首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of ginsenoside Rg3-mediated brain Na+ current inhibition   总被引:1,自引:0,他引:1  
We demonstrated previously that ginsenoside Rg(3) (Rg(3)), an active ingredient of Panax ginseng, inhibits brain-type Na(+) channel activity. In this study, we sought to elucidate the molecular mechanisms underlying Rg(3)-induced Na(+) channel inhibition. We used the two-microelectrode voltage-clamp technique to investigate the effect of Rg(3) on Na(+) currents (I(Na)) in Xenopus laevis oocytes expressing wild-type rat brain Na(V)1.2 alpha and beta1 subunits, or mutants in the channel entrance, the pore region, the lidocaine/tetrodotoxin (TTX) binding sites, the S4 voltage sensor segments of domains I to IV, and the Ile-Phe-Met inactivation cluster. In oocytes expressing wild-type Na(+) channels, Rg(3) induced tonic and use-dependent inhibitions of peak I(Na). The Rg(3)-induced tonic inhibition of I(Na) was voltage-dependent, dose-dependent, and reversible, with an IC(50) value of 32 +/- 6 microM. Rg(3) treatment produced a 11.2 +/- 3.5 mV depolarizing shift in the activation voltage but did not alter the steady-state inactivation voltage. Mutations in the channel entrance, pore region, lidocaine/TTX binding sites, or voltage sensor segments did not affect Rg(3)-induced tonic blockade of peak I(Na). However, Rg(3) treatment inhibited the peak and plateau I(Na) in the IFMQ3 mutant, indicating that Rg(3) inhibits both the resting and open states of Na(+) channel. Neutralization of the positive charge at position 859 of voltage sensor segment domain II abolished the Rg(3)-induced activation voltage shift and use-dependent inhibition. These results reveal that Rg(3) is a novel Na(+) channel inhibitor capable of acting on the resting and open states of Na(+) channel via interactions with the S4 voltage-sensor segment of domain II.  相似文献   

2.
Voltage-gated Na(+) (Na(v)) channels are responsible for initiating action potentials in excitable cells and are the targets of local anesthetics (LA). The LA receptor is localized to the cytoplasmic pore mouth formed by the S6 segments from all four domains (DI-DIV) but several outer pore-lining residues have also been shown to influence LA block (albeit somewhat modestly). Many of the reported amino acid substitutions, however, also disrupt the inactivated conformations that favor LA binding, complicating the interpretation of their specific effects on drug block. In this article, we report that an externally accessible aromatic residue in the Na(v) channel pore, DIV-Trp1531, when substituted with cysteine, completely abolished LA block (e.g., 300 microM mexiletine induced a use-dependent block with 65.0 +/- 2.9% remaining current and -11.0 +/- 0.6 mV of steady-state inactivation shift of wild-type (WT) channels versus 97.4 +/- 0.7% and -2.4 +/- 2.1 mV of W1531C, respectively; p < 0.05) without destabilizing fast inactivation (complete inactivation at 20 ms at -20 mV; V(1/2) = -70.0 +/- 1.6 mV versus -48.6 +/- 0.5 mV of WT). W1531C also abolished internal QX-222 block (200 microM; 98.4 +/- 3.4% versus 54.0 +/- 3.2% of WT) without altering drug access. It is interesting that W1531Y restored WT blocking behavior, whereas W1531A channels exhibited an intermediate phenotype. Together, our results provide novel insights into the mechanism of drug action, and the structural relationship between the LA receptor and the outer pore vestibule.  相似文献   

3.
l-cis-Diltiazem, the stereoisomer of the L-type Ca(2+) channel blocker d-cis-diltiazem, protects cardiac myocytes from ischemia and reperfusion injury in the perfused heart and from veratridine-induced Ca(2+) overload. We determined the effect of l-cis-diltiazem on the voltage-dependent Na(+) current (I(Na)) and lysophosphatidylcholine-induced currents in isolated guinea-pig left ventricular myocytes by a whole-cell patch-clamp technique. l-cis-Diltiazem inhibited I(Na) in a dose-dependent manner without altering the current-voltage relationship for I(Na) (K(d) values : 729 and 9 microM at holding potentials of -140 and -80 mV, respectively). A use-dependent block of I(Na), the leftward shift of the steady-state inactivation curve and the delay of recovery from inactivation suggest that l-cis-diltiazem has a higher affinity for the inactivated state of Na(+) channels. In addition to I(Na), the lysophosphatidylcholine-induced currents were inhibited by l-cis-diltiazem in a similar concentration range. It is suggested that inhibition of both Na(+) channels and lysophosphatidylcholine-activated non-selective cation channels contributes to the cardioprotective effect of l-cis-diltiazem.  相似文献   

