首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.  相似文献   

2.
《Genetics in medicine》2020,22(2):432-436
PurposeOur laboratory has classified patients with methylmalonic aciduria using somatic cell studies for over four decades. We have accumulated 127 fibroblast lines from patients with persistent elevated methylmalonic acid (MMA) levels in which no genetic cause could be identified. Cultured fibroblasts from 26 of these patients had low [14C]propionate incorporation into macromolecules, possibly reflecting decreased methylmalonyl-CoA mutase function.MethodsGenome sequencing (GS), copy-number variation (CNV) analysis, and RNA sequencing were performed on genomic DNA and complementary DNA (cDNA) from these 26 patients.ResultsNo patient had two pathogenic variants in any gene associated with cobalamin metabolism. Nine patients had heterozygous variants of unknown significance previously identified by a next-generation sequencing (NGS) panel targeting cobalamin metabolic genes. Three patients had pathogenic changes in genes not associated with cobalamin metabolism (PCCA, EPCAM, and a 17q12 duplication) that explain parts of their phenotypes other than elevated MMA.ConclusionGenome and RNA sequencing did not detect any additional putative causal genetic defects in known cobalamin genes following somatic cell studies and the use of a targeted NGS panel. They did detect pathogenic variants in other genes in three patients that explained some aspects of their clinical presentation.  相似文献   

3.
《Genetics in medicine》2012,14(11):891-899
PurposeThe interpretation of genetic information has always been challenging, but next-generation sequencing produces data on such a vast scale that many more variants of uncertain pathogenicity will be found. We exemplify this issue with reference to human rhodopsin, in which pathogenic mutations can lead to autosomal dominant retinitis pigmentosa.MethodsRhodopsin variants, with unknown pathogenicity, were found in patients by next-generation and Sanger sequencing and a multidisciplinary approach was used to determine their functional significance.ResultsFour variants in rhodopsin were identified: F45L, P53R, R69H, and M39R, with the latter two substitutions being novel. We investigated the cellular transport and photopigment function of all four human substitutions and found that the F45L and R69H variants behave like wild-type and are highly unlikely to be pathogenic. By contrast, P53R (a de novo change) and M39R were retained in the endoplasmic reticulum with significantly reduced functionality and are clearly pathogenic.ConclusionPotential pathogenicity of variants requires careful assessment using clinical, genetic, and functional data. We suggest that a multidisciplinary pathway of assessment, using several functional assays, will be required if next-generation sequencing is to be used effectively, reliably, and safely in the clinical environment.Genet Med 2012:14(11):891–899  相似文献   

4.
《Genetics in medicine》2017,19(7):796-802
PurposePrecise genetic diagnosis of inherited bone marrow failure syndromes (IBMFS), a heterogeneous group of genetic disorders, is challenging but essential for precise clinical decision making.MethodsWe analyzed 121 IBMFS patients using a targeted sequencing covering 184 associated genes and 250 IBMFS patients using whole-exome sequencing (WES).ResultsWe achieved successful genetic diagnoses for 53 of 121 patients (44%) using targeted sequencing and for 68 of 250 patients (27%) using WES. In the majority of cases (targeted sequencing: 45/53, 85%; WES: 63/68, 93%), the detected variants were concordant with, and therefore supported, the clinical diagnoses. However, in the remaining 13 cases (8 patients by target sequencing and 5 patients by WES), the clinical diagnoses were incompatible with the detected variants.ConclusionOur approach utilizing targeted sequencing and WES achieved satisfactory diagnostic rates and supported the efficacy of massive parallel sequencing as a diagnostic tool for IBMFS.Genet Med advance online publication 19 January 2017  相似文献   

