首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Clinical neurophysiology》2020,131(9):2289-2297
ObjectiveTo determine whether semiological similarity of electrically induced seizures (EIS) and spontaneously occurring habitual seizures (SHS) is associated with postsurgical seizure outcome in patients undergoing invasive video-EEG monitoring (VEM) before resective epilepsy surgery.MethodsData of patients undergoing invasive VEM were retrospectively reviewed and included if at least one EIS and SHS during VEM occurred and the brain region in which EIS were elicited was resected. Seizure outcome was evaluated at three follow-up (FU) visits after surgery (1, 2 years and last available FU) according to the classification by Engel and the International League Against Epilepsy (ILAE). The level of semiological similarity of EIS and SHS was rated blinded to the surgical outcome. Statistics were done using Fisher’s exact test and a mixed linear-logistic regression model.Results65 patients were included. Postsurgical seizure freedom was achieved in 51% (ILAE class 1) and 58% (Engel class I) at last FU (median 36 months). Patients with identical EIS and SHS displayed significantly better postsurgical seizure outcomes (ILAE class 1 at last FU: 76% vs. 31%, p < 0.001; Engel class I: 83% vs. 39%, p < 0.001).ConclusionEIS are useful to confirm the location of the epileptogenic zone. A high level of similarity between EIS and SHS is associated with a favorable postsurgical seizure outcome.SignificanceEIS may be used as an additional predictor of postsurgical outcome when counselling patients to proceed to resective epilepsy surgery.  相似文献   

2.
《Clinical neurophysiology》2020,131(11):2527-2536
ObjectiveTo investigate the diagnostic utility of high frequency oscillations (HFOs) via scalp electroencephalogram (EEG) in infantile spasms.MethodsWe retrospectively analyzed interictal slow-wave sleep EEGs sampled at 2,000 Hz recorded from 30 consecutive patients who were suspected of having infantile spasms. We measured the rate of HFOs (80–500 Hz) and the strength of the cross-frequency coupling between HFOs and slow-wave activity (SWA) at 3–4 Hz and 0.5–1 Hz as quantified with modulation indices (MIs).ResultsTwenty-three patients (77%) exhibited active spasms during the overnight EEG recording. Although the HFOs were detected in all children, increased HFO rate and MIs correlated with the presence of active spasms (p < 0.001 by HFO rate; p < 0.01 by MIs at 3–4 Hz; p = 0.02 by MIs at 0.5–1 Hz). The presence of active spasms was predicted by the logistic regression models incorporating HFO-related metrics (AUC: 0.80–0.98) better than that incorporating hypsarrhythmia (AUC: 0.61). The predictive performance of the best model remained favorable (87.5% accuracy) after a cross-validation procedure.ConclusionsIncreased rate of HFOs and coupling between HFOs and SWA are associated with active epileptic spasms.SignificanceScalp-recorded HFOs may serve as an objective EEG biomarker for active epileptic spasms.  相似文献   

3.
《Clinical neurophysiology》2021,132(12):2965-2978
Objective To evaluate the accuracy of automated interictal low-density electrical source imaging (LD-ESI) to define the insular irritative zone (IZ) by comparing the simultaneous interictal ESI localization with the SEEG interictal activity.Methods Long-term simultaneous scalp electroencephalography (EEG) and stereo-EEG (SEEG) with at least one depth electrode exploring the operculo-insular region(s) were analyzed. Automated interictal ESI was performed on the scalp EEG using standardized low-resolution brain electromagnetic tomography (sLORETA) and individual head models. A two-step analysis was performed: i) sublobar concordance between cluster-based ESI localization and SEEG-based IZ; ii) time-locked ESI-/SEEG analysis. Diagnostic accuracy values were calculated using SEEG as reference standard. Subgroup analysis was carried out, based on the involvement of insular contacts in the seizure onset and patterns of insular interictal activity.Results Thirty patients were included in the study. ESI showed an overall accuracy of 53% (C.I. 29–76%). Sensitivity and specificity were calculated as 53% (C.I. 29–76%), 55% (C.I. 23–83%) respectively. Higher accuracy was found in patients with frequent and dominant interictal insular spikes.Conclusions LD-ESI defines with good accuracy the insular implication in the IZ, which is not possible with classical interictal scalp EEG interpretation.SignificanceAutomated LD-ESI may be a valuable additional tool to characterize the epileptogenic zone in epilepsies with suspected insular involvement.  相似文献   