4.
Inhibition of cardiac Na+ current by primaquine   总被引:3,自引:0,他引:3  
The electrophysiological effects of the anti-malarial drug primaquine on cardiac Na(+) channels were examined in isolated rat ventricular muscle and myocytes. In isolated ventricular muscle, primaquine produced a dose-dependent and reversible depression of dV/dt during the upstroke of the action potential. In ventricular myocytes, primaquine blocked I(Na)(+) in a dose-dependent manner, with a K(d) of 8.2 microM. Primaquine (i) increased the time to peak current, (ii) depressed the slow time constant of I(Na)(+) inactivation, and (iii) slowed the fast component for recovery of I(Na)(+) from inactivation. Primaquine had no effect on: (i) the shape of the I - V curve, (ii) the reversal potential for Na(+), (iii) the steady-state inactivation and g(Na)(+) curves, (iv) the fast time constant of inactivation of I(Na)(+), and (v) the slow component of recovery from inactivation. Block of I(Na)(+) by primaquine was use-dependent. Data obtained using a post-rest stimulation protocol suggested that there was no closed channel block of Na(+) channels by primaquine. These results suggest that primaquine blocks cardiac Na(+) channels by binding to open channels and unbinding either when channels move between inactivated states or from an inactivated state to a closed state. Cardiotoxicity observed in patients undergoing malaria therapy with aminoquinolines may therefore be due to block of Na(+) channels, with subsequent disturbances of impulse conductance and contractility.  相似文献   

5.
1 Levobupivacaine and ropivacaine are the pure S(-) enantiomers of N-butyl- and N-propyl-2',6'-pipecoloxylidide, developed as less cardiotoxic alternatives to bupivacaine. In the present study, we have analysed the effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels stably expressed in CHO cells. 2 The three drugs blocked HERG channels in a concentration-, time- and state-dependent manner. Block measured at the end of 5 s pulses to -10 mV induced by 20 microM bupivacaine (52.7+/-2.0%, n=15) and ropivacaine (55.5+/-2.7%, n=13) was similar (P>0.05) and both lower than that induced by levobupivacaine (67.5+/-4.2%, n=11) (P<0.05). 3 Dextrobupivacaine (20 microM) was less potent (47.2+/-5.2%, n=10) than levobupivacaine (P<0.05), indicating stereoselective HERG channel block. 4. Block induced by the three local anaesthetics exhibited a steep voltage dependence in the range of channel activation. In all cases, block measured at the maximum peak current at a test potential of 0 mV after promoting recovery from inactivation (I-->O) was lower than that observed at the end of 5-s pulses (I+O). 5. Levobupivacaine, ropivacaine and bupivacaine accelerated HERG inactivation kinetics, slowed the recovery from inactivation and shifted the inactivation curve towards more negative membrane potentials. The three local anaesthetics induced a rapid time-dependent decline after using a protocol that quickly activates HERG channels. 6. All these results suggest that: (1) these drugs bind to the open and the inactivated states of HERG channels, (2) they stabilize HERG channels in the inactivated state, and (3) block induced by bupivacaine enantiomers is stereoselective.  相似文献   

6.
Use-dependent block of Na(+) channels plays an important role in the action of many medications, including the anticonvulsants phenytoin, carbamazepine, and lamotrigine. These anticonvulsants all slowly yet selectively bind to a common receptor site in inactivated but not resting Na(+) channels, constituting the molecular basis of the use-dependent block. However, it remains unclear what channel gating process "makes" the receptor, where the receptor is located, and how the slow drug binding rate (to the inactivated channels) is contrived. Imipramine has a diphenyl structural motif almost identical to that in carbamazepine (a dibenzazepine tricyclic compound), as well as a tertiary amine chain similar to that in many prototypical local anesthetics, and has also been reported to inhibit Na(+) channels in a use-dependent fashion. We found that imipramine selectively binds to the inactivated (dissociation constant approximately 1.3 microM) rather than the resting Na(+) channels (dissociation constant >130 microM). Moreover, imipramine rapidly blocks open Na(+) channels, with a binding rate approximately 70-fold faster than its binding to the inactivated channels. Similarly, carbamazepine and diphenhydramine are open Na(+) channel blockers with faster binding rates to the open than to the inactivated channels. These findings indicate that the anticonvulsant receptor responsible for the use-dependent block of Na(+) channels is located in or near the pore (most likely in the pore mouth) and is made suitable for drug binding during channel activation. The receptor, however, continually changes its conformation in the subsequent gating process, causing the slower drug binding rates to the inactivated Na(+) channels.  相似文献   

