首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Resistance (R) genes of plants are responsible for pathogen recognition and encode proteins that trigger a cascade of responses when a pathogen invades a plant. R genes are assumed to be under strong selection, but there is limited knowledge of the processes affecting R gene diversity in the wild. In this study, DNA sequence variation of Cf-2 homologs was surveyed in populations of Solanum pimpinellifolium, a wild relative of the cultivated tomato. The Cf-2 locus is involved in resistance to strains of the fungus Cladosporium fulvum. At least 26 different Cf-2 homologs were detected in natural populations of S. pimpinellifolium. These homologs differ by single base pair substitutions as well as indels in regions coding for leucine-rich repeats. Molecular population genetic analyses suggest that natural selection has acted heterogeneously on Cf-2 homologs, with selection against amino acid substitutions occurring in the 5' portion of the genes, and possible restricted positive selection in the 3' end. Balancing selection may have maintained haplotypes at the 5' end of the genes. Limited sequence exchange between genes has also contributed to sequence variation. S. pimpinellifolium individuals differ in the number of Cf-2 homologs they contain, obscuring the relationships of orthology and paralogy. This survey of Cf-2 variation in S. pimpinellifolium illustrates the wealth of R gene diversity that exists in wild plant populations, as well as the complexity of interacting genetic and evolutionary processes that generate such diversity.  相似文献   

2.
The tomato Cf-4 and Cf-9 genes are the founder members of a large gene family of homologues of Cladosporium fulvum resistance gene Cf-9 (Hcr9 genes), several of which confer resistance against C. fulvum through recognition of different pathogen-encoded avirulence determinants. Three loci of tandemly repeated Hcr9 genes-Southern Cross (SC), Milky Way (MW), and Northern Lights (NL)-are located on the short arm of tomato chromosome 1. Comparisons between 2 SC-Hcr9s, 11 from MW, and 5 from NL implicated sequence exchange between gene family members in their evolution. The extent to which novel variants can be generated by recombination depends on the degree of sequence polymorphism available within the gene family. Here we show that physical separation of Hcr9 genes can be associated with elevated sequence divergence. Two diverged subclasses of Hcr9s could be defined. These are physically separated from each other, with members of one class exclusively residing at Northern Lights. One exceptional Hcr9 at Northern Lights carried sequence features specific for Hcr9s at other loci, suggesting a recent transfer of this gene by an interlocus recombination event. As members of diverged subclasses are brought into physical vicinity within a tandem repeat, a larger spectrum of sequence variants can potentially be generated by subsequent interhomologue sequence exchange.  相似文献   

3.
4.
The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.  相似文献   

5.
Plant defense responses are induced when the products of disease-resistance genes and pathogen avirulence genes interact. We report here the effects of expressing the Cladosporium fulvum avirulence Avr9 gene product in a tomato line containing the Cf-9 disease-resistance gene. A synthetic Avr9 gene was constructed to produce constitutive high-level expression of AVR9 peptide in the plant apoplast. Avr9 expression in Cf-9-containing tomato lines is lethal, but cell death is developmentally regulated, in that necrosis is not visible until 10 days after planting seed. Plant lines lacking Cf-9 and expressing Avr9 remain healthy. The synthetic Avr9 gene exhibited the same specificity of action as the authentic C. fulvum Avr9 gene. Our results have significant implications for strategies using the gene combination Avr9/Cf-9 to engineer plants with enhanced disease resistance.  相似文献   

6.
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.  相似文献   

7.
Mice homozygous for the H-2d haplotype at the major histocompatibility complex are markedly more susceptible to erythroleukemia induction by the Friend isolate of murine leukemia retrovirus (FV) than are congenic mice homozygous for the H-2b haplotype. The resistance conferred by the H-2b haplotype is recessive in this cross, since heterozygous F1 mice are as susceptible as parental strain H-2d homozygotes. However, H-2b-associated resistance is not an intrinsically recessive trait, since H-2b/H-2dm1 heterozygotes resemble H-2b homozygotes in their relative resistance to FV; the mutant H-2dm1 haplotype lacks the entire D region of the parental haplotype except for a single class I gene formed by the fusion of its terminal D-region genes to produce a class I gene differing from both parental genes, and thus this finding indicates that one or more D-region genes of the H-2d haplotype can actively suppress H-2b-associated resistance. Unlike H-2dm1, the mutant H-2dm2 haplotype, which retains only the class IDd gene in the D region of the H-2d haplotype, strongly suppresses resistance in H-2b/H-2dm2 heterozygotes, and the presence of Dd as a transgene significantly reduces the resistance of H-2b homozygotes. Since H-2b-associated resistance to FV appears to be due mainly to the capacity of Lb (also called Db), the only class I molecule encoded in the D region of the H-2b haplotype, to present viral epitopes for recognition by FV-specific cytotoxic T lymphocytes, suppression of resistance to FV by the Dd molecule implies that the presence of one class I molecule of the major histocompatibility complex can interfere with either the presentation of viral epitopes by another class I molecule or the generation of T cells that recognize viral epitopes so presented.  相似文献   