4.
《Clinical neurophysiology》2021,132(9):2003-2011
ObjectiveA large N20 and P25 of the median nerve somatosensory evoked potential (SEP) predicts short survival in amyotrophic lateral sclerosis (ALS). We investigated whether high frequency oscillations (HFOs) over N20 are enlarged and associated with survival in ALS.MethodsA total of 145 patients with ALS and 57 healthy subjects were studied. We recorded the median nerve SEP and measured the onset-to-peak amplitude of N20 (N20o-p), and peak-to-peak amplitude between N20 and P25 (N20p-P25p). We obtained early and late HFO potentials by filtering SEP between 500 and 1 kHz, and measured the peak-to-peak amplitude. We followed up patients until endpoints (death or tracheostomy) and analyzed the relationship between SEP or HFO amplitudes and survival using a Cox analysis.ResultsPatients showed larger N20o-p, N20p-P25p, and early and late HFO amplitudes than the control values. N20p-P25p was associated with survival periods (p = 0.0004), while early and late HFO amplitudes showed no significant association with survival (p = 0.4307, and p = 0.6858, respectively).ConclusionsThe HFO amplitude in ALS is increased, but does not predict survival.SignificanceThe enlarged HFOs in ALS might be a compensatory phenomenon to the hyperexcitability of the sensory cortex pyramidal neurons.  相似文献   

5.
《Clinical neurophysiology》2021,132(6):1243-1253
ObjectiveHigh-frequency activities (HFAs) and phase-amplitude coupling (PAC) are key neurophysiological biomarkers for studying human epilepsy. We aimed to clarify and visualize how HFAs are modulated by the phase of low-frequency bands during seizures.MethodsWe used intracranial electrodes to record seizures of focal epilepsy (12 focal-to-bilateral tonic-clonic seizures and three focal-aware seizures in seven patients). The synchronization index, representing PAC, was used to analyze the coupling between the amplitude of ripples (80–250 Hz) and the phase of lower frequencies. We created a video in which the intracranial electrode contacts were scaled linearly to the power changes of ripple.ResultsThe main low frequency band modulating ictal-ripple activities was the θ band (4–8 Hz), and after completion of ictal-ripple burst, δ (1–4 Hz)-ripple PAC occurred. The ripple power increased simultaneously with rhythmic fluctuations from the seizure onset zone, and spread to other regions.ConclusionsRipple activities during seizure evolution were modulated by the θ phase. The PAC phenomenon was visualized as rhythmic fluctuations.SignificanceRipple power associated with seizure evolution increased and spread with fluctuations. The θ oscillations related to the fluctuations might represent the common neurophysiological processing involved in seizure generation.  相似文献   

