rigidity, and emission properties.Gold(I) complexes are one of the fascinating classes of complexes that reveal photophysical properties that are highly sensitive to the nuclearity of the metal centers and the metal–metal distances (159). In a certain sense, they bear an analogy or resemblance to the interesting classes of metal nanoparticles (NPs) (6069) and quantum dots (QDs) (7076) in that the properties of the nanostructured materials also show a strong dependence on their sizes and shapes. Interestingly, while the optical and spectroscopic properties of metal NPs and QDs show a strong dependence on the interparticle distances, those of polynuclear gold(I) complexes are known to mainly depend on the nuclearity and the internuclear separations of gold(I) centers within the individual molecular complexes or clusters, with influence of the intermolecular interactions between discrete polynuclear molecular complexes relatively less explored (3438), and those of polynuclear gold(I) clusters not reported. Moreover, while studies on polynuclear gold(I) complexes or clusters are known (3454), less is explored of their hierarchical assembly and nanostructures as well as the influence of intercluster aggregation on the optical properties (3438). Among the gold(I) complexes, polynuclear gold(I) chalcogenido complexes represent an important and interesting class (4451). While directed supramolecular assembly of discrete Au12 (52), Au16 (53), Au18 (51), and Au36 (54) metallomacrocycles as well as trinuclear gold(I) columnar stacks (3438) have been reported, there have been no corresponding studies on the supramolecular hierarchical assembly of polynuclear gold(I) chalcogenido clusters.Based on our interests and experience in the study of gold(I) chalcogenido clusters (4446, 51), it is believed that nanoaggegrates with interesting luminescence properties and morphology could be prepared by the judicious design of the gold(I) chalcogenido clusters. As demonstrated by our previous studies on the aggregation behavior of square-planar platinum(II) complexes (7780) where an enhancement of the solubility of the metal complexes via introduction of solubilizing groups on the ligands and the fine control between solvophobicity and solvophilicity of the complexes would have a crucial influence on the factors governing supramolecular assembly and the formation of aggregates (80), introduction of long alkyl chains as solubilizing groups in the gold(I) sulfido clusters may serve as an effective way to enhance the solubility of the gold(I) clusters for the construction of supramolecular assemblies of novel luminescent nanoaggegrates.Herein, we report the preparation and tunable spectroscopic properties of a series of decanuclear gold(I) μ3-sulfido complexes with alkyl chains of different lengths on the aminophosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2 [n = 8 (1), 12 (2), 14 (3), 18 (4)] and their supramolecular assembly to form nanoaggregates. The emission colors of the nanoaggregates of 2−4 can be switched from green to yellow to red by varying the solvent systems from which they are formed. These results have been compared with their short alkyl chain-containing counterparts, 1 and a related [Au10{Ph2PN(C3H7)PPh2}43-S)4](ClO4)2 (45). The present work demonstrates that polynuclear gold(I) chalcogenides, with the introduction of appropriate functional groups, can serve as building blocks for the construction of novel hierarchical nanostructured materials with environment-responsive properties, and it represents a rare example in which nanoaggregates have been assembled with the use of discrete molecular metal clusters as building blocks.  相似文献   

6.
Voltage-dependent gating of ion channels is essential for electrical signaling in excitable cells, but the structural basis for voltage sensor function is unknown. We constructed high-resolution structural models of resting, intermediate, and activated states of the voltage-sensing domain of the bacterial sodium channel NaChBac using the Rosetta modeling method, crystal structures of related channels, and experimental data showing state-dependent interactions between the gating charge-carrying arginines in the S4 segment and negatively charged residues in neighboring transmembrane segments. The resulting structural models illustrate a network of ionic and hydrogen-bonding interactions that are made sequentially by the gating charges as they move out under the influence of the electric field. The S4 segment slides 6–8 Å outward through a narrow groove formed by the S1, S2, and S3 segments, rotates ∼30°, and tilts sideways at a pivot point formed by a highly conserved hydrophobic region near the middle of the voltage sensor. The S4 segment has a 310-helical conformation in the narrow inner gating pore, which allows linear movement of the gating charges across the inner one-half of the membrane. Conformational changes of the intracellular one-half of S4 during activation are rigidly coupled to lateral movement of the S4–S5 linker, which could induce movement of the S5 and S6 segments and open the intracellular gate of the pore. We confirmed the validity of these structural models by comparing with a high-resolution structure of a NaChBac homolog and showing predicted molecular interactions of hydrophobic residues in the S4 segment in disulfide-locking studies.Voltage-gated sodium (NaV) channels are responsible for initiation and propagation of action potentials in nerve, muscle, and endocrine cells (1, 2). They are members of the structurally homologous superfamily of voltage-gated ion channel proteins that also includes voltage-gated potassium (KV), voltage-gated calcium (CaV), and cyclic nucleotide-gated (CNG) channels (3). Mammalian NaV and CaV channels consist of four homologous domains (I through IV), each containing six transmembrane segments (S1 through S6) and a membrane-reentrant pore loop between the S5 and S6 segments (1, 3). Segments S1–S4 of the channel form the voltage-sensing domain (VSD), and segments S5 and S6 and the membrane-reentrant pore loop form the pore. The bacterial NaV channel NaChBac and its relatives consist of tetramers of four identical subunits, which closely resemble one domain of vertebrate NaV and CaV channels, but provide much simpler structures for studying the mechanism of voltage sensing (4, 5). The hallmark