首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

CD44, a transmembrane glycoprotein expressed in a variety of cells and tissues, has been implicated in tumour metastasis. But the molecular mechanisms of CD44-mediated tumour cell metastasis remain to be elucidated.

Methods:

The downregulation of CD44 was determined by immunofluorescence. Moreover, the motility of breast cancer cells was detected by wound-healing and transwell experiments. Then the spontaneous metastasis of CD44-silenced MDA-MB-231 cells was tested by histology with BALB/c nude mice.

Results:

A positive correlation between CD44 and Na+/H+ exchanger isoform 1 (NHE1) was found in two breast cancer cells. CD44 downregulation could inhibit the metastasis of MDA-MB-231 cells and the expressions of Na+/H+ exchanger 1. Moreover, CD44 overexpression upregulated the metastasis of MCF-7 cells, but the elevated metastatic ability was then inhibited by Cariporide. Interestingly, during these processes only the p-ERK1/2 was suppressed by CD44 downregulation and the expression of matrix metalloproteinases and metastatic capacity of MDA-MB-231 cells were greatly inhibited by the MEK1 inhibitor PD98059, which even had a synergistic effect with Cariporide. Furthermore, CD44 downregulation inhibits breast tumour outgrowth and spontaneous lung metastasis.

Conclusions:

Taken together, this work indicates that CD44 regulates the metastasis of breast cancer cells through regulating NHE1 expression, which could be used as a novel strategy for breast cancer therapy.  相似文献   

2.

Introduction

UEV1A encodes a ubiquitin-conjugating enzyme variant (Ubc13), which is required for Ubc13-catalyzed Lys63-linked polyubiquitination of target proteins and nuclear factor κB (NF-кB) activation. Previous reports have correlated the level of UEV1A expression with tumorigenesis; however, the detailed molecular events leading to tumors particularly breast cancer and metastasis are unclear. This study is to investigate roles of different UEV1 splicing variants, and its close homolog MMS2, in promoting tumorigenesis and metastasis in breast cancer cells.

Methods

We experimentally manipulated the UEV1 and MMS2 levels in MDA-MB-231 breast cancer cells and monitored their effects on cell invasion and migration, as well as tumor formation and metastasis in xenograft mice. The underlying molecular mechanisms leading to metastasis were also examined.

Results

It was found that overexpression of UEV1A alone, but not UEV1C or MMS2, is sufficient to induce cell invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and requires functional Ubc13. Our experimental data establish that among NF-κB target genes, UEV1A-regulated matrix metalloproteinase-1 (MMP1) expression plays a critical role in cell invasion and metastasis. Interestingly, experimental depletion of UEV1 in MDA-MB-231 cells reduces MMP1 expression and prevents tumor formation and metastasis in a xenograft mouse model, while overexpression of MMP1 overrides the metastasis effects in UEV1-depleted cells.

Conclusions

These results identify UEV1A as a potential therapeutic target in the treatment of metastasic breast cancers.  相似文献   

3.

Background:

Hypoxia is an element of the tumour microenvironment that impacts upon numerous cellular factors linked to clinical aggressiveness in cancer. One such factor, Snail, a master regulator of the epithelial–mesenchymal transition (EMT), has been implicated in key tumour biological processes such as invasion and metastasis. In this study we set out to investigate regulation of EMT in hypoxia, and the importance of Snail in cell migration and clinical outcome in breast cancer.

Methods:

Four breast cancer cell lines were exposed to 0.1% oxygen and expression of EMT markers was monitored. The migratory ability was analysed following Snail overexpression and silencing. Snail expression was assessed in 500 tumour samples from premenopausal breast cancer patients, randomised to either 2 years of tamoxifen or no adjuvant treatment.

Results:

Exposure to 0.1% oxygen resulted in elevated levels of Snail protein, along with changes in vimentin and E-cadherin expression, and in addition increased migration of MDA-MB-468 cells. Overexpression of Snail increased the motility of MCF-7, T-47D and MDA-MB-231 cells, whereas silencing of the protein resulted in decreased migratory propensity of MCF-7, MDA-MB-468 and MDA-MB-231 cells. Moreover, nuclear Snail expression was associated with tumours of higher grade and proliferation rate, but not with disease recurrence. Interestingly, Snail negativity was associated with impaired tamoxifen response (P=0.048).

Conclusions:

Our results demonstrate that hypoxia induces Snail expression but generally not a migratory phenotype, suggesting that hypoxic cells are only partially pushed towards EMT. Furthermore, our study supports the link between Snail and clinically relevant features and treatment response.  相似文献   

4.