7.
1. 4-(4-Fluorophenoxy)benzaldehyde semicarbazone (V102862) was initially described as an orally active anticonvulsant with robust activity in a variety of rodent models of epilepsy. The mechanism of action was not known. We used whole-cell patch-clamp techniques to study the effects of V102862 on native and recombinant mammalian voltage-gated Na+ channels. 2. V102862 blocked Na+ currents (I(Na)) in acutely dissociated cultured rat hippocampal neurons. Potency increased with membrane depolarization, suggesting a state-dependent mechanism of inhibition. There was no significant effect on the voltage dependence of activation of I(Na). 3. The dissociation constant for the inactivated state (K(I)) was approximately 0.6 microM, whereas the dissociation constant for the resting state (K(R)) was >15 microM. 4. The binding to inactivated channels was slow, requiring a few seconds to reach steady state at -80 mV. 5. The mechanism of inhibition was characterized in more detail using human embryonic kidney-293 cells stably expressing rat brain type IIA Na+ (rNa(v)1.2) channels, a major Na+ channel alpha subunit in rat hippocampal neurons. Similar to hippocampal neurons, V102862 was a potent state-dependent blocker of rNa(v)1.2 channels with a K(I) of approximately 0.4 microM and K(R) approximately 30 microM. V102862 binding to inactivated channels was relatively slow (k(+) approximately = 1.7 microM(-1) s(-1)). V102862 shifted the steady-state availability curve in the hyperpolarizing direction and significantly retarded recovery of Na+ channels from inactivation. 6. These results suggest that inhibition of voltage-gated Na+ channels is a major mechanism underlying the anticonvulsant properties of V102862. Moreover, understanding the biophysics of the interaction may prove to be useful in designing a new generation of potent Na+ channel blocker therapeutics.  相似文献   

8.
The congenital long QT syndrome is an inherited disorder characterized by a delay in cardiac repolarization, leading to lethal cardiac arrhythmias such as torsade de pointes. One form of this disease involves mutations in the voltage-dependent cardiac Na(+) channel, which includes an in-frame deletion of three amino acids (Lys-1505, Pro-1506, and Gln-1507; DeltaKPQ). The potential for selective suppression of the mutant was examined by heterologous expression of DeltaKPQ-Na(+) channels in Chinese hamster fibroblast cells via single-channel recording. In a single-channel cell-attached patch study, DeltaKPQ-Na(+) channels yielded currents that peaked at approximately 1 ms after voltage steps to 0 mV with aberrant late currents, which were composed of burst and isolated openings. The affinity of certain anesthetics (pilsicainide and lidocaine) to the late currents of the mutant channels was examined. It was revealed that 1) pilsicainide (1 microM), an open channel blocker of voltage-dependent Na(+) channels, remarkably decreased the late currents primarily by the shortening of burst duration without suppressing the initial peak current; and 2) lidocaine (1 microM), an inactivated channel blocker, decreased the late currents primarily by the suppression of isolated channel openings. Because the late currents in DeltaKPQ mutants are mainly composed of the burst openings, we conclude that pilsicainide is capable of selectively blocking the late currents in the mutant Na(+) channels that show dominant abnormal burst openings such as in DeltaKPQ mutants.  相似文献   