feature of the voltage-gated ion channels is the steep voltage dependence of activation, which derives from the voltage-driven outward movement of gating charges in response to the membrane depolarization (6, 7). The S4 transmembrane segment in the VSD has four to seven arginine residues spaced at 3-aa intervals, which serve as gating charges in the voltage-sensing mechanism (815). The intracellular S4–S5 linker that connects the VSD to the pore plays a key role in coupling voltage-dependent conformational changes in the VSD to opening and closing of the pore (16). The gating charges are pulled in by the internally negative transmembrane electric field and released to move out on depolarization. Their outward movement must be catalyzed by the voltage sensor to reduce the large thermodynamic barrier to movement of charged amino acid residues across the membrane. The molecular mechanism by which the gating charges are stabilized in the hydrophobic transmembrane environment and the catalytic mechanism through which they are transported across the membrane in response to changes in membrane potential are the subjects of intense research efforts.Progress has been made in determining high-resolution structures of voltage sensors of KV and NaV channels in activated states (1720). However, high-resolution structures of resting and intermediate states of voltage sensors are unknown. The majority of evidence supports a sliding helix model of the voltage-dependent gating in which the gating charge-carrying arginines in S4 are proposed to sequentially form ion pairs with negatively charged residues in S1–S3 segments during activation of the channel (911, 21). However, the structural basis for stabilization of the gating charges in the membrane and catalysis of their movement through the hydrophobic membrane environment remain uncertain. Here, we have integrated bioinformatics analysis of NaV and KV channel families using the HHPred homology detection server (2224), high-resolution structural modeling using the Rosetta Membrane (2527) and Rosetta Symmetry methods (28), the X-ray structures of the Kv1.2-Kv2.1 chimeric channel and NavAb with activated VSDs (19, 20) and the MlotiK1 CNG channel in the resting state (29), and experimental data showing sequential state-dependent interactions between gating charges in S4 and negatively charged residues in S1–S3 (this work and refs. 3033). Predictions of the resulting voltage-sensing model are confirmed in this work by disulfide-locking studies and mutant cycle analysis of the interactions of hydrophobic residues in the S4 segment. This model reveals structural details of the voltage-dependent conformational changes in the VSD that stabilize and catalyze gating charge movement and are coupled to opening and closing of the intracellular activation gate of the ion-conducting pore.  相似文献   

7.
8.
Haploinsufficiency of the voltage-gated sodium channel NaV1.1 causes Dravet syndrome, an intractable developmental epilepsy syndrome with seizure onset in the first year of life. Specific heterozygous deletion of NaV1.1 in forebrain GABAergic-inhibitory neurons is sufficient to cause all the manifestations of Dravet syndrome in mice, but the physiological roles of specific subtypes of GABAergic interneurons in the cerebral cortex in this disease are unknown. Voltage-clamp studies of dissociated interneurons from cerebral cortex did not detect a significant effect of the Dravet syndrome mutation on sodium currents in cell bodies. However, current-clamp recordings of intact interneurons in layer V of neocortical slices from mice with haploinsufficiency in the gene encoding the NaV1.1 sodium channel, Scn1a, revealed substantial reduction of excitability in fast-spiking, parvalbumin-expressing interneurons and somatostatin-expressing interneurons. The threshold and rheobase for action potential generation were increased, the frequency of action potentials within trains was decreased, and action-potential firing within trains failed more frequently. Furthermore, the deficit in excitability of somatostatin-expressing interneurons caused significant reduction in frequency-dependent disynaptic inhibition between neighboring layer V pyramidal neurons mediated by somatostatin-expressing Martinotti cells, which would lead to substantial disinhibition of the output of cortical circuits. In contrast to these deficits in interneurons, pyramidal cells showed no differences in excitability. These results reveal that the two major subtypes of interneurons in layer V of the neocortex, parvalbumin-expressing and somatostatin-expressing, both have impaired excitability, resulting in disinhibition of the cortical network. These major functional deficits are likely to contribute synergistically to the pathophysiology of Dravet syndrome.Dravet syndrome (DS), also referred to as “severe myoclonic epilepsy in infancy,” is a rare genetic epileptic encephalopathy characterized by frequent intractable seizures, severe cognitive deficits, and premature death (13). DS is caused by loss-of-function mutations in SCN1A, the gene encoding type I voltage-gated sodium channel NaV1.1, which usually arise de novo in the affected individuals (47). Like DS patients, mice with heterozygous loss-of-function mutations in Scn1a exhibit ataxia, sleep disorder, cognitive deficit, autistic-like behavior, and premature death (814). Like DS patients, DS mice first become susceptible to seizures caused by elevation of body temperature and subsequently experience spontaneous myoclonic and generalized tonic-clonic seizures (11). Global deletion of NaV1.1 impairs Na+ currents and action potential (AP) firing in GABAergic-inhibitory interneurons (810), and specific deletion of NaV1.1 in forebrain interneurons is sufficient to cause DS in mice (13, 15). These data suggest that the loss of interneuron excitability and resulting disinhibition of neural circuits cause DS, but the functional role of different subtypes of interneurons in the cerebral cortex in DS remains unknown.Neocortical GABAergic interneurons shape cortical output and display great diversity in morphology and function (16, 17). The expression of parvalbumin (PV) and somatostatin (SST) defines two large, nonoverlapping groups of interneurons (16, 18, 19). In layer V of the cerebral cortex, PV-expressing fast-spiking interneurons and SST-expressing Martinotti