Background:

FAT4, a cadherin-related protein, was shown to function as a tumour suppressor; however, its role in human gastric cancer remains largely unknown. Here, we investigated the role of FAT4 in gastric cancer and examined the underlying molecular mechanisms.

Methods:

The expression of FAT4 was evaluated by immunohistochemistry, western blotting, and qRT–PCR in relation to the clinicopathological characteristics of gastric cancer patients. The effects of FAT4 silencing on cell proliferation, migration, and invasion were assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay, and migration and invasion assays in gastric cancer cell lines in vitro and in a mouse xenograft model in vivo.

Results:

Downregulation of FAT4 expression in gastric cancer tissues compared with adjacent normal tissues was correlated with lymph-node metastasis and poor survival. Knockdown of FAT4 promoted the growth and invasion of gastric cancer cells via the activation of Wnt/β-catenin signalling, and induced epithelial-to-mesenchymal transition (EMT) in gastric cancer cells, as demonstrated by the upregulation and downregulation of mesenchymal and epithelial markers. Silencing of FAT4 promoted tumour growth and metastasis in a gastric cancer xenograft model in vivo.

Conclusions:

FAT4 has a tumour suppressor role mediated by the modulation of Wnt/β-catenin signalling, providing potential novel targets for the treatment of gastric cancer.  相似文献   

5.
Y Yao  X Gu  H Liu  G Wu  D Yuan  X Yang  Y Song 《British journal of cancer》2014,111(2):355-364

Background:

Metaderin (MTDH) protein is a novel component part of tight junction complex. The aim of this study was to investigate the correlation between MTDH and prognosis of patients and to explore the role of MTDH on NSCLC development and metastasis.

Methods:

Relative mRNA expression was evaluated by quantitative real-time PCR, and protein expression was detected using immunohistochemistry staining. The role of MTDH in cancer cell proliferation, migration and invasion was studied by modulation of MTDH expression in NSCLC cell lines. These functions of MTDH were further confirmed in vivo.

Results:

In NSCLC, low MTDH protein expression was correlated with lymph node metastasis, TNM stage and decreased OS (P=0.001, 0.011 and 0.013, respectively). Overexpression of MTDH reduced anchorage-independent and -dependent growth through arresting cell cycle, inhibited migration and invasion in vitro and further suppressed tumorigenesis, tumour growth and metastasis in vivo. Knockdown of MTDH expression increased cell invasiveness. MTDH overexpression reversed pro-metastatic actin cytoskeleton remodelling and inhibited EMT, supporting that MTDH has a key role on cancer proliferation and metastasis.

Conclusions:

MTDH has an important role in NSCLC proliferation and metastasis and provides potential in predicting metastasis and prognosis for patients with NSCLC.  相似文献   

6.

Background:

TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown.

Methods:

miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC.

Results:

miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin α5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin α5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin α5 levels.

Conclusion:

We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin α5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.  相似文献   

7.

Background:

The small stress heat shock protein 27 (Hsp27) has recently turned as a promising target for cancer treatment. Hsp27 upregulation is associated with tumour growth and resistance to chemo- and radio-therapeutic treatments, and several ongoing drugs inhibiting Hsp27 expression are under clinical trial. Hsp27 is now well described to counteract apoptosis and its elevated expression is associated with increased aggressiveness of several primary tumours. However, its role in the later stage of tumour progression and, more specifically, in the later and most deadly stage of tumour metastasis is still unclear.

Methods/results:

In the present study, we showed by qRT–PCR that Hsp27 gene is overexpressed in a large fraction of the metastatic breast cancer area in 53 patients. We further analysed the role of this protein in mice during bone metastasis invasion and establishment by using Hsp27 genetically depleted MDA-MB231/B02 human breast cancer cell line as a model. We demonstrate that Hsp27 silencing led to reduced cell migration and invasion in vitro and that in vivo it correlated with a decreased ability of breast cancer cells to metastasise and grow in the skeleton.

Conclusion:

Altogether, these data characterised Hsp27 as a potent therapeutic target in breast cancer bone metastasis and skeletal tumour growth.  相似文献   

8.

Background:

Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs.

Methods:

TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN).

Results:

LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model.

Conclusion:

LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.  相似文献   

9.

Background:

The WASF3 protein is involved in cell movement and invasion, and to investigate its role in prostate cancer progression we studied the phenotypic effects of knockdown in primary tumors and cell lines.

Methods:

ShRNA was used to knockdown WASF3 function in prostate cell lines. Cell motility (scratch wound assay), anchorage independent growth and in vivo tumorigenicity and metastasis were then compared between knockdown and wild-type cells.