5.
《Genetics in medicine》2018,20(11):1365-1373
PurposeNonobstructive azoospermia (NOA) affects 1% of the male population; however, despite state-of-the-art clinical assessment, for most patients the cause is unknown. We capitalized on an analysis of multiplex families in the Middle East to identify highly penetrant genetic causes.MethodsWe used whole-exome sequencing (WES) in 8 consanguineous families and combined newly discovered genes with previously reported ones to create a NOA gene panel, which was used to identify additional variants in 75 unrelated idiopathic NOA subjects and 74 fertile controls.ResultsIn five of eight families, we identified rare deleterious recessive variants in CCDC155, NANOS2, SPO11, TEX14, and WNK3 segregating with disease. These genes, which are novel to human NOA, have remarkable testis-specific expression, and murine functional evidence supports roles for them in spermatogenesis. Among 75 unrelated NOA subjects, we identified 4 (~5.3%) with additional recessive variants in these newly discovered genes and 6 with deleterious variants in previously reported NOA genes, yielding an overall genetic etiology for 13.3% subjects versus 0 fertile controls (p = 0.001).ConclusionNOA affects millions of men, many of whom remain idiopathic despite extensive laboratory evaluation. The genetic etiology for a substantial fraction of these patients (>50% familial and >10% sporadic) may be discovered by WES at the point of care.  相似文献   

6.
《Genetics in medicine》2023,25(1):143-150
PurposeCraniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown.MethodsWe performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro.ResultsWe studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3.ConclusionDamaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.  相似文献   

7.
《Genetics in medicine》2019,21(11):2577-2585
PurposeRadioulnar synostosis (RUS) can be syndromic or nonsyndromic. The genetic basis for several RUS syndromes have been reported. However, the genetic cause of nonsyndromic RUS (nsRUS) remains unknown.MethodsWe performed Giemsa (GTG) banding, Sanger sequencing, and exome sequencing on patients (n = 140) and families(n = 11) who suffered from RUS.ResultsGTG banding identified 10% RUS sporadic cases affected by sex chromosome aneuploidy. Sanger sequencing on candidate genes revealed noggin(NOG) rarely mutated in nsRUS. Exome sequencing identified 16 loss-of-function (LOF) and 6 missense variants (minor allele frequency [MAF] < 0.0001) in 22/117 nsRUS sporadic patients. Genetic association analysis found a significant association between SMAD6-LOF variants and nsRUS risk (odds ratio[OR] = 430, 95% confidence interval [CI]: 238–780, P < 0.000001). SMAD6 mutated in nsRUS was further confirmed by direct Sanger sequencing of SMAD6-coding regions on other unrelated cohorts of nsRUS cases or families. In summary, we detected 27 SMAD6 rare variants in nsRUS, most of which were LOF variants, 4 were de novo, and 3 were transmitted in families with autosomal dominant inheritance.ConclusionAs an intracellular bone morphogenetic protein (BMP) antagonist gene, SMAD6 is frequently mutated in nsRUS.NOG, which encodes an extracellular BMP antagonist, is rarely mutated in nsRUS. This work is the first genetic study on nsRUS.  相似文献   

8.
《Genetics in medicine》2022,24(12):2516-2525
PurposeCushing’s disease (CD) is often explained by a single somatic sequence change. Germline defects, however, often go unrecognized. We aimed to determine the frequency and associated phenotypes of genetic drivers of CD in a large cohort.MethodsWe studied 245 unrelated patients with CD (139 female, 56.7%), including 230 (93.9%) pediatric and 15 (6.1%) adult patients. Germline exome sequencing was performed in 184 patients; tumor exome sequencing was also done in 27 of them. A total of 43 germline samples and 92 tumor samples underwent Sanger sequencing of specific genes. Rare variants of uncertain significance, likely pathogenic (LP), or pathogenic variants in CD-associated genes, were identified.ResultsGermline variants (13 variants of uncertain significance, 8 LP, and 11 pathogenic) were found in 8 of 19 patients (42.1%) with positive family history and in 23 of 226 sporadic patients (10.2%). Somatic variants (1 LP and 7 pathogenic) were found in 20 of 119 tested individuals (16.8%); one of them had a coexistent germline defect. Altogether, variants of interest were identified at the germline level in 12.2% of patients, at the somatic level in 7.8%, and coexisting germline and somatic variants in 0.4%, accounting for one-fifth of the cohort.ConclusionWe report an estimate of the contribution of multiple germline and somatic genetic defects underlying CD in a single cohort.  相似文献   