cells each account for ∼40% of interneurons, and these interneurons are the major inhibitory regulators of cortical network activity (17, 20). Layer V PV interneurons make synapses on the soma and proximal dendrites of pyramidal neurons (18, 19), where they mediate fast and powerful inhibition (21, 22). Selective heterozygous deletion of Scn1a in neocortical PV interneurons increases susceptibility to chemically induced seizures (23), spontaneous seizures, and premature death (24), indicating that this cell type may contribute to Scn1a deficits. However, selective deletion of Scn1a in neocortical PV interneurons failed to reproduce the effects of DS fully, suggesting the involvement of other subtypes of interneurons in this disease (23, 24). Layer V Martinotti cells have ascending axons that arborize in layer I and spread horizontally to neighboring cortical columns, making synapses on apical dendrites of pyramidal neurons (17, 25, 26). They generate frequency-dependent disynaptic inhibition (FDDI) that dampens excitability of neighboring layer V pyramidal cells (2729), contributing to maintenance of the balance of excitation and inhibition in the neocortex. However, the functional roles of Martinotti cells and FDDI in DS are unknown.Because layer V forms the principal output pathway of the neocortex, reduction in inhibitory input to layer V pyramidal cells would have major functional consequences by increasing excitatory output from all cortical circuits. However, the effects of the DS mutation on interneurons and neural circuits that provide inhibitory input to layer V pyramidal cells have not been determined. Here we show that the intrinsic excitability of layer V fast-spiking PV interneurons and SST Martinotti cells and the FDDI mediated by Martinotti cells are reduced dramatically in DS mice, leading to an imbalance in the excitation/inhibition ratio. Our results suggest that loss of NaV1.1 in these two major types of interneurons may contribute synergistically to increased cortical excitability, epileptogenesis, and cognitive deficits in DS.  相似文献   

9.
Over the past two decades, enormous progress has been made in designing fluorescent sensors or probes for divalent metal ions. In contrast, the development of fluorescent sensors for monovalent metal ions, such as sodium (Na+), has remained underdeveloped, even though Na+ is one the most abundant metal ions in biological systems and plays a critical role in many biological processes. Here, we report the in vitro selection of the first (to our knowledge) Na+-specific, RNA-cleaving deoxyribozyme (DNAzyme) with a fast catalytic rate [observed rate constant (kobs) ∼0.1 min−1], and the transformation of this DNAzyme into a fluorescent sensor for Na+ by labeling the enzyme strand with a quencher at the 3′ end, and the DNA substrate strand with a fluorophore and a quencher at the 5′ and 3′ ends, respectively. The presence of Na+ catalyzed cleavage of the substrate strand at an internal ribonucleotide adenosine (rA) site, resulting in release of the fluorophore from its quenchers and thus a significant increase in fluorescence signal. The sensor displays a remarkable selectivity (>10,000-fold) for Na+ over competing metal ions and has a detection limit of 135 µM (3.1 ppm). Furthermore, we demonstrate that this DNAzyme-based sensor can readily enter cells with the aid of α-helical cationic polypeptides. Finally, by protecting the cleavage site of the Na+-specific DNAzyme with a photolabile o-nitrobenzyl group, we achieved controlled activation of the sensor after DNAzyme delivery into cells. Together, these results demonstrate that such a DNAzyme-based sensor provides a promising platform for detection and quantification of Na+ in living cells.Metal ions play crucial roles in a variety of biochemical processes. As a result, the concentrations of cellular metal ions have to be highly regulated in different parts of cells, as both deficiency and surplus of metal ions can disrupt normal functions (14). To better understand the functions of metal ions in biology, it is important to detect metal ions selectively in living cells; such an endeavor will not only result in better understanding of cellular processes but also novel ways to reprogram these processes to achieve novel functions for biotechnological applications.Among the metal ions in cells, sodium (Na+) serves particularly important functions, as changes in its concentrations influence the cellular processes of numerous living organisms and cells (58), such as epithelial and other excitable cells (9). As one of the most abundant metal ions in intracellular fluid (10), Na+ affects cellular processes by triggering the activation of many signal transduction pathways, as well as influencing the actions of hormones (11). Therefore, it is important to carefully monitor the concentrations of Na+ in cells. Toward this goal, instrumental analyses by atomic absorption spectroscopy (12), X-ray fluorescence microscopy (13), and 23Na NMR (14) have been used to detect the concentration of intracellular Na+. However, it is difficult to use these methods to obtain real-time dynamics of Na+ distribution in living cells. Fluorescent sensors provide an excellent choice to overcome this difficulty, as they can provide sensitive detection with high spatial and temporal resolution. However, despite significant efforts in developing fluorescent metal ion sensors, such as those based on either genetically encoded probes or small molecular sensors, most fluorescent sensors reported so far can detect divalent metal ions such as Ca2+, Zn2+, Cu2+, and Fe2+ (1521). Among the limited number of Na+ sensors, such as sodium-binding benzofuran isophthalate (22), Sodium Green (23), CoroNa Green/Red (24, 25), and Asante NaTRIUM Green-1/2 (26), most of them are not selective for Na+ over K+ (2225, 27, 28) or have a low binding affinity for Na+ (with a Kd higher than 100 mM) (25, 2731). Furthermore, the presence of organic solvents is frequently required to achieve the desired sensitivity and selectivity for many of the Na+ probes (3234), making it difficult to study Na+ under physiological conditions. Therefore, it is still a major challenge to design fluorescent sensors with strong affinity for Na+ and high selectivity over other monovalent and multivalent metal ions that work under physiological conditions.To