8.
We have investigated the origin of the Pto disease resistance (R) gene that was previously identified in the wild tomato species Lycopersicon pimpinellifolium and isolated by map-based cloning. Pto encodes a serine-threonine protein kinase that specifically recognizes strains of Pseudomonas syringae pv. tomato (Pst) that express the avirulence gene avrPto. We examined an accession of the distantly related wild species Lycopersicon hirsutum var. glabratum that exhibits avrPto-specific resistance to Pst. The Pst resistance of L. hirsutum was introgressed into a susceptible Lycopersicon esculentum background to create the near-isogenic line 96T133-3. Resistance to Pst(avrPto) in 96T133-3 was inherited as a single dominant locus and cosegregated with a restriction fragment length polymorphism detected by the Pto gene. This observation suggested that a member of the Pto gene family confers Pst(avrPto) resistance in this L. hirsutum line. Here we report the cloning and characterization of four members of the Pto family from 96T133-3. One gene (LhirPto) is 97% identical to Pto and encodes a catalytically active protein kinase that elicits a hypersensitive response when coexpressed with avrPto in leaves of Nicotiana benthamiana. In common with the Pto kinase, the LhirPto protein physically interacts with AvrPto and downstream members of the Pto signaling pathway. Our studies indicate that R genes of the protein kinase class may not evolve rapidly in response to pathogen pressure and rather that their ability to recognize specific Avr proteins can be highly conserved.  相似文献   

9.
When rhinoceros species that are browsers in the wild are fed in captivity they become iron overloaded. Presumably, their iron-absorptive mechanisms have evolved to become highly efficient. In humans, mutations of the HFE gene cause increased iron absorption. To determine whether the HFE gene of rhinoceroses has undergone mutation as an adaptive mechanism to improve iron absorption from iron-poor diets, we have sequenced the entire coding region of the HFE genes of four species of rhinoceros. Two of these were browsing species and two were grazing species. Although the HFE gene has been well preserved across species, numerous nucleotide differences were found between rhinoceros and human or mouse, some of which changed deduced amino acids. Of these mutations, only one found in the black rhinoceros appears to be a viable candidate mutation that might adversely affect HFE function. This mutation, S88T, is in a highly conserved region that is involved in the interaction between transferrin receptor and HFE.  相似文献   

10.
Two inbred (isofemale) Aedes aegypti mosquito lines were derived that manifested a resistant or susceptible phenotype following ingestion of yellow fever virus; lack of virus movement from the midgut defined the resistant phenotype. Other flaviviruses, including dengue 1-4, Uganda S, and Zika, viruses behaved in a similar fashion in the two mosquito lines. Crosses between the two lines produced progeny that were of intermediate susceptibility, indicating codominance; F2 backcrosses to the parents yielded results consistent with a major controlling genetic locus and provide evidence of a second locus capable of modulating the phenotype of the major gene. The rapid selection necessary to fix the susceptible and refractory phenotypes support the hypothesis of a single major controlling locus. Viral movement across the midgut is likely to be governed by a single major gene and modifying minor genes or a group of closely linked genes. These inbred mosquito lines will be useful in discovering the molecular basis for flavivirus resistance in Ae. aegypti.  相似文献   

11.
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans. Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil-nucleotide binding site-Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system.  相似文献   

12.

Introduction

Only automated phenotypic methods are currently used in Colombian hospitals for identifying isolates of the Acinetobacter calcoaceticusA. baumannii complex (ACB). The phenotypical similarities in these species mean that they cannot be differentiated by manual or automated methods, thereby leading to their identification as A. baumannii, or ACB complex in clinical settings. Our objective was to identify to the species level 60 isolates, from four hospitals, evaluate their antibiotic susceptibility, and detect resistance-related genes.

Methods

16S–23S rRNA internal transcribed spacer (ITS) region and rpoB gene partial sequences were amplified. Resistance genes for cephalosporin, carbapenem and aminoglycoside were detected by PCR. Possible mutations in the quinolone resistance-determining region (QRDR) were evaluated. The association of ISAba-1 with blaOXA and blaADC genes was determined by PCR. Amplification products of ITS region, rpoB gene and some resistance genes were sequenced and compared using the BLAST tool.