Results:

Increased levels of expression were seen in high-grade human prostate cancer and in the PC3 and DU145 cell lines. Inactivation of WASF3 using shRNAs reduced cell motility and invasion in these cells and reduced anchorage independent growth in vitro. The loss of motility was accompanied by an associated increase in stress fiber formation and focal adhesions. When injected subcutaneously into severe combined immunodeficiency (SCID) mice, tumor formation was significantly reduced for PC3 and DU145 cells with WASF3 knockdown and in vivo metastasis assays using tail vain injection showed a significant reduction for PC3 and DU145 cells. The loss of the invasion phenotype was accompanied by down-regulation of matrix metalloproteinase 9.

Conclusions:

Overall, these observations demonstrate a critical role for WASF3 in the progression of prostate cancer and identify a potential target to control tumorigenicity and metastasis.  相似文献   

10.

Introduction

Despite continued improvements in diagnosis, surgical techniques, and chemotherapy, breast cancer patients are still overcome by cancer metastasis. Tumor cell proliferation, invasion and metastasis are mediated, at least in part, through degradation of basement membrane by neutral matrix metalloproteinases (MMP) produced by tumor and stromal cells. Evidence suggests that MMP-9 plays a significant role in breast tumor cell invasion and metastasis. DNAzymes or catalytic oligonucleotides are new classes of gene targeting molecules that bind and cleave a specific mRNA, resulting in decreased protein expression.

Methods

The application of anti-MMP-9 DNAzyme (AM9D) for the treatment of primary and metastatic breast cancer was evaluated in vitro and in vivo using MDA-MB-231 cells and the MMTV-PyMT transgenic breast cancer mouse model. Spontaneously developed mammary tumors in MMTV-PyMT transgenic mice were treated intratumorally with naked AM9D, once a week for 4 weeks. The stability of DNAzyme was determined in vitro and in vivo using fluorescently labeled DNAzyme.

Results

AM9D specifically inhibited expression of MMP-9 in MDA-MB-231 cells resulting in reduced invasive property of these cells by 43%. Weekly intratumoral treatment of spontaneously developed mammary tumors in MMTV-PyMT transgenic mice was sufficient to significantly reduce the rate of tumor growth and final tumor load in a dose dependent and statistically significant manner (P < 0.05). This decrease in tumor growth was correlated with decreased MMP-9 protein production within the treated tumor tissues. Tumors treated with AM9D were also less vascularized and contained more apoptotic cells compared to control and untreated tumors.

Conclusions

These results show that targeting and down regulation of MMP-9 by AM9D could prove useful as a therapy against breast carcinoma tumor growth and invasion.  相似文献   

11.
12.

Introduction

The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells.

Methods

We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy.

Results

Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells.

Conclusions

The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.  相似文献   

13.

Background:

Myosin X (MYO10) was recently reported to promote tumour invasion by transporting integrins to filopodial tips in breast cancer. However, the role of MYO10 in tumours remains poorly defined. Here, we report that MYO10 is required in invadopodia to mediate invasive growth and extracellular matrix degradation, which depends on the binding of MYO10''s pleckstrin homology domain to PtdIns(3,4,5)P3.

Methods:

The expression of MYO10 and its associations with clinicopathological and biological factors were examined in breast cancer cells and breast cancer specimens (n=120). Cell migration and invasion were investigated after the silencing of MYO10. The ability of cells to form invadopodia was studied using a fluorescein isothiocyanate-conjugated gelatin degradation assay. A mouse model was established to study tumour invasive growth and metastasis in vivo.

Results:

Elevated MYO10 levels were correlated with oestrogen receptor status, progesterone receptor status, poor differentiation, and lymph node metastasis. Silencing MYO10 reduced cell migration and invasion. Invadopodia were responsible for MYO10''s role in promoting invasion. Furthermore, decreased invasive growth and lung metastasis were observed in the MYO10-silenced nude mouse model.

Conclusions:

Our findings suggest that elevated MYO10 expression increases the aggressiveness of breast cancer; this effect is dependent on the involvement of MYO10 in invadopodial formation.  相似文献   

14.
15.

Background:

Hypopharyngeal squamous cell carcinoma (HSCC) has a very poor prognosis because of its high rates of regional and distant metastasis. Identification of differentially expressed miRNAs and their regulated molecular targets in tumour cells might enhance our understanding of the molecular mechanisms of metastasis in human cancers.