meet this challenge, our group and others have taken advantage of an emerging class of metalloenzymes called DNAzymes (deoxyribozymes or catalytic DNA) and turned them into metal ion probes. DNAzymes were first discovered in 1994 through a combinatorial process called in vitro selection (35). Since then, many DNAzymes have been isolated via this selection process. Among them, RNA-cleaving DNAzymes are of particular interest for metal ion sensing, due to their fast reaction rate and because the cleavage, which is catalyzed by a metal ion cofactor, can easily be converted into a detectable signal (3638). Unlike the rational design of either small-molecule or genetically encoded protein sensors, DNAzymes with desired sensitivity and specificity for a metal ion of interest can be selected from a large library of DNA molecules, containing up to 1015 different sequences (35, 39). A major advantage of DNAzymes as metal ion sensors is that metal-selective DNAzymes can be obtained without prior knowledge of necessary metal ion binding sites or specific metal–DNA interaction (40, 41). In addition, through the in vitro selection process, metal ion binding affinity and selectivity can be improved by tuning the stringency of selection pressure and introducing negative selection against competing metal ions (39, 40). Finally, DNA is easily synthesized with a variety of useful modifications and its biocompatibility makes DNAzyme-based sensors excellent tools for live-cell imaging of metal ions. As a result, several metal-specific DNAzymes have been isolated and converted into sensors for their respective metal ion cofactors, including Pb2+ (35, 42, 43), Cu2+ (44, 45), Zn2+ (46), UO22+ (47), and Hg2+ (48). They have recently been delivered into cells for monitoring UO22+ (41, 49), Pb2+ (50), Zn2+ (51), and histidine (52) in living cells.However, in contrast to the previously reported DNAzymes with divalent metal ion selectivity, no DNAzymes have been reported to have high selectivity toward a specific monovalent metal ion. Although DNAzymes that are independent of divalent metal ions have been obtained (5355), including those using modified nucleosides with protein-like functionalities (i.e., guanidinium and imidazole) (5658), no DNAzyme has been found to be selective for a specific monovalent metal ion over other monovalent metal ions. For example, the DNAzyme with the highest reported selectivity for Na+ still binds Na+ over K+ with only 1.3-fold selectivity (54). More importantly, those DNAzymes require very high concentrations of monovalent ions (molar ranges) to function and display very slow catalytic rates (e.g., 10−3 min−1) (5355). The poor selectivity, sensitivity, and slow catalytic rate render these DNAzymes unsuitable for cellular detection of Na+, due to interference from other monovalent ions such as K+ (which is present in concentrations about 10-fold higher than Na+), and the need to image the Na+ rapidly.In this study, we report the in vitro selection and characterization of an RNA-cleaving DNAzyme with exceptionally high selectivity (>10,000-fold) for Na+ over other competing metal ions, with a dynamic range covering the physiological Na+ concentration range (0.135–50 mM) and a fast catalytic rate (kobs, ∼0.1 min−1). This Na+-specific DNAzyme was transformed into a DNAzyme-based fluorescent sensor for imaging intracellular Na+ in living cells, by adopting an efficient DNAzyme delivery method using a cationic polypeptide, together with a photocaging strategy to allow controllable activation of the probe inside cells.  相似文献   

10.
Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the “hinged lid”-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water–protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors.Voltage-gated sodium (Nav) channel inhibitors can modulate sensory or motor activity without threatening vital bodily functions, enabling a wide range of therapeutic applications. In particular, the ability to control Nav channel current allows for effective use as local anesthetic (LA) and antiepileptic (AE) drugs, normalizing function in conditions of hyperexcitability, such as epilepsy, cardiac arrhythmias, hyperalgesia, and myotonia (1, 2). Recent breakthroughs in the solution of atomic structures of the bacterial NavBac family (36) provide an excellent opportunity to describe drug binding at the molecular level.Pharmacological Nav channel modulation is a complex phenomenon involving voltage- and state-dependent block of current, as well as prolongation of recovery from inactivated states, with interrelated observations that have implicated different active sites, pathways and inactivated channel states (7). Despite historical focus on fast inactivation (8), it has now been discovered that slow inactivation is affected by LA/AE drugs (9) and that mutation of key residues involved in inhibition impairs slow inactivation (10). The NavBac family lacks the Domain (D) III–DIV linker responsible for fast inactivation (3), enabling molecular-level investigation into this common modulation process. Moreover, key binding regions are well conserved in bacterial and mammalian channels (3, 11), and it has been shown that bacterial channels interact with common inhibitory drugs (1114). However, questions remain as to how structurally disparate inhibitor molecules can cause qualitatively similar modulation of different mammalian and bacterial Nav channels. Here, we explore the binding of LA benzocaine (BZC) and AE phenytoin (PHT) to the bacterial NavAb channel (3) (Fig. 1), providing detailed insight into Nav modulation mechanisms.Open in a separate windowFig. 1.