首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental language disorder (DLD) is a common neurodevelopmental disorder with largely unknown etiology. Rare copy number variants (CNVs) have been implicated in the genetic architecture of other neurodevelopmental disorders (NDDs), which have led to clinical genetic testing recommendations for these disorders; however, the evidence is still lacking for DLD. We analyzed rare and de novo CNVs in 58 probands with severe DLD, their 159 family members and 76 Swedish typically developing children using high‐resolution microarray. DLD probands had larger rare CNVs as measured by total length (P = .05), and average length (P = .04). In addition, the rate of rare CNVs overlapping coding genes was increased (P = .03 and P = .01) and in average more genes were affected (P = .006 and P = .03) in the probands and their siblings, respectively. De novo CNVs were found in 4.8% DLD probands (2/42) and 2.4% (1/42) siblings. Clinically significant CNVs or chromosomal anomalies were found in 6.9% (4/58) of the probands of which 2 carried 16p11.2 deletions. We provide further evidence that rare CNVs contribute to the etiology of DLD in loci that overlap with other NDDs. Based on our results and earlier literature, families with DLD should be offered molecular genetic testing as a routine in their clinical follow‐up.  相似文献   

2.
Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents'' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes.  相似文献   

3.
Copy number variants (CNVs) have repeatedly been found to cause or predispose to autism spectrum disorders (ASDs). For diagnostic purposes, we screened 194 individuals with ASDs for CNVs using Illumina SNP arrays. In several probands, we also analyzed candidate genes located in inherited deletions to unmask autosomal recessive variants. Three CNVs, a de novo triplication of chromosome 15q11–q12 of paternal origin, a deletion on chromosome 9p24 and a de novo 3q29 deletion, were identified as the cause of the disorder in one individual each. An autosomal recessive cause was considered possible in two patients: a homozygous 1p31.1 deletion encompassing PTGER3 and a deletion of the entire DOCK10 gene associated with a rare hemizygous missense variant. We also identified multiple private or recurrent CNVs, the majority of which were inherited from asymptomatic parents. Although highly penetrant CNVs or variants inherited in an autosomal recessive manner were detected in rare cases, our results mainly support the hypothesis that most CNVs contribute to ASDs in association with other CNVs or point variants located elsewhere in the genome. Identification of these genetic interactions in individuals with ASDs constitutes a formidable challenge.  相似文献   

4.
《Genetics in medicine》2016,18(5):443-451
PurposeCharcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders of the peripheral nervous system. Copy-number variants (CNVs) contribute significantly to CMT, as duplication of PMP22 underlies the majority of CMT1 cases. We hypothesized that CNVs and/or single-nucleotide variants (SNVs) might exist in patients with CMT with an unknown molecular genetic etiology.MethodsTwo hundred patients with CMT, negative for both SNV mutations in several CMT genes and for CNVs involving PMP22, were screened for CNVs by high-resolution oligonucleotide array comparative genomic hybridization. Whole-exome sequencing was conducted on individuals with rare, potentially pathogenic CNVs.ResultsPutatively causative CNVs were identified in five subjects (~2.5%); four of the five map to known neuropathy genes. Breakpoint sequencing revealed Alu-Alu-mediated junctions as a predominant contributor. Exome sequencing identified MFN2 SNVs in two of the individuals.ConclusionNeuropathy-associated CNV outside of the PMP22 locus is rare in CMT. Nevertheless, there is potential clinical utility in testing for CNVs and exome sequencing in CMT cases negative for the CMT1A duplication. These findings suggest that complex phenotypes including neuropathy can potentially be caused by a combination of SNVs and CNVs affecting more than one disease-associated locus and contributing to a mutational burden.  相似文献   

5.
《Genetics in medicine》2019,21(4):1001-1007
PurposeTo determine disease-associated single-gene variants in conotruncal defects, particularly tetralogy of Fallot (TOF).MethodsWe analyzed for rare loss-of-function and deleterious variants in FLT4 (VEGFR3) and other genes in the vascular endothelial growth factor (VEGF) pathway, as part of a genome sequencing study involving 175 adults with TOF from a single site.ResultsWe identified nine (5.1%) probands with novel FLT4 variants: seven loss-of-function, including an 8-kb deletion, and two predicted damaging. In ten other probands we found likely disruptive variants in VEGF-related genes: KDR (VEGFR2; two stopgain and two nonsynonymous variants), VEGFA, FGD5, BCAR1, IQGAP1, FOXO1, and PRDM1. Detection of VEGF-related variants (19/175, 10.9%) was associated with an increased prevalence of absent pulmonary valve (26.3% vs. 3.4%, p < 0.0001) and right aortic arch (52.6% vs. 29.1%, p = 0.029). Extracardiac anomalies were rare. In an attempt to replicate findings, we identified three loss-of-function or damaging variants in FLT4, KDR, and IQGAP1 in ten independent families with TOF.ConclusionLoss-of-function variants in FLT4 and KDR contribute substantially to the genetic basis of TOF. The findings support dysregulated VEGF signaling as a novel mechanism contributing to the pathogenesis of TOF.  相似文献   