9.
We previously demonstrated that dextromethorphan (DM; 3-methoxy-17-methylmorphinan) analogs have neuroprotective effects. Here, we investigated the effects of DM, three of its analogs (DF, 3-methyl-17-methylmorphinan; AM, 3-allyloxy-17-methoxymorphian; and CM, 3-cyclopropyl-17-methoxymorphinan) and one of its metabolites (HM; 3-methoxymorphinan), on Na(+) channel activity. We used the two-microelectrode voltage-clamp technique to test the effects of DM, DF, AM, CM and HM on Na(+) currents (I(Na)) in Xenopus oocytes expressing cRNAs encoding rat brain Nav1.2 alpha and beta1 or beta2 subunits. In oocytes expressing Na(+) channels, DM, DF, AM and CM, but not HM, induced tonic and use-dependent inhibitions of peak I(Na) following low- and high-frequency stimulations. The order of potency for the inhibition of peak I(Na) was AM-CM > DM=DF. The DM, DF, AM and CM-induced tonic inhibitions of peak I(Na) were voltage-dependent, dose-dependent and reversible. The IC(50) values for DM, DF, AM and CM were 116.7+/-14.9, 175.8+/-16.9, 38.6+/-15.5, and 42.5+/-8.5 microM, respectively. DM and its analogs did not affect the steady-state activation and inactivation voltages. AM and CM, but not DM and DF, inhibited the plateau I(Na) more effectively than the peak I(Na) in oocytes expressing inactivation-deficient I1485Q-F1486Q-M1487Q (IFMQ3) mutant channels; the IC(50) values for AM and CM in this system were 8.4+/-1.3 and 8.7+/-1.3 microM, respectively, for the plateau I(Na) and 43.7+/-5.9 and 32.6+/-7.8 microM, respectively, for the peak I(Na). These results collectively indicate that DM and its analogs could be novel Na(+) channel blockers acting on the resting and open states of brain Na(+) channels.  相似文献   

10.
Gating properties of Na(+) channels are the critical determinants for the state-dependent block by class I antiarrhythmic drugs; however, recent site-directed mutagenesis studies have shown that the Na(+) channel selectivity filter region controls drug access to and dissociation from the binding site. To validate these observations, we have exploited a naturally occurring cardiac Na(+) channel mutation, S1710L, located next to the putative selectivity filter residue of domain 4, and evaluated the pharmacological properties to mexiletine using whole-cell, patch-clamp recordings. Consistent with the large negative shift of steady-state inactivation and the enhanced slow inactivation, the S1710L channel showed greater mexiletine tonic block than wild-type (WT) channel. In contradiction, S1710L showed attenuated use-dependent block by mexiletine and accelerated recovery from block, suggesting that the drug escape though the external access path is facilitated. Extracellularly applied QX-314, a membrane-impermeant derivative of lidocaine, elicited significantly enhanced tonic block in S1710L similar to mexiletine. However, recovery from internally applied QX-314 was accelerated by 4.4-fold in S1710L compared with WT. These results suggest that the drug access to and dissociation from the binding site through the hydrophilic path are substantially altered. Moreover, K(+) permeability was 1.9-fold increased in S1710L, verifying that the mutated residue is located in the ion-conducting pore. We propose that the Na(+) channel selectivity filter region is a structural determinant for the antiarrhythmic drug sensitivity in addition to gating properties of the indigenous Na(+) channels that govern the state-dependent drug block.  相似文献   

11.
The specific interactions of both (R)- and (S)-propafenone with the cardiac sodium channel were studied with patch clamp techniques in the whole-cell recording mode at reduced extracellular Na+ on guinea pig ventricular cells. Both (R)- and (S)-propafenone (10 microM) shifted the membrane potential required for half-maximal steady-state inactivation (E0.5) of the cardiac sodium channel to considerably more negative membrane potentials [E0.5 = -70.8 +/- 2.9 mV for controls vs. -85 +/- 3.1 mV for (R)-propafenone and -91.9 +/- 1.7 mV for (S)-propafenone]. (S)-Propafenone at a concentration of 10 microM is more effective in shifting the h infinity curve of the cardiac sodium channel. Recovery from inactivation of the cardiac sodium current is prolonged by orders of magnitude by both stereoenantiomeric forms [time constants were estimated to be 38 +/- 15 ms at -90 mV vs. 46.5 +/- 14.3 s for (R)-propafenone and 74.2 +/- 37.9 for (S)-propafenone]. Development of block occurs mainly through the inactivated channel conformation for both (R)- and (S)-propafenone. Development of block of inactivated cardiac sodium channels occurs with time constants of 15.9 +/- 3.9 s for (R)-propafenone and 19.7 +/- 7.3 s for (S)-propafenone at 10 microM. Action potential duration and possible stereoselective interaction with ion transport systems other than sodium channels may influence the block developed by either (R)- or (S)-propafenone at a given concentration and beating frequency indirectly through the membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ranolazine, an anti-anginal drug, reduces neuropathic and inflammatory-induced allodynia in rats. However, the mechanism of ranolazin's anti-allodynic effect is not known. We hypothesized that ranolazine would reduce dorsal root ganglion (DRG) Na(+) current (I(Na)) and neuronal firing by stabilizing Na(+) channels in inactivated states to cause voltage- and frequency-dependent block. Therefore, we investigated the effects of ranolazine on tetrodotoxin-sensitive (TTXs) and tetrodotoxin-resistant (TTXr) I(Na) and action potential parameters of small diameter DRG neurons from embryonic rats. Ranolazine (10 and 30 μM) significantly reduced the firing frequency of evoked action potentials in DRG neurons from 19.2 ± 1.4 to 9.8 ± 2.7 (10 μM) and 5.7 ± 1.3 (30 μM) Hz at a resting membrane potential of -40 mV. Ranolazine blocked TTXs and TTXr in a voltage- and frequency-dependent manner. Furthermore, ranolazine (10 μM) blocked hNa(v)1.3 (expressed in HEK293 cells) and caused a hyperpolarizing shift in the voltage dependence of steady-state intermediate and slow inactivation Na(v)1.3 current. Taken together, the results suggest that ranolazine suppresses the hyperexcitability of DRG neurons by interacting with the inactivated states of Na(+) channels and these actions may contribute to its anti-allodynic effect in animal models of neuropathic pain.  相似文献   