(A) Simulation system showing NavAb (two of four subunits as ribbons, with voltage sensor domain (VSD) S1 and S2 in blue and S3 and S4 in green, pore domain (PD) S5 in yellow and S6 in red, P-loop P1, P2, and selectivity filter (SF; orange) in a hydrated lipid bilayer (chains as gray lines; water as red/white sticks; NaCl as yellow/cyan balls) and PHT (dark gray sticks). (B and C) Stick representations of BZC (B) and PHT (C).Functional studies have suggested at least two major LA/AE binding sites: a high-affinity, state- and voltage-dependent site; and a low-affinity, less state-dependent site (15). The high-affinity site has been the focus of considerable investigation (16) and appears to be shared by many drugs (2). Studies of mammalian Nav have suggested this site is on helix S6 of DIV, involving residue FS6 [F1764 in Nav1.2 (16), F1579 in Nav1.4, F1759 in Nav1.5 (17)], as well as a Tyr (Y1771 in Nav1.2, Y1586 in Nav1.4, Y1766 in Nav1.5). Binding at this site is use-dependent, such that under brief repetitive stimuli that open the channel, the channel enters a stable nonconducting state, with a cumulative reduction of current (18), signifying preferential binding to an inactivated state (10). Binding to FS6 appears to involve cation–π interaction for charged lidocaine (19), but π-stacking for neutral agents such as BZC and PHT. In contrast, little information exists to pinpoint the low-affinity site(s), whose binding may result from a “combination of hydrophobic interactions” occurring when the channel is maintained at hyperpolarized voltages (15). Complete sampling of the drug-channel binding distribution is needed to define these binding modes.Residue FS6 on domain IV of the mammalian channels is a critical feature in drug modulation, but does not exist at that position in the bacterial channels (Fig. 2A; with full comparison in SI Appendix, Fig. S1). The absence of this important residue may contribute to low LA affinities observed for NaChBac (12). However, the recently solved NavAb (3) possesses a nonconserved F203, which appears to mimic FS6. Fig. 2B shows a simple overlay of the hNav1.2 sequence on the NavAb structural template, with FS6 location and orientation similar to F203 (shifted only slightly along the S6 helix), and thus could play a similar role in drug binding. Furthermore, mammalian Nav channels possess a second Phe in domain I that is equivalent to F203 (SI Appendix, Fig. S1). In contrast, the other bacterial Nav channels only possess two conserved Phe (F201 and F207 in NavAb), with orientations inconsistent with an FS6 site (participating in interactions away from the pore; Fig. 2B). NavAb may therefore offer unique similarity to mammalian Nav for the investigation of LA/AE binding (we note, however, that binding may still occur in the absence of an FS6-like residue, as seen for brominated drug-like compounds to more distant F214 on S6 in NavMs; ref. 11).Open in a separate windowFig. 2.(A) Sequence alignment of segment S6 of NavAb to other Nav channels (showing only FS6-containing domain IV; see SI Appendix, Fig. S1, for full comparison). F201, F203, F207, and N211 in NavAb and F1764 in Nav1.2 are indicated. Amino acids were colored with Jalview (46, 47) using the Zappo scheme. (B) Aligned structures (showing three subunits) of NavAb and model Nav1.2 (based on NavAb) comparing NavAb F201, F203, and F207 to Nav1.2 F1764. Conserved N211 (NavAb numbering) is also indicated.In the 1970s, Hille proposed two separate pathways for inhibitor binding, with charged drugs such as titratable amines and quaternary ammonium derivatives requiring an open channel, and neutral drugs such as BZC and PHT entering via a lipophilic pathway somewhere in the membrane (allowing for binding and dissociation, even when the pore is nonconducting) (20). Our previous simulations revealed dynamic interplay between the protein and lipids, with fenestrations allowing lipid tails to enter the pore (21), representing a potential drug pathway (20, 22). However, access to these openings, and subsequent binding, have yet to be described. Here we use the Anton supercomputer (23) to carry out extensive unbiased fully atomistic simulations of BZC and PHT binding to the NavAb channel to reveal the distribution of binding sites and observe their pathways to shed light on inhibition mechanisms and aid future Nav-drug development.  相似文献   

11.
Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation.The major inhibitory neurotransmitter in the CNS is GABA. Metabotropic GABAB receptor is a G protein-coupled receptor (GPCR) that mediates slow synaptic inhibition (1, 2). It constitutes an important drug target for many neurological disorders, including epilepsy, spasticity, anxiety, and nociception (1, 2).Formation of a functional GABAB receptor requires the heterodimeric assembly of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits (37). Both consist of an N-terminal extracellular domain, a seven-helix transmembrane domain, and a C-terminal intracellular domain. The intracellular domain of each subunit contains a stretch of coiled-coil sequence, and interaction between the coiled-coil helices is partly responsible for GABAB receptor heterodimerization (5, 8).The intracellular region of GABAB receptor hosts elements that control receptor trafficking (9). Specifically, GBR1 has a di-leucine internalization signal (EKSRLL) (9) and an endoplasmic reticulum (ER) retention signal (RSRR) (911) located within or near its coiled-coil domain (9). GBR1 is trapped within the ER when expressed alone (12) but can reach the cell surface upon association with GBR2 (9, 11). Mutation or removal of the ER retention signal in GBR1 results in plasma membrane expression of GBR1 (911). Furthermore, interaction between the coiled-coil domains of GBR1 and GBR2 masks this ER retention signal to facilitate the cell surface expression of both subunits (911). Although mutation of the di-leucine motif itself is not sufficient to release GBR1 from intracellular retention, it enhances cell surface expression of various GBR1 mutants that lack the ER retention signal (9).The coiled-coil domain of GBR1 associates with a number of intracellular proteins involved in trafficking, including the coat protein complex I (COPI) (13), the scaffolding protein 14-3-3 (13, 14), the GPCR interacting scaffolding protein GISP (15), and the guanidine exchange factor msec7-1 (16). In particular, COPI specifically recognizes the ER retention signal sequence of GBR1 and is involved in the intracellular retention of GBR1 (13). The msec7-1 protein increases the cell surface expression of GABAB receptor by binding to the di-leucine internalization motif (16).Despite its important role in GABAB receptor assembly and trafficking, the atomic details of the coiled-coil interaction between subunits are not known. In this study, we present the crystal structure of a GBR1/GBR2 coiled-coil heterodimer and identify specific contacts at the heterodimer interface that control the surface expression of GBR1.  相似文献   

12.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

13.
