首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
In this study we describe the development of a RNA:RNA solution hybridization-RNase protection assay to quantify STAT5 mRNA in total RNA extracts from rat tissues. The assay is sensitive and reproducible. We quantified STAT5 mRNA levels in liver and thymus lymphocytes from male and female control rats and from rats treated with a single dose of recombinant human growth hormone (rhGH). No significant sex differences in the expression pattern were observed in both studied tissues, but STAT5 mRNA levels were significantly (P< 0.05) higher in liver than in thymus lymphocytes. STAT5 mRNA levels were significantly (P< 0.05) increased by a pulse of GH given to either male or female normal rats, suggesting a regulation of STAT5 gene expression in the studied tissues. In conclusion, quantitative solution hybridization-RNase protection assay of STAT5 mRNA provides a tool to further advance the study of the regulatory mechanisms involved in STAT5 gene expression.  相似文献   

3.
4.
5.
6.
During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major promoter of the rat IGF-I gene and is important for basal promoter activity in vitro, was examined. Gel shift analyses using a 34-base pair oligonucleotide that contained IGFI-FP1 did not demonstrate changes in protein binding that paralleled those in IGF-I gene expression, suggesting that protein binding to IGFI-FP1 does not contribute to the developmental regulation of IGF-I gene expression, at least in brain and liver. In summary, the present studies demonstrate coordinate expression of the IGF-I gene and GH receptor during development and suggest that GH receptor expression contributes to the tissue specific expression of the IGF-I gene during development.  相似文献   

7.
8.
9.
10.
Suppressor of cytokine signalling (SOCS) proteins act as part of a classical negative feedback loop regulating cytokine signal transduction. Expression of SOCS proteins is induced in response to cytokines and down-regulates the cytokine signal by inhibiting the JAK/STAT pathway. Growth hormone (GH) was previously shown to induce strong transient expression of SOCS-3 and to a lesser extent CIS, SOCS-1 and SOCS-2 in mouse liver (Adams, T.E., Hansen, J.A., Starr, R., Nicola, N.A., Hilton, D.J., Billestrup, N., 1998. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signalling. J. Biol. Chem. 273, 1285-1287.). In this work we have compared GH-induced SOCS gene expression in wild-type and STAT5b-deficient mice, and show that STAT5b is required for the induction of SOCS-2 and SOCS-3 in liver. In contrast, the absence of STAT5b has no effect on the GH-induced expression of CIS and SOCS-2 mRNA in the mammary gland. Suprisingly, there is no activation of SOCS-3 expression in mammary glands of wild-type and STAT5b mutant mice following GH administration. These results highlight both tissue- and factor-specific differences in the regulation of SOCS gene expression by STAT5a/b.  相似文献   

11.
12.
13.
14.
STAT5b is required for GH-induced liver IGF-I gene expression   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号