6.
《Clinical neurophysiology》2020,131(5):1134-1141
ObjectiveTo investigate how high frequency oscillations (HFOs; ripples 80–250 Hz, fast ripples (FRs) 250–500 Hz) and spikes in intra-operative electrocorticography (ioECoG) relate to cognitive outcome after epilepsy surgery in children.MethodsWe retrospectively included 20 children who were seizure free after epilepsy surgery using ioECoG and determined their intelligence quotients (IQ) pre- and two years postoperatively. We analyzed whether the number of HFOs and spikes in pre- and postresection ioECoGs, and their change in the non-resected areas relate to cognitive improvement (with ≥ 5 IQ points increase considered to be clinically relevant (=IQ+ group) and < 5 IQ points as irrelevant (=IQ− group)).ResultsThe IQ+ group showed significantly more FRs in the resected tissue (p = 0.01) and less FRs in the postresection ioECoG (p = 0.045) compared to the IQ− group. Postresection decrease of ripples on spikes was correlated with postoperative cognitive improvement (correlation coefficient = −0.62 with p = 0.01).ConclusionsPostoperative cognitive improvement was related to reduction of pathological HFOs signified by removing FR generating areas with subsequently less residual FRs, and decrease of ripples on spikes in the resection edge of the non-resected area.SignificanceHFOs recorded in ioECoG could play a role as biomarkers in the prediction and understanding of cognitive outcome after epilepsy surgery.  相似文献   

7.
《Clinical neurophysiology》2020,131(8):1947-1955
ObjectiveLocalization of epileptogenic brain regions is a crucial aim of pre-surgical evaluation of patients with drug-resistant epilepsy. Several methods have been proposed to identify the seizure onset zone, particularly based on the detection of fast activity. Most of these methods are inefficient to detect slower patterns of onset that account for 20–30% of commonly observed Stereo-Electro-Encephalography (SEEG) patterns. We seek to evaluate the performance of a new quantified measure called the Connectivity Epileptogenicity Index (cEI) in various types of seizure onset patterns.MethodsWe studied SEEG recorded seizures from 51 patients, suffering from focal drug-resistant epilepsy. The cEI combines a directed connectivity measure (“out-degrees”) and the original epileptogenicity index (EI). Quantified results (Out-degrees, cEI and EI) were compared to visually defined seizure onset zone (vSOZ). We computed recall (sensitivity) and precision (proportion of correct detections within all detections) with vSOZ as a reference. The quality of the detector was quantified by the area under the precision-recall curve.ResultsBest results (in terms of match with vSOZ) were obtained for cEI. For seizures with fast onset patterns, cEI and EI gave comparable results. For seizures with slow onset patterns, cEI gave a better estimation of the vSOZ than EI.ConclusionsWe observed that cEI discloses better performance than EI when seizures starts with slower patterns and equal to EI in seizures with fast onset patterns.SignificanceThe cEI is a promising new tool for epileptologists, that helps characterizing the seizure onset zone in sEEG, in a robust way despite variations in seizure onset patterns.  相似文献   

8.
《Clinical neurophysiology》2021,132(7):1622-1635
ObjectiveTo assess whether ictal electric source imaging (ESI) on low-density scalp EEG can approximate the seizure onset zone (SOZ) location and predict surgical outcome in children with refractory epilepsy undergoing surgery.MethodsWe examined 35 children with refractory epilepsy. We dichotomized surgical outcome into seizure- and non-seizure-free. We identified ictal onsets recorded with scalp and intracranial EEG and localized them using equivalent current dipoles and standardized low-resolution magnetic tomography (sLORETA). We estimated the localization accuracy of scalp EEG as distance of scalp dipoles from intracranial dipoles. We also calculated the distances of scalp dipoles from resection, as well as their resection percentage and compared between seizure-free and non-seizure-free patients. We built receiver operating characteristic curves to test whether resection percentage predicted outcome.ResultsResection distance was lower in seizure-free patients for both dipoles (p = 0.006) and sLORETA (p = 0.04). Resection percentage predicted outcome with a sensitivity of 57.1% (95% CI, 34–78.2%), a specificity of 85.7% (95% CI, 57.2–98.2%) and an accuracy of 68.6% (95% CI, 50.7–83.5%) (p = 0.01).ConclusionIctal ESI performed on low-density scalp EEG can delineate the SOZ and predict outcome.SignificanceSuch an application may increase the number of children who are referred for epilepsy surgery and improve their outcome.  相似文献   