Membrane recruitment of cytohesin family Arf guanine nucleotide exchange factors depends on interactions with phosphoinositides and active Arf GTPases that, in turn, relieve autoinhibition of the catalytic Sec7 domain through an unknown structural mechanism. Here, we show that Arf6-GTP relieves autoinhibition by binding to an allosteric site that includes the autoinhibitory elements in addition to the PH domain. The crystal structure of a cytohesin-3 construct encompassing the allosteric site in complex with the head group of phosphatidyl inositol 3,4,5-trisphosphate and N-terminally truncated Arf6-GTP reveals a large conformational rearrangement, whereby autoinhibition can be relieved by competitive sequestration of the autoinhibitory elements in grooves at the Arf6/PH domain interface. Disposition of the known membrane targeting determinants on a common surface is compatible with multivalent membrane docking and subsequent activation of Arf substrates, suggesting a plausible model through which membrane recruitment and allosteric activation could be structurally integrated.Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing exchange of GDP for GTP (1). Because many GEFs are recruited to membranes through interactions with phospholipids, active GTPases, or other membrane-associated proteins (15), GTPase activation can be restricted or amplified by spatial–temporal overlap of GEFs with binding partners. GEF activity can also be controlled by autoregulatory mechanisms, which may depend on membrane recruitment (611). Structural relationships between these mechanisms are poorly understood.Arf GTPases function in trafficking and cytoskeletal dynamics (5, 12, 13). Membrane partitioning of a myristoylated (myr) N-terminal amphipathic helix primes Arfs for activation by Sec7 domain GEFs (1417). Cytohesins comprise a metazoan Arf GEF family that includes the mammalian proteins cytohesin-1 (Cyth1), ARNO (Cyth2), and Grp1 (Cyth3). The Drosophila homolog steppke functions in insulin-like growth factor signaling, whereas Cyth1 and Grp1 have been implicated in insulin signaling and Glut4 trafficking, respectively (1820). Cytohesins share a modular architecture consisting of heptad repeats, a Sec7 domain with exchange activity for Arf1 and Arf6, a PH domain that binds phosphatidyl inositol (PI) polyphosphates, and a C-terminal helix (CtH) that overlaps with a polybasic region (PBR) (2128). The overlapping CtH and PBR will be referred to as the CtH/PBR. The phosphoinositide specificity of the PH domain is influenced by alternative splicing, which generates diglycine (2G) and triglycine (3G) variants differing by insertion of a glycine residue in the β1/β2 loop (29). Despite similar PI(4,5)P2 (PIP2) affinities, the 2G variant has 30-fold higher affinity for PI(3,4,5)P3 (PIP3) (30). In both cases, PIP3 is required for plasma membrane (PM) recruitment (23, 26, 3133), which is promoted by expression of constitutively active Arf6 or Arl4d and impaired by PH domain mutations that disrupt PIP3 or Arf6 binding, or by CtH/PBR mutations (8, 3436).Cytohesins are autoinhibited by the Sec7-PH linker and CtH/PBR, which obstruct substrate binding (8). Autoinhibition can be relieved by Arf6-GTP binding in the presence of the PIP3 head group (8). Active myr-Arf1 and myr-Arf6 also stimulate exchange activity on PIP2-containing liposomes (37). Whether this effect is due to relief of autoinhibition per se or enhanced membrane recruitment is not yet clear. Phosphoinositide recognition by PH domains, catalysis of nucleotide exchange by Sec7 domains, and autoinhibition in cytohesins are well characterized (8, 16, 17, 30, 3843). How Arf-GTP binding relieves autoinhibition and promotes membrane recruitment is unknown. Here, we determine the structural basis for relief of autoinhibition and investigate potential mechanistic relationships between allosteric regulation, phosphoinositide binding, and membrane targeting.  相似文献   

14.
15.
Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na+-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na+/leucine transporter LeuT, our results suggest that Na+ binding at the conserved second Na+ binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.Secondary active transporters harness the energy of ion gradients to power the uphill movement of solutes across membranes. Mitchell (1) and others (2, 3) proposed and elaborated “alternating access” mechanisms wherein the transporter transitions between two conformational states that alternately expose the substrate binding site to the two sides of the membrane. The LeuT class of ion-coupled symporters consists of functionally distinct transporters that share a conserved scaffold of two sets of five transmembrane helices related by twofold symmetry around an axis nearly parallel to the membrane (4). Ions and substrates are bound near the middle of the membrane stabilized by electrostatic interactions with unwound regions of transmembrane helix (TM) 1 and often TM6 (4). The recurrence of this fold in transporters that play critical roles in fundamental physiological processes (5, 6) has spurred intense interest in defining the principles of alternating access.Despite rapid progress in structure determination of ion-coupled LeuT-fold transporters (711), extrapolation of these static snapshots to a set of conformational steps underlying alternating access (4, 7, 912) remains incomplete, often hindered by uncertainties in the mechanistic identities of crystal structures. Typically, transporter crystal structures are classified as inward-facing, outward-facing, or occluded on the basis of the accessibility of the substrate binding site (711). In a recent spectroscopic analysis of LeuT, we demonstrated that detergent selection and mutations of conserved residues appeared to stabilize conformations that were not detected in the wild-type (WT) LeuT and concurrently inhibited movement of structural elements involved in ligand-dependent alternating access (13). Therefore, although crystal structures define the structural context and identify plausible pathways of substrate binding and release, development of transport models requires confirming or assigning the mechanistic identity of these structures and framing them into ligand-dependent equilibria (14).Mhp1, an Na+-coupled symporter of benzyl-hydantoin (BH) from Microbacterium liquefaciens, was the first LeuT-fold member to be characterized by crystal structures purported to represent outward-facing, inward-facing, and outward-facing/occluded conformations of an alternating access cycle (8, 15). In these structures, solvent access to ligand-binding sites is defined by the relative orientation between a 4-helix bundle motif and a 4-helix scaffold motif (8). In Mhp1, alternating access between inward- and outward-facing conformations, was predicted from a computational analysis based on the inverted repeat symmetry of the LeuT fold and is referred to as the rocking-bundle model (16). The conservation of the inverted symmetry prompted proposal of the rocking-bundle mechanism as a general model for LeuT-fold transporters (16). Subsequent crystal structures of other LeuT-fold transporters (7, 9, 10) tempered this prediction because the diversity of the structural rearrangements implicit in these structures is seemingly inconsistent with a conserved conformational cycle.Another outstanding question pertains to the ion-coupling mechanism and the driving force of conformational changes. The implied ion-to-substrate stoichiometry varies across LeuT-fold ion-coupled transporters. For instance, LeuT (17) and BetP (18) require two Na+ ions that bind at two distinct sites referred to as Na1 and Na2 whereas Mhp1 (15) and vSGLT (19) appear to possess only the conserved Na2 site. Molecular dynamics (MD) simulations (20, 21) and electron paramagnetic resonance (EPR) analysis (13, 22) of LeuT demonstrated that Na+ binding favors an outward-facing conformation although it is unclear which Na+ site (or both) is responsible for triggering this conformational transition. Similarly, a role for Na+ in conformational switching has been uncovered in putative human LeuT-fold transporters, including hSGLT (23). In Mhp1, the sole Na2 site has been shown to modulate substrate affinity (15); however, its proposed involvement in gating of the intracellular side (12, 21) lacks experimental validation.Here, we used site-directed spin labeling (SDSL) (24) and double electron-electron resonance (DEER) spectroscopy (25) to elucidate the conformational changes underlying alternating access in Mhp1 and define the role of ion and substrate binding in driving transition between conformations. This methodology has been successfully applied to define coupled conformational cycles for a number of transporter classes (13, 2632). We find that patterns of distance distributions between pairs of spin labels monitoring the intra- and extracellular sides of Mhp1 are consistent with isomerization between the crystallographic inward- and outward-facing conformations. A major finding is that this transition is driven by substrate but not Na+ binding. Although the amplitudes of the observed distance changes are in overall agreement with the rocking-bundle model deduced from the crystal structures of Mhp1 (8, 15) and predicted computationally (16), we present evidence that relative movement of bundle and scaffold deviate from strict rigid body. Comparative analysis of LeuT and Mhp1 alternating access reveal how the conserved LeuT fold harnesses the energy of the Na+ gradient through two distinct coupling mechanisms and supports divergent conformational cycles to effect substrate binding and release.  相似文献   

16.
17.
Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.Protein folding is an intriguing phenomenon at the interface of physics and biology. In the early days of folding kinetics studies, folding was formulated almost exclusively in terms of mass-action rate equations connecting the folded, unfolded, and possibly, one or a few intermediate states (1, 2). With the advent of site-directed mutagenesis, the concept of free energy barriers from transition state theory (TST) (3) was introduced to interpret mutational data (4), and subsequently, it was adopted for the Φ-value analysis (5). Since the 1990s, the availability of more detailed experimental data (6), in conjunction with computational development of coarse-grained chain models, has led to an energy landscape picture of folding (715). This perspective emphasizes the diversity of microscopic folding trajectories, and it conceptualizes folding as a diffusive process (1625) akin to the theory of Kramers (26).For two-state-like folding, the transition path (TP), i.e., the sequence of kinetic events that leads directly from the unfolded state to the folded state (27, 28), constitutes only a tiny fraction of a folding trajectory that spends most of the time diffusing, seemingly unproductively, in the vicinity of the free energy minimum of the unfolded state. The development of ultrafast laser spectroscopy (29, 30) and single-molecule (27, 28, 31) techniques have made it possible to establish upper bounds on the transition path time (tTP) ranging from <200 and <10 μs by earlier (27) and more recent (28), respectively, direct single-molecule FRET to <2 μs (30) by bulk relaxation measurements. Consistent with these observations, recent extensive atomic simulations have also provided estimated tTP values of the order of ∼1 μs (32, 33). These advances offer exciting prospects of characterizing the productive events along folding TPs.It is timely, therefore, to further the theoretical investigation of TP-related questions (19). To this end, we used coarse-grained Cα models (14) to perform extensive simulations of the folding trajectories of small proteins with 56- to 86-aa residues. These tractable models are useful, because despite significant progress, current atomic models cannot provide the same degree of sampling coverage for proteins of comparable sizes (32, 33). In addition to structural insights, this study provides previously unexplored vantage points to compare the diffusion and TST pictures of folding. Deviations of folding behaviors from TST predictions are not unexpected, because TST is mostly applicable to simple gas reactions; however, the nature and extent of the deviations have not been much explored. Our explicit-chain simulation data conform well to the diffusion picture but not as well to TST. In particular, the preexponential factors of the simulated folding rates exhibit a small but appreciable variation that depends on native topology. These findings and others reported below underscore the importance of single-molecule measurements (13, 27, 28, 31, 34, 35) in assessing the merits of proposed scenarios and organizing principles of folding (725, 36, 37).  相似文献   

18.