Results

16S–23S rRNA ITS region and partial rpoB gene sequence analysis allowed 51isolates to be identified as A. baumannii, 8 as A. nosocomialis, and 1 isolate as A. pitti. A. baumannii isolates were highly resistant to all antibiotics tested, while the others were susceptible to ciprofloxacin and ampicillin/sulbactam. Quinolone resistance, found only in A. baumannii, was associated with mutations in the QRDR region of gyrA and parC genes.

Conclusion

This is the first investigation in Colombia that has identified ACB complex species using molecular methods, and determined differences in antibiotic resistance and resistance genes among the species. It is of the highest importance to identify isolates to the species level for future resistance and epidemiology studies in our region.  相似文献   

13.
It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.  相似文献   

14.
A mouse model has been established to investigate the genetic determinism of host susceptibility to West Nile (WN) virus, a member of the genus flavivirus and family Flaviviridae. Whereas WN virus causes encephalitis and death in most laboratory inbred mouse strains after peripheral inoculation, most strains derived from recently trapped wild mice are completely resistant. The phenotype of resistance/susceptibility is determined by a major locus, Wnv, mapping to chromosome 5 within the 0.4-cM-wide interval defined by markers D5Mit408 and D5Mit242. We constructed a high resolution composite/consensus map of the interval by merging the data from the mouse T31 Radiation Hybrid map and those from the homologous region of human chromosome 12q, and found the cluster of genes encoding 2'-5'-oligoadenylate synthetases (2'-5'-OAS) to be the most prominent candidate. This cluster encodes a multimember family of IFN-inducible proteins that is known to play an important role in the established endogenous antiviral pathway. Comparing the cDNA sequences of 2'-5'-OAS L1, L2, and L3 isoforms, between susceptible and resistant strains, we identified a STOP codon in exon 4 of the gene encoding the L1 isoform in susceptible strains that can lead to a truncated form with amputation of one domain, whereas all resistant mice tested so far have a normal copy of this gene. The observation that WN virus sensitivity of susceptible mice was completely correlated with the occurrence of a point mutation in 2'-5'-OAS L1 suggests that this isoform may play a critical role in WN pathogenesis.  相似文献   

15.
The oomycete Phytophthora infestans causes late blight, the potato disease that precipitated the Irish famines in 1846 and 1847. It represents a reemerging threat to potato production and is one of >70 species that are arguably the most devastating pathogens of dicotyledonous plants. Nevertheless, little is known about the molecular bases of pathogenicity in these algae-like organisms or of avirulence molecules that are perceived by host defenses. Disease resistance alleles, products of which recognize corresponding avirulence molecules in the pathogen, have been introgressed into the cultivated potato from a wild species, Solanum demissum, and R1 and R3a have been identified. We used association genetics to identify Avr3a and show that it encodes a protein that is recognized in the host cytoplasm, where it triggers R3a-dependent cell death. Avr3a resides in a region of the P. infestans genome that is colinear with the locus containing avirulence gene ATR1(NdWsB) in Hyaloperonospora parasitica, an oomycete pathogen of Arabidopsis. Remarkably, distances between conserved genes in these avirulence loci were often similar, despite intervening genomic variation. We suggest that Avr3a has undergone gene duplication and that an allele evading recognition by R3a arose under positive selection.  相似文献   

16.
Stem rust caused by Puccinia graminis f. sp. tritici was among the most devastating diseases of barley in the northern Great Plains of the U.S. and Canada before the deployment of the stem rust-resistance gene Rpg1 in 1942. Since then, Rpg1 has provided durable protection against stem rust losses in widely grown barley cultivars (cvs.). Extensive efforts to clone Rpg1 by synteny with rice provided excellent flanking markers but failed to yield the gene because it does not seem to exist in rice. Here we report the map-based cloning and characterization of Rpg1. A high-resolution genetic map constructed with 8,518 gametes and a 330-kb bacterial artificial chromosome contig physical map positioned the gene between two crossovers approximately 0.21 centimorgan and 110 kb apart. The region including Rpg1 was searched for potential candidate genes by sequencing low-copy probes. Two receptor kinase-like genes were identified. The candidate gene alleles were sequenced from resistant and susceptible cvs. Only one of the candidate genes showed a pattern of apparently functional gene structure in the resistant cvs. and defective gene structure in the susceptible cvs. identifying it as the Rpg1 gene. Rpg1 encodes a receptor kinase-like protein with two tandem protein kinase domains, a novel structure for a plant disease-resistance gene. Thus, it may represent a new class of plant resistance genes.  相似文献   