9.
《Genetics in medicine》2016,18(5):443-451
PurposeCharcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders of the peripheral nervous system. Copy-number variants (CNVs) contribute significantly to CMT, as duplication of PMP22 underlies the majority of CMT1 cases. We hypothesized that CNVs and/or single-nucleotide variants (SNVs) might exist in patients with CMT with an unknown molecular genetic etiology.MethodsTwo hundred patients with CMT, negative for both SNV mutations in several CMT genes and for CNVs involving PMP22, were screened for CNVs by high-resolution oligonucleotide array comparative genomic hybridization. Whole-exome sequencing was conducted on individuals with rare, potentially pathogenic CNVs.ResultsPutatively causative CNVs were identified in five subjects (~2.5%); four of the five map to known neuropathy genes. Breakpoint sequencing revealed Alu-Alu-mediated junctions as a predominant contributor. Exome sequencing identified MFN2 SNVs in two of the individuals.ConclusionNeuropathy-associated CNV outside of the PMP22 locus is rare in CMT. Nevertheless, there is potential clinical utility in testing for CNVs and exome sequencing in CMT cases negative for the CMT1A duplication. These findings suggest that complex phenotypes including neuropathy can potentially be caused by a combination of SNVs and CNVs affecting more than one disease-associated locus and contributing to a mutational burden.  相似文献   

10.
《Genetics in medicine》2021,23(7):1211-1218
PurposeNext-generation sequencing has implicated some risk variants for human spina bifida (SB), but the genome-wide contribution of structural variation to this complex genetic disorder remains largely unknown. We examined copy-number variant (CNV) participation in the genetic architecture underlying SB risk.MethodsA high-confidence ensemble approach to genome sequences (GS) was benchmarked and employed for systematic detection of common and rare CNVs in two separate ancestry-matched SB case–control cohorts.ResultsSB cases were enriched with exon disruptive rare CNVs, 44% of which were under 10 kb, in both ancestral populations (P = 6.75 × 10−7; P = 7.59 × 10−4). Genes containing these disruptive CNVs fall into molecular pathways, supporting a role for these genes in SB. Our results expand the catalog of variants and genes with potential contribution to genetic and gene–environment interactions that interfere with neurulation, useful for further functional characterization.ConclusionThis study underscores the need for genome-wide investigation and extends our previous threshold model of exonic, single-nucleotide variation toward human SB risk to include structural variation. Since GS data afford detection of CNVs with greater resolution than microarray methods, our results have important implications toward a more comprehensive understanding of the genetic risk and mechanisms underlying neural tube defect pathogenesis.  相似文献   

11.
12.
《Genetics in medicine》2019,21(8):1832-1841
PurposeHeritable factors play an important etiologic role in connective tissue disorders (CTD) with vascular involvement, and a genetic diagnosis is getting increasingly important for gene-tailored, personalized patient management.MethodsWe analyzed 32 disease-associated genes by using targeted next-generation sequencing and exome sequencing in a clinically relevant cohort of 199 individuals. We classified and refined sequence variants according to their likelihood for pathogenicity.ResultsWe identified 1 pathogenic variant (PV; in FBN1 or SMAD3) in 15 patients (7.5%) and ≥1 likely pathogenic variant (LPV; in COL3A1, FBN1, FBN2, LOX, MYH11, SMAD3, TGFBR1, or TGFBR2) in 19 individuals (9.6%), together resulting in 17.1% diagnostic yield. Thirteen PV/LPV were novel. Of PV/LPV-negative patients 47 (23.6%) showed ≥1 variant of uncertain significance (VUS). Twenty-five patients had concomitant variants. In-depth evaluation of reported/calculated variant classes resulted in reclassification of 19.8% of variants.ConclusionVariant classification and refinement are essential for shaping mutational spectra of disease genes, thereby improving clinical sensitivity. Obligate stringent multigene analysis is a powerful tool for identifying genetic causes of clinically related CTDs. Nonetheless, the relatively high rate of PV/LPV/VUS-negative patients underscores the existence of yet unknown disease loci and/or oligogenic/polygenic inheritance.  相似文献   