The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity.Layer-structured 2D materials are an interesting family of materials with strong covalent bonding within molecular layers and weak van der Waals interaction between layers. Beyond intensively studied graphene-related materials (14), there has been recent strong interest in other layered materials whose vertical thickness can be thinned down to less than few nanometers and horizontal width can also be reduced to nanoscale (59). The strong interest is driven by their interesting physical and chemical properties (2, 10) and their potential applications in transistors, batteries, topological insulators, thermoelectrics, artificial photosynthesis, and catalysis (4, 1125).One of the unique properties of 2D layered materials is their ability to intercalate guest species into their van der Waals gaps, opening up the opportunities to tune the properties of materials. For example, the spacing between the 2D layers could be increased by intercalation such as lithium (Li) intercalated graphite or molybdenum disulfide (MoS2) and copper intercalated bismuth selenide (2629). The electronic structures of the host lattice, such as the charge density, anisotropic transport, oxidation state, and phase transition, may also be changed by different species intercalation (26, 27).As one of the most interesting layered materials, MoS2 has been extensively studied in a variety of areas such as electrocatalysis (2022, 3036). It is known that there is a strong correlation between the electronic structure and catalytic activity of the catalysts (20, 3741). It is intriguing to continuously tune the morphology and electronic structure of MoS2 and explore the effects on MoS2 hydrogen evolution reaction (HER) activity. Very recent studies demonstrated that the monolayered MoS2 and WS2 nanosheets with 1T metallic phase synthesized by chemical exfoliation exhibited superior HER catalytic activity to those with 2H semiconducting phase (35, 42), with a possible explanation that the strained 1T phase facilitates the hydrogen binding process during HER (42). However, it only offers two end states of materials and does not offer a continuous tuning. A systematic investigation to correlate the gradually tuned electronic structure, including oxidation state shift and semiconducting–metallic phase transition, and the corresponding HER activity is important but unexplored. We believe that the Li electrochemical intercalation method offers a unique way to tune the catalysts for optimization.In this paper, we demonstrate that the layer spacing, oxidation state, and the ratio of 2H semiconducting to 1T metallic phase of MoS2 HER catalysts were continuously tuned by Li intercalation to different voltages vs. Li+/Li in nanofilms with molecular layers perpendicular to the substrates. Correspondingly, the catalytic activity for HER was observed to be continuously tuned. The lower oxidation state of Mo and 1T metallic phase of MoS2 turn out to have better HER catalytic activities. The performance of MoS2 catalyst on both flat and 3D electrodes was dramatically improved when it was discharged to low potentials vs. Li+/Li.  相似文献   

19.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

20.
Mutations that lead to Huntington’s disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.Huntington’s disease (HD) is a rare and fatal neurodegenerative disease caused by an expansion of a CAG triplet repeat in Htt, the gene that encodes for the protein huntingtin (1, 2). HD is characterized by a prediagnostic phase that includes subtle changes in personality, cognition, and motor function, followed by a more severe symptomatic stage initially characterized by hyperkinesia (chorea), motor incoordination, deterioration of cognitive abilities, and psychiatric symptoms. At later stages of disease progression, patients experience dystonia, rigidity, and bradykinesia, and ultimately death (37). The cortex and striatum are the most severely affected brain regions in HD and, interestingly, an increasing number of reports suggest that alterations in cortical and striatal physiology are present in prediagnostic individuals and in young HD mice (616).Striatal spiny projection neurons (SPNs) receive large glutamatergic inputs from the cortex and thalamus, as well as dopaminergic innervation from the substantia nigra. In the healthy striatum, the interplay of these neurotransmitters coordinates the activity of SPNs and striatal interneurons, regulating motor planning and execution as well as cognition and motivation (17, 18). Htt mutations lead to an early increase in striatal glutamatergic transmission, which begins during the asymptomatic phase of HD (1214) and could contribute to synaptic changes observed in later stages of HD (19, 20). Based on this, pharmacological agents that reduce excitatory transmission in the striatum could reduce or prevent the progression of alterations in striatal synaptic function and behavior observed in symptomatic stages of HD.Muscarinic acetylcholine receptors (mAChRs), particularly M4, can inhibit transmission at corticostriatal synapses (2125). Therefore, it is possible that selective activation of specific mAChR subtypes could normalize excessive corticostriatal transmission in HD. Interestingly, previous studies also suggest that HD is associated with alterations of striatal cholinergic markers, including mAChRs (2629). We now provide exciting new evidence that M4-mediated control of corticostriatal transmission is increased in young asymptomatic HD mice and that M4 positive allosteric modulators (PAMs) may represent a new treatment strategy for normalizing early changes in corticostriatal transmission and reducing the progression of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号