13.
American ginseng (Panax quinquefolius) is a major species of ginseng that has many pharmacological effects. Studies have demonstrated that constituents of ginseng have neuroprotective effects during ischemia. Neuronal damage during ischemic episodes has been associated with abnormal Na(+) fluxes. Drugs that block voltage-dependent Na(+) channels provide cytoprotection during cerebral ischemia. We thus hypothesized that American ginseng may block Na(+) channels. In this study, effects of an American ginseng aqueous extract was evaluated in tsA201 cells transfected with cDNA expressing alpha subunits of the Brain(2a) Na(+) channel using the whole-cell patch clamp technique. We found that American ginseng extract tonically and reversibly blocked the channel in a concentration- and voltage-dependent manner. It shifted the voltage-dependence of inactivation by 14 mV (3 mg/ml) in the hyperpolarizing direction and delayed recovery from inactivation, whereas activation of the channel was unaffected. Ginsenoside Rb(1), a major constituent of the American ginseng extract, produced similar effects. The data were compared with the actions of lidocaine, a Na(+) channel blocker. Our results suggest that Na(+) channel block by American ginseng extract and Rb(1) was primarily due to interaction with the inactive state of the channel. Inhibition of the Na(+) channel activity by American ginseng extract may contribute to its neuroprotective effect during ischemia.  相似文献   

14.
A structural model of the rNav1.4 Na+ channel with batrachotoxin (BTX) bound within the inner cavity suggested that the BTX pyrrole moiety is located between a lysine residue at the DEKA selectivity filter (Lys1237) and an adjacent phenylalanine residue (Phe1236). We tested this pyrrole-binding model by site-directed mutagenesis of Phe1236 at D3/P-loop with 11 amino acids. Mutants F1236D and F1236E expressed poorly, whereas nine other mutants either expressed robust Na+ currents, like the wild-type (F1236Y/Q/K), or somewhat reduced current (F1236G/A/C/N/W/R). Gating properties were altered modestly in most mutant channels, with F1236G displaying the greatest shift in activation and steady-state fast inactivation (-10.1 and -7.5 mV, respectively). Mutants F1236K and F1236R were severely resistant to BTX after 1000 repetitive pulses (+50 mV/20 ms at 2 Hz), whereas seven other mutants were sensitive but with reduced magnitudes compared with the wild type. It is noteworthy that rNav1.4-F1236K mutant Na+ channels remained highly sensitive to block by the local anesthetic bupivacaine, unlike several other BTX-resistant mutant channels. Our data thus support a model in which BTX, when bound within the inner cavity, interacts with the D3/P-loop directly. Such a direct interaction provides clues on how BTX alters the Na+ channel selectivity and conductance.  相似文献   