9.
The objective of this study was to elucidate the clinical features, surgical treatment, and outcome of intracranial aneurysms associated with moyamoya disease. We retrospectively reviewed a consecutive cohort of 79 moyamoya disease patients with 98 intracranial aneurysms at Beijing Tiantan Hospital. Clinical features, radiological findings, and outcomes were analyzed. Prevalence of intracranial aneurysms in patients with moyamoya disease was 3.9%. The mean age at diagnosis was 39.0 ± 12.4 years, with 1 peak distribution in patients from 40 to 50 years of age. The ratio of women to men was 1.00:1.03. Familial occurrence was 2.5%. The initial symptom was hemorrhage or ischemia in 56 (70.9%) and 23 patients (30.4%), respectively. Most patients presented with Suzuki stage 3 or 4. Seventy-nine cases had 98 aneurysms. Of the 98 aneurysms, sixteen aneurysms (16.3%) were treated by microsurgery and 7 by endovascular procedures, 13 aneurysms were conservatively managed, the remaining 62 were treated with revascularization alone. After a median nine-month angiographic follow-up, 18 aneurysms received clipped or embolized were completed occlusion, 18 aneurysms received conservative treated or coating were remained stable. Of the remaining 63 aneurysms that were treated with revascularization alone, 59 of 63 aneurysms remained stable, and 2 were obliterated, whereas 1 aneurysm ruptured during the follow-up. Hemorrhage was the most common symptom in intracranial aneurysms associated with moyamoya disease. Revascularization surgery may improve cerebral circulation, decreases hemodynamic stress and prevent the rupture of intracranial aneurysms.  相似文献   

10.
《Clinical neurophysiology》2021,132(11):2896-2906
ObjectiveNeurophysiological investigation of nociceptive pathway has so far been limited to late cortical responses. We sought to detect early components of the cortical evoked potentials possibly reflecting primary sensory activity.MethodsThe 150 IDE micropatterned electrode was used to selectively activate Aδ intraepidermic fibres of the right hand dorsum in 25 healthy subjects and 3 patients suffering from trigeminal neuralgia. Neurographic recordings were performed to assess type of stimulated fibres and check selectivity. Cortical evoked potentials were recorded from C3′-Fz and Cz-Au1.ResultsNeurographic recordings confirmed selective activation of Aδ fibres. Early components were detected after repetitive stimulation (0.83/s rate and 250–500 averages); the first negative component occured at 40 ms (N40) on the contralateral scalp.ConclusionsThe provided data support the hypothesis that N40 could be the cortical primary response conducted by fast Aδ fibres.SignificanceThis is the first report of early, possibly primary, cortical responses in humans by nociceptive peripheral stimulation. Although not perfected yet to allow widespread diagnostic use, this is probably the only method to allow fully objective evaluation of the nociceptive system, with important future implications in experimental and clinical neurophysiology.  相似文献   

11.
《Clinical neurophysiology》2021,132(9):2083-2090
ObjectiveAlthough about 1–2% of MRI examinations must be aborted due to anxiety, there is little research on how MRI-related anxiety affects BOLD signals in resting states.MethodsWe re-analyzed cardiac beat-to beat interval (RRI) and BOLD signals of 23 healthy fMRI participants in four resting states by calculation of phase-coupling in the 0.07–0.13 Hz band and determination of positive time delays (pTDs; RRI leading neural BOLD oscillations) and negative time delays (nTDs; RRI lagging behind vascular BOLD oscillations). State anxiety of each subject was assigned to either a low anxiety (LA) or a high anxiety (HA, with most participants exhibiting moderate anxiety symptoms) category based on the inside scanner assessed anxiety score.ResultsAlthough anxiety strongly differed between HA and LA categories, no significant difference was found for nTDs. In contrast, pTDs indicating neural BOLD oscillations exhibited a significant cumulation in the high anxiety category.ConclusionsFindings may suggest that vascular BOLD oscillations related to slow cerebral blood circulation are of about similar intensity during low/no and elevated anxiety. In contrast, neural BOLD oscillations, which might be associated with a central rhythm generating mechanism (pacemaker-like activity), appear to be significantly intensified during elevated anxiety.SignificanceThe study provides evidence that fMRI-related anxiety can activate a central rhythm generating mechanism very likely located in the brain stem, associated with slow neural BOLD oscillation.  相似文献   