6.
《Genetics in medicine》2021,23(1):86-93
PurposeCopy-number variant (CNV) analysis is increasingly performed in genetic diagnostics. We leveraged recent gene curation efforts and technical standards for interpretation and reporting of CNVs to characterize clinically relevant CNVs in patients with inherited heart disease and sudden cardiac death.MethodsExome sequencing data were analyzed for CNVs using eXome-Hidden Markov Model tool in 48 established disease genes. CNV breakpoint junctions were characterized. CNVs were classified using the American College of Medical Genetics and Genomics technical standards.ResultsWe identified eight CNVs in 690 unrelated probands (1.2%). Characterization of breakpoint junctions revealed nonhomologous end joining was responsible for four deletions, whereas one duplication was caused by nonallelic homologous recombination between duplicated sequences in MYH6 and MYH7. Identifying the precise breakpoint junctions determined the genomic involvement and proved useful for interpreting the clinical relevance of CNVs. Three large deletions involving TTN, MYBPC3, and KCNH2 were classified as pathogenic in three patients. Haplotype analysis of a deletion in ACTN2, found in two families, suggests the deletion was caused by an ancestral event.ConclusionCNVs infrequently cause inherited heart diseases and should be investigated when standard genetic testing does not reveal a genetic diagnosis.  相似文献   

7.
BackgroundCongenital vertical talus (CVT), also known as “rocker-bottom foot”, is a rare foot deformity associated with a dislocation of the talonavicular joint. Although genetic causes of CVT have been described in single isolated and syndromic families, whole-exome sequencing (WES) of large cohorts have not yet been reported.MethodsIn this study, 62 probands with CVT were evaluated for likely causative single nucleotide variants (SNVs) and copy number variants (CNVs) using WES. Segregation of variants within families was determined by Sanger sequencing.ResultsIn this cohort, CVT occurred as an isolated anomaly in 75.8% (47/62) and was familial in 19.3% (12/62) of cases. Analysis of WES data led to the identification of likely causative variants in known disease genes in 30.6% (19/62) of all CVT probands. More than one proband had likely causative SNVs in TSHZ1, GDF5, and LMX1B. Only two probands had likely causative CNVs: a chromosome 12q13.13 deletion of the 5’ HOXC gene cluster, and a chromosome 18q22.3q23 deletion involving TSHZ1. Familial CVT was strongly predictive of identifying a molecular diagnosis [75% (9/12) of familial cases compared to 20% (10/50) of non-familial cases (Chi-square test, P-value = 0.0002)]. There was no difference in the solved rate based on isolated or syndromic presentation, unilateral or bilateral affectation, or sex.ConclusionsCVT is genetically heterogeneous and more often caused by SNVs than CNVs. There is a high yield of WES in familial CVT cases (~75%). Additional research is needed to identify the causes of sporadic CVT, which had much lower solved rates.  相似文献   

8.
《Genetics in medicine》2018,20(2):172-180
PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of “CNV-positive” trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.  相似文献   

9.
《Genetics in medicine》2019,21(1):133-143
PurposeWe evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM).MethodsCardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics.ResultsA majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one “driver” pathogenic variant that cosegregated with disease.ConclusionRare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.  相似文献   

10.
Chromosomal copy number variants (CNVs) are known contributors to neurodevelopmental conditions such as autism spectrum disorder (ASD). Both array comparative genomic hybridization and next-generation sequencing techniques have led to an increased detection of small CNVs and the identification of many candidate susceptibility genes for ASD. We report familial inheritance of two CNVs that include genes with known involvement in neurodevelopment. These CNVs are found in various combinations among four siblings with autism spectrum disorder, as well as in their neurodevelopmentally normal parents. We describe a 2.4 Mb duplication of 4p12 to 4p11 that includes GABRA4 (OMIM: 137141) and other GABA receptor genes, as well as a 246 kb deletion at 22q11.22 involving the TOP3B gene (OMIM: 603582). The maternally inherited 4p duplication was detected in three siblings, two of whom also had the paternally inherited 22q11.22 deletion. The fourth sibling only had the 22q11.22 deletion. These CNVs have rarely been reported in the literature. Upon review, a single publication was found describing a similar 4p duplication in three generations of a family with neurodevelopmental and neuropsychiatric disorders, as well as in an unrelated patient with autism (Polan et al., 2014). TOP3B falls within the distal 22q11.22 microdeletion syndrome and has been associated with schizophrenia, neurodevelopmental disorders including epilepsy, and cardiac defects. The identification of this family contributes to the understanding of specific genetic contributors to neurodevelopmental disorders and an emerging phenotype associated with proximal 4p duplication.  相似文献   