Methods:

A HSCC miRNA signature was constructed by array-based methods. Functional studies of microRNA-451a (miR-451a) and target genes were performed to investigate cell proliferation, migration and invasion by cancer cell lines. To identify miR-451a-regulated molecular targets, we adopted gene expression analysis and in silico database analysis.

Results:

Our miRNA signature revealed that miR-451a was significantly downregulated in HSCC. Restoration of miR-451a in cancer cell lines revealed that this miRNA significantly inhibited cancer cell migration and invasion. Our data demonstrated that the gene coding for endothelial and smooth muscle cell-derived neuropilin-like molecule (ESDN/DCBLD2) was a direct target of miR-451a regulation. Silencing of ESDN inhibited cell migration and invasion by cancer cells.

Conclusions:

Loss of tumour suppressive miR-451a enhanced cancer cell migration and invasion in HSCC through direct regulation of ESDN. Our miRNA signature and functional analysis of targets regulated by tumour suppressive miR-451a provide new insights into the potential mechanisms of HSCC oncogenesis and metastasis.  相似文献   

16.
J Wang  J Ou  Y Guo  T Dai  X Li  J Liu  M Xia  L Liu  M He 《British journal of cancer》2014,111(1):112-124

Background:

Invasion and metastasis remain a critical issue in cervical cancer. However, the underlying mechanism of it in cervical cancer remains unclear. The newly discovered protein, TBLR1, plays a crucial role in regulating various key cellular functions.

Methods:

In this study, western blot, real-time RT–PCR, immunohistochemical staining, 3D morphogenesis Matrigel culture, wound healing and Boyden chamber invasion assays, xenografted tumour model, luciferase assays, and chromatin immunoprecipitation assays were used.

Results:

The expression of TBLR1 in cervical cancer cell lines and tissues was significantly upregulated at both the RNA and protein levels compared with that in normal cervical cells. Statistical analysis suggested that TBLR1 as an independent prognostic factor was significantly correlated with the clinical stage, survival time and recurrence. Moreover, overexpression of TBLR1 in Hela and Siha cell lines promoted invasion in vitro and in vivo with the increases of the mesenchymal factors vimentin and fibronectin and decreases of the epithelial marker α-catenin. In contrast, RNAi-mediated knockdown of TBLR1 inhibited epithelial–mesenchymal transition in vitro and in vivo. Further study indicated that this might be mediated via the NF-κB and Wnt/β-Catenin signalling pathway, and involve regulation of Snail and Twist.

Conclusions:

The TBLR1 protein may be a prognostic marker in cervical cancer and play an important role in the invasion and metastasis of human cervical cancer.  相似文献   

17.

Background:

Recent evidences support that radiation can promote the invasion of cancer cells. As interactions between cancer cells and surrounding stromal cells can have an important role in tumour progression, we determined whether an irradiation to fibroblasts can enhance the invasiveness of breast cancer cells. The role of cyclooxygenase-2 (COX-2), an inflammatory enzyme frequently induced by radiotherapy, was investigated.

Methods:

Irradiated 3T3 fibroblasts were plated in the lower compartment of invasion chambers and used as chemoattractant for non-irradiated human breast cancer cell MDA-MB-231, which are oestrogen receptor negative (ER(−)) and the oestrogen receptor positive (ER(+)) MCF-7 cells. Stimulation of COX-2 expression in irradiated 3T3 cells was measured by a semi-quantitative qPCR and western blot. Capacity of the major product of COX-2, the prostaglandin E2 (PGE2), to stimulate the production of the matrix metalloproteinase-2 (MMP-2) and cancer cell invasion were assessed with a zymography gel and invasion chambers.

Results:

Irradiation (5 Gy) of 3T3 fibroblasts increased COX-2 expression and enhanced by 5.8-fold the invasiveness of non-irradiated MDA-MB-231 cells, while their migration was not modified. Addition of the COX-2 inhibitor NS-398 completely prevented radiation-enhancement of cancer cell invasion. Further supporting the potential role of COX-2, addition of PGE2 has increased cancer cell invasion and release of MMP-2 from the MDA-MB-231 cells. This effect of radiation was dependant on the expression of membrane type 1 (MT1)–MMP, which is required to activate the MMP-2, but was not associated with the ER status. Although irradiated fibroblasts stimulated the invasiveness of MDA-MB-231 ER(−) cells, no enhancement was measured with the ER(+) cell line MCF-7.

Conclusions:

Radiation-enhancement of breast cancer cell invasion induced by irradiated 3T3 fibroblasts is not dependant on the ER status, but rather the expression of MT1–MMP. This adverse effect of radiation can be prevented by a specific COX-2 inhibitor.  相似文献   

18.