12.
《Brain stimulation》2021,14(4):780-787
BackgroundNavigated repetitive transcranial magnetic stimulation (nrTMS) is effective therapy for stroke patients. Neurorehabilitation could be supported by low-frequency stimulation of the non-damaged hemisphere to reduce transcallosal inhibition.ObjectiveThe present study examines the effect of postoperative nrTMS therapy of the unaffected hemisphere in glioma patients suffering from acute surgery-related paresis of the upper extremity (UE) due to subcortical ischemia.MethodsWe performed a randomized, sham-controlled, double-blinded trial on patients suffering from acute surgery-related paresis of the UE after glioma resection. Patients were randomly assigned to receive either low frequency nrTMS (1 Hz, 15 min) or sham stimulation directly before physical therapy for 7 consecutive days. We performed primary and secondary outcome measures on day 1, on day 7, and at a 3-month follow-up (FU). The primary endpoint was the change in Fugl-Meyer Assessment (FMA) at FU compared to day 1 after surgery.ResultsCompared to the sham stimulation, nrTMS significantly improved outcomes between day 1 and FU based on the FMA (mean [95% CI] +31.9 [22.6, 41.3] vs. +4.2 [-4.1, 12.5]; P = .001) and the National Institutes of Health Stroke Scale (NIHSS) (−5.6 [-7.5, −3.6] vs. −2.4 [-3.6, −1.2]; P = .02). To achieve a minimal clinically important difference of 10 points on the FMA scale, the number needed to treat is 2.19.ConclusionThe present results show that patients suffering from acute surgery-related paresis of the UE due to subcortical ischemia after glioma resection significantly benefit from low-frequency nrTMS stimulation therapy of the unaffected hemisphere.Clinical trial registrationLocal institutional registration: 12/15; ClinicalTrials.gov number: NCT03982329  相似文献   

13.
《Clinical neurophysiology》2020,131(2):529-541
ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.  相似文献   

14.
《Clinical neurophysiology》2021,132(12):3084-3094
ObjectiveWe use co-registration of foramen-ovale and scalp-EEG to investigate network alterations in temporal-lobe epilepsy during focal seizures without (aura) or with impairment of awareness (SIA).MethodsOne aura and one SIA were selected from six patients. Temporal dynamic among 4 epochs, as well as the differences between aura and SIA, were analyzed through partial directed coherence and graph theory-based indices of centrality.ResultsRegarding the auras temporal evolution, fronto-parietal (FP) regions showed decreased connectivity with respect to the interictal period, in both epileptogenic (EH) and non-epileptogenic hemisphere (nEH). During SIAs, temporal dynamic showed more changes than auras: centrality of mesial temporal (mT) regions changes during all conditions, and nEH FP centrality showed the same dynamic trend of the aura (decreased centrality), until the last epoch, close to the impaired awareness, when showed increased centrality. Comparing SIA with aura, in proximity of impaired awareness, increased centrality was found in all the regions, except in nEH mT.ConclusionsOur findings suggested that the impairment of awareness is related to network alterations occurring first in neocortical regions and when awareness is still retained.SignificanceThe analysis of ‘hub’ alteration can represent a suitable biomarker for scalp EEG-based prediction of awareness impairment.  相似文献   