15.
State-dependent mibefradil block of Na+ channels   总被引:4,自引:0,他引:4  
Mibefradil is a T-type Ca2+ channel antagonist with reported cross-reactivity with other classes of ion channels, including K+, Cl-, and Na+ channels. Using whole-cell voltage clamp, we examined mibefradil block of four Na+ channel isoforms expressed in human embryonic kidney cells: Nav1.5 (cardiac), Nav1.4 (skeletal muscle), Nav1.2 (brain), and Nav1.7 (peripheral nerve). Mibefradil blocked Nav1.5 in a use/frequency-dependent manner, indicating preferential binding to states visited during depolarization. Mibefradil blocked currents of all Na+ channel isoforms with similar affinity and a dependence on holding potential, and drug off-rate was slowed at depolarized potentials (k(off) was 0.024/s at -130 mV and 0.007/s at -100 mV for Nav1.5). We further probed the interaction of mibefradil with inactivated Nav1.5 channels. Neither the degree nor the time course of block was dependent on the stimulus duration, which dramatically changed the residency time of channels in the fast-inactivated state. In addition, inhibiting the binding of the fast inactivation lid (Nav1.5 ICM + MTSET) did not alter mibefradil block, confirming that the drug does not preferentially interact with the fast-inactivated state. We also tested whether mibefradil interacted with slow-inactivated state(s). When selectively applied to channels after inducing slow inactivation with a 60-s pulse to -10 mV, mibefradil (1 microM) produced 45% fractional block in Nav1.5 and greater block (88%) in an isoform (Nav1.4) that slow-inactivates more completely. Our results suggest that mibefradil blocks Na+ channels in a state-dependent manner that does not depend on fast inactivation but probably involves interaction with one or more slow-inactivated state(s).  相似文献   

16.
Esmolol is a unique cardioselective, intravenous, ultra-short acting, beta1-adrenergic blocking agent. It has been widely applied in treating ventricular and supraventricular arrhythmias, especially in emergency situations. In this study the effects of esmolol on sodium current (I(Na)) were investigated by the whole cell patch-clamp recording technique in isolated adult rat ventricular myocytes. The results indicated that esmolol reversibly inhibited I(Na) in a concentration-dependent manner, with an IC50 of 74.2 +/- 0.60 micromol l(-1) with a Hill coefficient of 1.02 +/- 0.04. This inhibition was voltage- and frequency-dependent. Esmolol decreased the peak of the I-V relationship curve at -35 mV from 16.97 +/- 1.68 pA/pF to 6.96 +/- 0.51 pA/pF. The steady-state inactivation curve of I(Na) was shifted to more negative potentials, the voltage at half-inactivation changing from -78.75 +/- 2.3 mV in control to -85.94 +/- 3.2 mV in the presence of esmolol. The development of resting inactivation from closed states was accelerated by esmolol, the time constant was shortened from 62.75 +/- 3.21 ms to 24.93 +/- 2.43 ms, whereas the activation curve was not altered. I(Na) from inactivation could not be recovered completely in the presence of esmolol. These results suggest that esmolol inhibits I(Na) through sodium channel in rat ventricular myocytes by mechanisms involving preferential interaction with the inactivated state and acceleration of the development of inactivation directly from resting state. Therefore, the effect of inhibitory sodium of esmolol may play a vital role in its antiarrhythmic efficacy.  相似文献   

17.
Ciguatoxins (CTXs) are known to bind to receptor site 5 of the voltage-dependent Na channel, but the toxin's physiological effects are poorly understood. In this study, we investigated the effects of a ciguatoxin congener (CTX3C) on three different Na-channel isoforms, rNa(v)1.2, rNa(v)1.4, and rNa(v)1.5, which were transiently expressed in HEK293 cells. The toxin (1.0 micromol l(-1)) shifted the activation potential (V(1/2) of activation curve) in the negative direction by 4-9 mV and increased the slope factor (k) from 8 mV to between 9 and 12 mV (indicative of decreased steepness of the activation curve), thereby resulting in a hyperpolarizing shift of the threshold potential by 30 mV for all Na channel isoforms. The toxin (1.0 micromol l(-1)) significantly accelerated the time-to-peak current from 0.62 to 0.52 ms in isoform rNa(v)1.2. Higher doses of the toxin (3-10 micromol l(-1)) additionally decreased time-to-peak current in rNa(v)1.4 and rNa(v)1.5. A toxin effect on decay of I(Na) at -20 mV was either absent or marginal even at relatively high doses of CTX3C. The toxin (1 micromol l(-1)) shifted the inactivation potential (V(1/2) of inactivation curve) in the negative direction by 15-18 mV in all isoforms. I(Na) maxima of the I-V curve (at -20 mV) were suppressed by application of 1.0 micromol l(-1) CTX3C to a similar extent (80-85% of the control) in all the three isoforms. Higher doses of CTX3C up to 10 micromol l(-1) further suppressed I(Na) to 61-72% of the control. Recovery from slow inactivation induced by a depolarizing prepulse of intermediate duration (500 ms) was dramatically delayed in the presence of 1.0 micromol l(-1) CTX3C, as time constants describing the monoexponential recovery were increased from 38+/-8 to 588+/-151 ms (n=5), 53+/-6 to 338+/-85 ms (n=4), and 23+/-3 to 232+/-117 ms (n=3) in rNa(v)1.2, rNa(v)1.4, and rNa(v)1.5, respectively. CTX3C exerted multimodal effects on sodium channels, with simultaneous stimulatory and inhibitory aspects, probably due to the large molecular size (3 nm in length) and lipophilicity of this membrane-spanning toxin.  相似文献   