13.
PurposeThis study aimed to provide comprehensive diagnostic and candidate analyses in a pediatric rare disease cohort through the Genomic Answers for Kids program.MethodsExtensive analyses of 960 families with suspected genetic disorders included short-read exome sequencing and short-read genome sequencing (srGS); PacBio HiFi long-read genome sequencing (HiFi-GS); variant calling for single nucleotide variants (SNV), structural variant (SV), and repeat variants; and machine-learning variant prioritization. Structured phenotypes, prioritized variants, and pedigrees were stored in PhenoTips database, with data sharing through controlled access the database of Genotypes and Phenotypes.ResultsDiagnostic rates ranged from 11% in patients with prior negative genetic testing to 34.5% in naive patients. Incorporating SVs from genome sequencing added up to 13% of new diagnoses in previously unsolved cases. HiFi-GS yielded increased discovery rate with >4-fold more rare coding SVs compared with srGS. Variants and genes of unknown significance remain the most common finding (58% of nondiagnostic cases).ConclusionComputational prioritization is efficient for diagnostic SNVs. Thorough identification of non-SNVs remains challenging and is partly mitigated using HiFi-GS sequencing. Importantly, community research is supported by sharing real-time data to accelerate gene validation and by providing HiFi variant (SNV/SV) resources from >1000 human alleles to facilitate implementation of new sequencing platforms for rare disease diagnoses.  相似文献   

14.
《Genetics in medicine》2019,21(10):2224-2230
PurposeGenetic sequencing for children with congenital diarrhea and enteropathy (CODE) has important implications for the diagnosis, prognosis, and implementation of precision medicine.MethodsWe performed exome sequencing or targeted panel sequencing on 137 children with CODE. Endoscopic, imaging, histological, and immunological assessments were also applied. Patients were divided into three subgroups: watery, fatty, and bloody diarrhea.ResultsThe median age of onset among patients was 28.0 (interquartile range: 7.5–120.0) days. Genetic diagnosis was achieved in 88/137 (64.2%) of patients. The diagnostic rate was significantly higher in the neonatal group than in the group of patients who had disease onset within 2 years oF.A.ge (p = 0.033). The diagnostic rates were 71.9% (46/64) for targeted gene panel sequencing and 57.5% (42/73) for exome sequencing (p = 0.081). We identified pathogenic variants in 17 genes. Based on genetic sequencing, 59.9% of patients were diagnosed with medically actionable disorders. Precision medicine was carried out by means of hematopoietic stem cell transplantation for patients with IL10RA, CYBB, or FOXP3 deficiency; pancreatic enzyme replacement for patients with SBDS or UBR1 deficiency; and a special diet for patients with SLC5A1 deficiency. The overall mortality rate was 14.6%.ConclusionSingle-gene disorders are common among CODE patients. Genetic diagnosis can improve therapy by enabling precision medicine.  相似文献   

15.
《Genetics in medicine》2019,21(3):694-704
PurposeWith the advent of gene therapies for inherited retinal degenerations (IRDs), genetic diagnostics will have an increasing role in clinical decision-making. Yet the genetic cause of disease cannot be identified using exon-based sequencing for a significant portion of patients. We hypothesized that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and evaluated patients with single coding pathogenic variants in RPGRIP1 to test this hypothesis.MethodsIRD families underwent targeted panel sequencing. Unsolved cases were explored by exome and genome sequencing looking for additional pathogenic variants. Candidate pathogenic variants were then validated by Sanger sequencing, quantitative polymerase chain reaction, and in vitro splicing assays in two cell lines analyzed through amplicon sequencing.ResultsAmong 1722 families, 3 had biallelic loss-of-function pathogenic variants in RPGRIP1 while 7 had a single disruptive coding pathogenic variants. Exome and genome sequencing revealed potential noncoding pathogenic variants in these 7 families. In 6, the noncoding pathogenic variants were shown to lead to loss of function in vitro.ConclusionNoncoding pathogenic variants were identified in 6 of 7 families with single coding pathogenic variants in RPGRIP1. The results suggest that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and RPGRIP1-mediated IRDs are more common than previously thought.  相似文献   