15.
《Brain stimulation》2020,13(5):1232-1244
BackgroundBrain activity is constrained by and evolves over a network of structural and functional connections. Corticocortical evoked potentials (CCEPs) have been used to measure this connectivity and to discern brain areas involved in both brain function and disease. However, how varying stimulation parameters influences the measured CCEP across brain areas has not been well characterized.ObjectiveTo better understand the factors that influence the amplitude of the CCEPs as well as evoked gamma-band power (70–150 Hz) resulting from single-pulse stimulation via cortical surface and depth electrodes.MethodsCCEPs from 4370 stimulation-response channel pairs were recorded across a range of stimulation parameters and brain regions in 11 patients undergoing long-term monitoring for epilepsy. A generalized mixed-effects model was used to model cortical response amplitudes from 5 to 100 ms post-stimulation.ResultsStimulation levels <5.5 mA generated variable CCEPs with low amplitude and reduced spatial spread. Stimulation at ≥5.5 mA yielded a reliable and maximal CCEP across stimulation-response pairs over all regions. These findings were similar when examining the evoked gamma-band power. The amplitude of both measures was inversely correlated with distance. CCEPs and evoked gamma power were largest when measured in the hippocampus compared with other areas. Larger CCEP size and evoked gamma power were measured within the seizure onset zone compared with outside this zone.ConclusionThese results will help guide future stimulation protocols directed at quantifying network connectivity across cognitive and disease states.  相似文献   

16.
BackgroundCOVID-19 intensive care patients can present with neurological syndromes, usually in the absence of SARS-CoV-2 in cerebrospinal fluid (CSF). The recent finding of some virus-neutralizing antibodies cross-reacting with brain tissue suggests the possible involvement of specific autoimmunity.DesignBlood and CSF samples from eleven critically ill COVID-19 patients presenting with unexplained neurological symptoms including myoclonus, oculomotor disturbance, delirium, dystonia and epileptic seizures, were analyzed for anti-neuronal and anti-glial autoantibodies.ResultsUsing cell-based assays and indirect immunofluorescence on unfixed murine brain sections, all patients showed anti-neuronal autoantibodies in serum or CSF. Antigens included intracellular and neuronal surface proteins, such as Yo or NMDA receptor, but also various specific undetermined epitopes, reminiscent of the brain tissue binding observed with certain human monoclonal SARS-CoV-2 antibodies. These included vessel endothelium, astrocytic proteins and neuropil of basal ganglia, hippocampus or olfactory bulb.ConclusionThe high frequency of autoantibodies targeting the brain in the absence of other explanations suggests a causal relationship to clinical symptoms, in particular to hyperexcitability (myoclonus, seizures). Several underlying autoantigens and their potential molecular mimicry with SARS-CoV-2 still await identification. However, autoantibodies may already now explain some aspects of multi-organ disease in COVID-19 and can guide immunotherapy in selected cases.  相似文献   

17.
《Clinical neurophysiology》2019,130(5):759-766
ObjectiveThe unspecific symptoms of neonatal stroke still challenge its bedside diagnosis. We studied the accuracy of routine electroencephalography (EEG) and simultaneously recorded somatosensory evoked potentials (EEG-SEP) for diagnosis and outcome prediction of neonatal stroke.MethodsWe evaluated EEG and EEG-SEPs from a hospital cohort of 174 near-term neonates with suspected seizures or encephalopathy, 32 of whom were diagnosed with acute ischemic or hemorrhagic stroke in MRI. EEG was scored for background activity and seizures. SEPs were classified as present or absent. Developmental outcome of stroke survivors was evaluated from medical records at 8- to 18-months age.ResultsThe combination of continuous EEG and uni- or bilaterally absent SEP (n = 10) was exclusively seen in neonates with a middle cerebral artery (MCA) stroke (specificity 100%). Moreover, 80% of the neonates with this finding developed with cerebral palsy. Bilaterally present SEPs did not exclude stroke, but predicted favorable neuromotor outcome in stroke survivors (positive predictive value 95%).ConclusionsAbsent SEP combined with continuous EEG background in near-term neonates indicates an MCA stroke and a high risk for cerebral palsy.SignificanceEEG-SEP offers a bedside method for diagnostic screening and a reliable prediction of neuromotor outcome in neonates suspected of having a stroke.  相似文献   