18.
Altered inactivation kinetics in skeletal muscle Na(+) channels due to mutations in the encoding gene are causal for the alterations in muscle excitability in nondystrophic myotonia. Na(+) channel blockers like lidocaine and mexiletine, suggested for therapy of myotonia, do not reconstitute inactivation in channels with defective inactivation in vitro. We examined the effects of four methylated and/or halogenated phenol derivatives on one heterologously expressed inactivation-deficient Paramyotonia congenita-mutant (R1448H) muscle Na(+) channel in vitro. All these compounds accelerated delayed inactivation of R1448H-whole-cell currents during a depolarization and delayed accelerated recovery from inactivation. The potency of these effects paralleled the potency of the drugs to block the peak current amplitude. We conclude that the investigated phenol derivatives affect inactivation-deficient Na(+) channels more specifically than lidocaine and mexiletine. However, for all compounds, the effect on inactivation was accompanied by a substantial block of the peak current amplitude.  相似文献   

19.
In this study, the effect of staurosporine, a potent protein kinase C (PKC) inhibitor, on Na+ current (I(Na)) was examined by whole-cell patch recording in rabbit atrial myocytes. The most prominent staurosporine effect was a slowing of I(Na) inactivation and 1 microM staurosporine reduced amplitude of I(Na) about 33%. Staurosporine decreased I(Na) at all potentials and slowed the I(Na) inactivation in a dose-dependent manner, with a Kd value of 1.107+/-0.162 microM. Staurosporine did not change the recovery kinetics and show use dependence. However, the activation and the steady-state inactivation curves were shifted toward more negative potentials (-5.5 and -5.1 mV, respectively). Two other PKC inhibitors, GF 109203X (1 microM) and chelerythrine (3 microM), did not show a slowing effect on I(Na) inactivation. In conclusion, our results indicate that the slowing of I(Na) inactivation by staurosporine seems not to be through blockade of PKC rather to act directly on the Na+ channels, and the direct blocking effects of staurosporine on the Na+ channel should be taken into consideration when staurosporine is used in functional studies of ion channel modulation by protein phosphorylation.  相似文献   

20.
Modifications of Na+ channels by phenytoin (PT), an anticonvulsant drug, were examined. Previous work using voltage-clamp methods indicated that PT could interact with inactivated states of the channel to reduce excitability. Single-channel analysis was used to test the idea that the fast inactivation process was not required for modification of the channel. The hypothesis that PT could interact with open or slow inactivated states to produce a drug-bound, long duration, nonconducting state was also tested. Currents due to the opening of single Na+ channels were measured in inside-out patches of membrane excised from N1E-115 mouse neuroblastoma cells grown in tissue culture. After the removal of the fast inactivation process enzymatically, the average Na+ current in response to a step depolarization decayed due to the slow inactivation process. The time constant of decay decreased as a function of the concentration of PT. The average current appeared to be caused by extensive reopening of Na+ channels. During maintained depolarization, the reopening of Na+ channels occurred in bursts interrupted by long silent periods, due to the slow inactivated state. PT decreased the burst duration and increased the interval between bursts. The average open time of Na+ channels was reduced in the presence of PT. All of the alterations were enhanced as the concentration of PT was increased. The amplitude of current through the open channel was not effected by PT. PT was able to modify the Na+ channel in the absence of fast inactivation. The results suggest that PT can bind to the Na+ channel and produce a nonconducting state from which the probability of a channel opening is small. These modifications could underly the selective block of action potentials during chronic depolarization of the membrane or during high frequency discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号