11.
PurposeCommon diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.MethodsWe characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.ResultsComputational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.ConclusionOur results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.  相似文献   

12.
《Genetics in medicine》2020,22(11):1759-1767
PurposeCongenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes.MethodsWe evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues.ResultsAmong the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism—two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature.ConclusionsWe identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.  相似文献   

13.
《Genetics in medicine》2023,25(8):100884
PurposeNeurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze “poison exons” (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease.MethodsWe curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts.ResultsAcross 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features.ConclusionWith a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.  相似文献   

14.
《Genetics in medicine》2017,19(6):667-675
PurposeCopy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10–20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test.MethodsWe performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting.ResultsIn total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to –5.8% per disorder).ConclusionsThis study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016  相似文献   

15.
Hereditary hearing loss (HL) has high genetic and phenotypical heterogeneity including the overlapping and variable phenotypic features. For sporadic HL without a family history, it is more difficult to indicate the contribution of genetic factors to define a pattern of inheritance. We assessed the contribution of genetic variants and patterns of inheritance by a family trio-based sequencing and provided new insight into genetics. We conducted an analysis of data from unrelated sporadic patients with HL (n = 404) who underwent trio-based whole-exome sequencing (trio-WES) or proband-only WES (p-WES) or targeted exome sequencing (TES), and the samples of their unaffected-parents (n = 808)were validated. A molecular diagnosis was rendered for 191 of 404 sporadic HL patients (47.3%) in multiple modes of inheritance, including autosomal recessive (AR), autosomal dominant (AD) caused by de novo variants, copy-number variants (CNVs), X-linked recessive, and dual genetic diagnosis. Among these patients, 83 (43.5%) cases were diagnosed with variants in rare genes. Sporadic HL patients were identified by multiple modes of transmission. Observed variations in rare genes and multiple modes of inheritance can strikingly emphasize the important etiological contribution of recessive and de novo genetic variants to a large cohort of sporadic HL cases plus their parents.  相似文献   

16.
《Genetics in medicine》2023,25(2):100323
PurposePathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified.MethodsChromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes.ResultsIn total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect.ConclusionHECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.  相似文献   

17.
《Genetics in medicine》2021,23(11):2186-2193
PurposeAccurate interpretation of variants detected in dilated cardiomyopathy (DCM) is crucial for patient care but has proven challenging. We applied a set of proposed refined American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria for DCM, reclassified all detected variants in robust genes, and associated these results to patients' phenotype.MethodsThe study included 902 DCM probands from the Maastricht Cardiomyopathy Registry who underwent genetic testing. Two gene panel sizes (extended n = 48; and robust panel n = 14) and two standards of variant classification (standard versus the proposed refined ACMG/AMP criteria) were applied to compare genetic yield.ResultsA pathogenic or likely pathogenic (P/LP) variant was found in 17.8% of patients, and a variant of uncertain significance (VUS) was found in 32.8% of patients when using method 1 (extended panel (n = 48) + standard ACMG/AMP), compared to respectively 16.9% and 12.9% when using method 2 (robust panel (n = 14) + standard ACMG/AMP), and respectively 14% and 14.5% using method 3 (robust panel (n = 14) + refined ACMG/AMP). Patients with P/LP variants had significantly lower event-free survival compared to genotype-negative DCM patients.ConclusionStringent gene selection for DCM genetic testing reduced the number of VUS while retaining ability to detect similar P/LP variants. The number of genes on diagnostic panels should be limited to genes that have the highest signal to noise ratio.  相似文献   

18.
19.
Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.  相似文献   

20.
《Genetics in medicine》2018,20(5):536-544
PurposeHearing loss is more prevalent in the Saudi Arabian population than in other populations; however, the full range of genetic etiologies in this population is unknown. We report the genetic findings from 33 Saudi hearing-loss probands of tribal ancestry, with predominantly prelingual severe to profound hearing loss.MethodsTesting was performed over the course of 2012–2016, and involved initial GJB2 sequence and GJB6-D13S1830 deletion screening, with negative cases being reflexed to a next-generation sequencing panel with 70, 71, or 87 hearing-loss genes.ResultsA “positive” result was reached in 63% of probands, with two recurrent OTOF variants (p.Glu57* and p.Arg1792His) accountable for a third of all “positive” cases. The next most common cause was pathogenic variants in MYO7A and SLC26A4, each responsible for three “positive” cases. Interestingly, only one “positive” diagnosis had a DFNB1-related cause, due to a homozygous GJB6-D13S1830 deletion, and no sequence variants in GJB2 were detected.ConclusionOur findings implicate OTOF as a potential major contributor to hearing loss in the Saudi population, while highlighting the low contribution of GJB2, thus offering important considerations for clinical testing strategies for Saudi patients. Further screening of Saudi patients is needed to characterize the genetic spectrum in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号