18.
《Brain & development》2022,44(10):765-768
IntroductionCarbamazepine (CBZ) is a common antiepileptic drug that may cause overdoses with seizures as a common neurological manifestation. In previous reports, patients with CBZ overdose exhibited stimulus-induced generalized clinical or electrical seizures. To date, no previous cases of focal motor seizures have been reported.Case reportWe report the case of an 11-year-old girl with spontaneous and stimulus-induced clustering of focal motor seizures following CBZ overdose. The patient had been treated with CBZ (150 mg daily) for focal epilepsy since the age of six years. At the age of 11, she forgot to take a morning dose, took ten CBZ pills (CBZ 1000 mg) as compensation, and presented with generalized seizures. The patient arrived at the hospital in a coma. She demonstrated clustering of focal-to-bilateral tonic-clonic seizures induced by pain stimulus or spontaneously, with focal epileptiform discharges observed on EEG. Her CBZ blood concentration measured 40.4 μg/mL and she was diagnosed with CBZ overdose. The patient showed improvement without any specific treatment, and was later discharged without neurological sequelae.ConclusionPrevious cases of CBZ overdose with stimulus-induced generalized seizures resulted in death or required intensive care. Stimulus-induced focal seizures may indicate a favorable prognosis for CBZ overdose.  相似文献   

19.
《Clinical neurophysiology》2021,132(6):1312-1320
ObjectiveTo investigate the additional value of EEG functional connectivity features, in addition to non-coupling EEG features, for outcome prediction of comatose patients after cardiac arrest.MethodsProspective, multicenter cohort study. Coherence, phase locking value, and mutual information were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine learning classification models were trained and validated with functional connectivity, EEG non-coupling features, and a combination of these. Neurological outcome was assessed at six months and categorized as “good” (Cerebral Performance Category [CPC] 1–2) or “poor” (CPC 3–5).ResultsWe included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34–56%) at 100% specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0–54%) at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity of 73% (50–77%) at 100% specificity.ConclusionFunctional connectivity measures improve EEG based prediction models for poor outcome of postanoxic coma.SignificanceFunctional connectivity features derived from early EEG hold potential to improve outcome prediction of coma after cardiac arrest.  相似文献   

20.
《Clinical neurophysiology》2020,131(12):2861-2874
ObjectiveMonitoring of the ultra-low frequency potentials, particularly cortical spreading depression (CSD), is excluded in epilepsy monitoring due to technical barriers imposed by the scalp ultra-low frequency electroencephalogram (EEG). As a result, clinical studies of CSD have been limited to invasive EEG. Therefore, the occurrence of CSD and its interaction with epileptiform field potentials (EFP) require investigation in epilepsy monitoring.MethodsUsing a novel AC/DC-EEG approach, the occurrence of DC potentials in patients with intractable epilepsy presenting different symptoms of aura was investigated during long-term video-EEG monitoring.ResultsVarious forms of slow potentials, including simultaneous negative direct current (DC) potentials and prolonged EFP, propagated negative DC potentials, and non-propagated single negative DC potentials were recorded from the scalp of the epileptic patients. The propagated and single negative DC potentials preceded the prolonged EFP with a time lag and seizure appeared at the final shoulder of some instances of the propagated negative DC potentials. The slow potential deflections had a high amplitude and prolonged duration and propagated slowly through the brain. The high-frequency EEG was suppressed in the vicinity of the negative DC potential propagations.ConclusionsThe study is the first to report the recording of the propagated and single negative DC potentials with EFP at the scalp of patients with intractable epilepsy. The negative DC potentials preceded the prolonged EFP and may trigger seizures. The propagated and single negative DC potentials may be considered as CSD.SignificanceRecordings of CSD may serve as diagnostic and prognostic monitoring tools in epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号