16.
《Genetics in medicine》2018,20(8):872-881
PurposeCongenital hypogonadotropic hypogonadism (CHH), a rare genetic disease caused by gonadotropin-releasing hormone deficiency, can also be part of complex syndromes (e.g., CHARGE syndrome). CHD7 mutations were reported in 60% of patients with CHARGE syndrome, and in 6% of CHH patients. However, the definition of CHD7 mutations was variable, and the associated CHARGE signs in CHH were not systematically examined.MethodsRare sequencing variants (RSVs) in CHD7 were identified through exome sequencing in 116 CHH probands, and were interpreted according to American College of Medical Genetics and Genomics guidelines. Detailed phenotyping was performed in CHH probands who were positive for CHD7 RSVs, and genotype–phenotype correlations were evaluated.ResultsOf the CHH probands, 16% (18/116) were found to harbor heterozygous CHD7 RSVs, and detailed phenotyping was performed in 17 of them. Of CHH patients with pathogenic or likely pathogenic CHD7 variants, 80% (4/5) were found to exhibit multiple CHARGE features, and 3 of these patients were reclassified as having CHARGE syndrome. In contrast, only 8% (1/12) of CHH patients with nonpathogenic CHD7 variants exhibited multiple CHARGE features (P = 0.01).ConclusionPathogenic or likely pathogenic CHD7 variants rarely cause isolated CHH. Therefore a detailed clinical investigation is indicated to clarify the diagnosis (CHH versus CHARGE) and to optimize clinical management.  相似文献   

17.
《Genetics in medicine》2023,25(10):100918
PurposeOrofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls.MethodsWe evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria.Results9.04% of cases and 1.02% of controls had “likely pathogenic” variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were “variants of uncertain significance”, occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance.ConclusionThese results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.  相似文献   

18.
《Genetics in medicine》2021,23(7):1219-1224
PurposeChronic kidney disease (CKD) is a major health-care burden. Increasing evidence suggests that a considerable proportion of patients are affected by a monogenic kidney disorder.MethodsIn this study, the kidney transplantation waiting list at the Charité was screened for patients with undetermined cause of CKD. By next-generation sequencing (NGS) we targeted all 600 genes described and associated with kidney disease or allied disorders.ResultsIn total, 635 patients were investigated. Of these, 245 individuals had a known cause of CKD (38.5%) of which 119 had a proven genetic disease (e.g., ADPKD, Alport). The other 340 patients (53.5%) were classified as undetermined diagnosis, of whom 87 had kidney failure (KF) onset <40 years. To this latter group genetic testing was offered as well as to those patients (n = 29) with focal segmental glomerulosclerosis (FSGS) and all individuals (n = 21) suspicious for thrombotic microangiopathy (TMA) in kidney biopsy. We detected diagnostic variants in 26 of 126 patients (20.6%) of which 14 of 126 (11.1%) were pathogenic or likely pathogenic. In another 12 of 126 (9.5%) patients, variants of unknown significance (VUS) were detected.ConclusionOur study demonstrates the diagnostic value of comprehensive genetic testing among patients with undetermined CKD.  相似文献   

19.
20.
《Genetics in medicine》2015,17(4):279-284
PurposeThe aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.MethodsGlaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.ResultsWhole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.ConclusionMassively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.Genet Med 17 4, 279–284.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号