Background

Recent studies have shown dysregulation in TJ structure of several cancers including breast. Claudin-5 is a protein member of the TJ structure expressed in both endothelial and epithelial cells. This study examined the level of expression and distribution of Claudin-5 in human breast cancer tissues and the effect of knockdown and forced expression of Claudin-5 in the MDA-MB-231 breast cancer cell line.

Methods

Immunohistochemistry and quantitative-PCR were used to analyse patient tissue samples. The Claudin-5 gene was cloned and overexpressed or knocked down using ribozyme technology in human breast cancer cells. Changes in function were assessed using in vitro assays for invasion, growth, adhesion, wounding, motility, transepithelial resistance and electric cell-substrate impedance sensing. Changes in cell behaviour were achieved through the use of Hepatocyte Growth factor (HGF) which we have shown to affect TJ function and expression of TJ proteins. In addition, an in vivo model was used for tumour growth assays. Results data was analyzed using a Students two sample t-test and by Two-way Anova test when the data was found to be normalized and have equal variances. In all cases 95% confidence intervals were used.

Results

Patients whose tumours expressed high levels of Claudin-5 had shorter survival than those with low levels (p = 0.004). Investigating in vitro the effect of altering levels of expression of Claudin-5 in MDA-MB-231cells revealed that the insertion of Claudin-5 gene resulted in significantly more motile cells (p < 0.005). Low levels of Claudin-5 resulted in a decrease in adhesion to matrix (p < 0.001). Furthermore, a possible link between Claudin-5 and N-WASP, and Claudin-5 and ROCK was demonstrated when interactions between these proteins were seen in the cells. Moreover, followed by treatment of N-WASP inhibitor (Wiskostatin) and ROCK inhibitor (Y-27632) cell motility was assessed in response to the inhibitors. Results showed that the knockdown of Claudin-5 in MDA-MB-231 masked their response after treatment with N-WASP inhibitor; however treatment with ROCK inhibitor did not reveal any differences in motility in this cell line.

Conclusions

This study portrays a very new and interesting role for Claudin-5 in cell motility involving the N-WASP signalling cascade indicating a possible role for Claudin-5 in the metastasis of human breast cancer.  相似文献   

19.

Introduction

Increased expression of αv integrins is frequently associated with tumor cell adhesion, migration, invasion and metastasis, and correlates with poor prognosis in breast cancer. However, the mechanism by which αv integrins can enhance breast cancer progression is still largely unclear. The effects of therapeutic targeting of αv integrins in breast cancer also have yet to be investigated.

Methods

We knocked down αv integrin in MDA-MB-231 and MCF10A-M4 breast cancer cells, or treated these cells with the αv antagonist GLPG0187. The effects of αv integrin depletion on mesenchymal markers, transforming growth factor-β (TGF-β)/Smad signaling and TGF-β-induced target gene expression were analyzed in MDA-MB-231 cells by RNA analysis or Western blotting. The function of αv integrin on breast cancer cell migration was investigated by transwell assay in vitro, and its effect on breast cancer progression was assessed by both zebrafish and mouse xenografts in vivo. In the mouse model, GLPG0187 was administered separately, or in combination with the standard-of-care anti-resorptive agent zoledronate and the chemotherapeutic drug paclitaxel, to study the effects of combinational treatments on breast cancer metastasis.

Results

Genetic interference and pharmacological targeting of αv integrin with GLPG0187 in different breast cancer cell lines inhibited invasion and metastasis in the zebrafish or mouse xenograft model. Depletion of αv integrin in MDA-MB-231 cells inhibited the expression of mesenchymal markers and the TGF-β/Smad response. TGF-β induced αv integrin mRNA expression and αv integrin was required for TGF-β-induced breast cancer cell migration. Moreover, treatment of MDA-MB-231 cells with non-peptide RGD antagonist GLPG0187 decreased TGF-β signaling. In the mouse xenografts GLPG0187 inhibited the progression of bone metastasis. Maximum efficacy of inhibition of bone metastasis was achieved when GLPG0187 was combined with the standard-of-care metastatic breast cancer treatments.

Conclusion

These findings show that αv integrin is required for efficient TGF-β/Smad signaling and TGF-β-induced breast cancer cell migration, and for maintaining a mesenchymal phenotype of the breast cancer cells. Our results also provide evidence that targeting αv integrin could be an effective therapeutic approach for treatment of breast cancer tumors and/or metastases that overexpress αv integrin.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-015-0537-8) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号