17.
SETTING: The use of pyrazinamide (PZA) is important for the treatment of Mycobacterium tuberculosis as it is bactericidal to semi-dormant mycobacteria that are not affected by other drugs. The incidence of resistance to PZA and other drugs used in the treatment of M. tuberculosis is increasing in South Africa. OBJECTIVE: To characterise the pncA gene of M. tuberculosis isolates from Gauteng, South Africa, and to develop a rapid diagnostic method. DESIGN: The pncA gene and the putative regulatory gene were characterised by sequence analysis in a total of six PZA susceptible and 15 resistant isolates. The association with classical PZA susceptibility testing and PZase activity was determined. RESULTS: All PZA-resistant isolates were PZase negative as well as resistant to at least one other anti-tuberculosis drugs. Mutations were identified throughout the length of the pncA gene in 10/15 PZA-resistant isolates. Five lacked PZase activity, but the wild type pncA sequence was present. In all six PZase-positive strains, a PZA-susceptible pattern was obtained on BACTEC and the wild type pncA sequence was present. CONCLUSION: Sequencing is an effective means to identify mutations in the pncA gene in M. tuberculosis and therefore resistance to PZA. The fact that some PZA-resistant M. tuberculosis isolates lack mutations in the pncA gene suggests that alternative mechanisms for drug resistance exist. In PZase negative strains with no genetic changes which are resistant to 100 microg/ml and susceptible to 300 microg/ml, 300 microg/ml may be a more reliable breakpoint.  相似文献   

18.
The stem-rust-susceptible barley cv. Golden Promise was transformed by Agrobacterium-mediated transformation of immature zygotic embryos with the Rpg1 genomic clone of cv. Morex containing a 520-bp 5' promoter region, 4,919-bp gene region, and 547-bp 3' nontranscribed sequence. Representatives of 42 transgenic barley lines obtained were characterized for their seedling infection response to pathotype Pgt-MCC of the stem rust fungus Puccinia graminis f. sp. tritici. Golden Promise was converted from a highly susceptible cultivar into a highly resistant one by transformation with the dominant Rpg1 gene. A single copy of the gene was sufficient to confer resistance against stem rust, and progenies from several transformants segregated in a 3:1 ratio for resistancesusceptibility as expected for Mendelian inheritance. These results unequivocally demonstrate that the DNA segment isolated by map-based cloning is the functional Rpg1 gene for stem rust, resistance. One of the remarkable aspects about the transformants is that they exhibit a higher level of resistance than the original sources of Rpg1 (cvs. Chevron and Peatland). In most cases, the Golden Promise transformants exhibited a highly resistant reaction where no visible sign of infection was evident. Hypersensitive necrotic "fleck" reactions were also observed, but less frequently. With both infection types, pathogen sporulation was prevented. Southern blot and RT-PCR analysis revealed that neither Rpg1 gene copy number nor expression levels could account for the increased resistance observed in Golden Promise transformants. Nevertheless, this research demonstrates that stem-rust-susceptible barley can be made resistant by transformation with the cloned Rpg1 gene.  相似文献   

19.
Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. By using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes an ATP-binding cassette transporter similar to human multidrug resistance protein 4 and orthologous to genes associated with recessive resistance to Cry1Ac in Heliothis virescens and two other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and seven resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted transmembrane structure of resistant alleles. We confirmed the role of this ATP-binding cassette transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one by using germline transformation. This study represents a direct demonstration of Bt resistance gene function in insects with the use of transgenesis.  相似文献   

20.
Tomato lines from diverse breeding programs were evaluated in the field for resistance to a natural infestation of the potato aphid, Macrosiphum euphorbiae, in Davis, CA. It was noted that all lines that carried the nematode-resistance gene, Mi, displayed aphid resistance. A greenhouse assay for aphid resistance was developed to investigate this relationship. Association of nematode and aphid resistances in near-isogenic lines suggested that these traits are tightly linked. Analysis of an F2 population segregating for nematode resistance indicated that aphid resistance segregated as a single major locus genetically linked to Mi. The name Meu1 is proposed for this locus. It is likely that Meu1 was introduced into tomato along with Mi from the wild species Lycopersicon peruvianum. The presence of aphid resistance in the line Motelle, which contains a very small region of introgressed DNA, and the lack of recombinants suggest that Meu1 is tightly linked to Mi or possibly is the same gene. The map-based strategy currently being used to clone Mi should be applicable to cloning Meu1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号