共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor 总被引:5,自引:0,他引:5
Parameswaran N Disa J Spielman WS Brooks DP Nambi P Aiyar N 《European journal of pharmacology》2000,389(2-3):125-130
Aminoguanidine is an inhibitor of the inducible form of nitric oxide synthase (iNOS). In the present study, the effect of aminoguanidine on concanavalin A-induced hepatitis was examined. Treatment of mice with concanavalin A (10 mg/kg, i.v.) induced interferon-gamma and iNOS mRNA expression in the liver before the elevation of plasma alanine aminotransferase activity. Immunohistochemical study showed the induction of iNOS protein expression in the area of necrosis. Aminoguanidine (1, 3 and 10 mg/kg, i.p.) inhibited the concanavalin A-induced elevation of alanine aminotransferase activity. Aminoguanidine (10 mg/kg, i.p.) did not inhibit concanavalin A-induced interleukin-2, interferon-gamma, tumor necrosis factor-alpha or iNOS mRNA expression in the liver. The plasma nitrite/nitrate level was elevated at 6 and 24 h after concanavalin A treatment. The elevation of nitrite/nitrate was inhibited by aminoguanidine (10 mg/kg, i.p.). From these results, we conclude that nitric oxide formed by iNOS may be involved in the development of concanavalin A-induced hepatitis. 相似文献
2.
3.
4.
5.
Miyachi H 《IDrugs : the investigational drugs journal》2004,7(8):746-754
The understanding of the functions of the nuclear receptor peroxisome proliferator-activated receptor a (PPARalpha) as a regulator of lipid and lipoprotein homeostasis, and the rapid development of parallel high-throughput screening assays to evaluate the activity toward other PPAR subtypes (PPARdelta and PPARgamma), have provided an opportunity to develop novel PPARalpha-selective, PPARalpha/gamma dual and PPAR pan agonists for the treatment of various metabolic diseases. This review focuses on the molecular pharmacology of PPARalpha, and summarizes recent literature and patent applications disclosing medicinal chemistry strategies to identify new PPARalpha-selective agonists. The species selectivity of some classes of PPARalpha-selective agonists in response to in vitro PPARalpha transactivation activity is also reported. 相似文献
6.
7.
BACKGROUND AND PURPOSE: There is good evidence that agents interacting with the endocannabinoid system in the body can also interact with the peroxisome proliferator-activated receptor gamma. The present study was designed to test whether the reverse is true, namely whether peroxisome proliferator-activated receptor gamma ligands have direct effects upon the activity of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase. EXPERIMENTAL APPROACH: Fatty acid amide hydrolase activity was measured in rat brain homogenates, C6 glioma and RBL2H3 basophilic leukaemia cells. Cellular uptake of anandamide was also assessed in these cells. KEY RESULTS: Peroxisome proliferator-activated receptor gamma activators inhibited the metabolism of the endocannabinoid anandamide in rat brain homogenates with an order of potency MCC-555 > indomethacin approximately ciglitazone approximately 15-deoxy-Delta(12,14)-prostaglandin J(2) approximately pioglitazone > rosiglitazone > troglitazone. The antagonists BADGE, GW9662 and T0070907 were poor inhibitors of anandamide hydrolysis. The inhibition by ciglitazone was competitive and increased as the pH of the assay buffer was decreased; the K(i) value at pH 6.0 was 17 microM. In intact C6 glioma cells assayed at pH 6.2, significant inhibition of anandamide hydrolysis was seen at 3 microM ciglitazone, whereas 100 microM was required to produce significant inhibition at pH 7.4. Ciglitazone also interacted with monoacylglycerol lipase as well as with cannabinoid CB(1) and CB(2) receptors. CONCLUSIONS AND IMPLICATIONS: Ciglitazone may be useful as a template for the design of novel dual action anti-inflammatory agents which are both inhibitors of fatty acid amide hydrolase and agonists at the peroxisome proliferator-activated receptor gamma. 相似文献
8.
As the incidence of Type 2 diabetes has reached near epidemic proportions, the quest for novel therapies to combat this disorder has intensified dramatically. In recent years, the peroxisome proliferator-activated receptor (PPAR) family has received tremendous attention as perhaps an ideal target class to address the multiple metabolic anomalies associated with the diabetic state. This review focuses on a variety of novel PPAR approaches currently being investigated for Type 2 diabetes or the metabolic syndrome, including the highly potent selective PPAR agonists, PPAR combination agonists and alternative PPAR ligands. 相似文献
9.
10.
Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases 总被引:3,自引:0,他引:3
A variety of G protein-coupled receptors (GPCRs) are phosphorylated by G protein-coupled receptor kinase 2 (GRK2). This event promotes the binding of regulatory proteins termed beta-arrestins to GPCRs, leading to uncoupling from G proteins and receptor internalization. Recent data indicate that GRK2 and beta-arrestins also play an important role in the stimulation of the extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) cascade by GPCRs. In this report, we have investigated the existence of functional interactions between GRK2 and MAPK. We show that activation of beta(2)-adrenergic receptors (beta(2)-AR) promotes the rapid association of GRK2 and MAPK in living cells, as assessed by coimmunoprecipitation experiments in COS-7 cells transfected with beta(2)-AR, GRK2, and an epitope-tagged MAPK. Coimmunoprecipitation of MAPK and GRK2 is blocked by inhibition of the MAPK cascade and is not observed upon activation of MAPK in the absence of beta(2)-AR stimulation, thus indicating that both an active MAPK and agonist occupancy of GPCR are required for the association to occur. Interestingly, we have found that purified ERK1/MAPK can directly phosphorylate the C-terminal domain of GRK2, and that the phosphorylation process is favored by the presence of Gbetagamma-subunits or an activated receptor. Furthermore, GRK2 phosphorylation by MAPK leads to a decreased activity of GRK2 toward GPCR. Taken together, our results suggest that stimulation of GPCRs promotes the rapid association of GRK2 and MAPK leading to modulation of GRK2 functionality, thus putting forward a new feedback mechanism for the regulation of GPCR signaling. 相似文献
11.
《Expert opinion on investigational drugs》2013,22(9):1489-1500
As the incidence of Type 2 diabetes has reached near epidemic proportions, the quest for novel therapies to combat this disorder has intensified dramatically. In recent years, the peroxisome proliferator-activated receptor (PPAR) family has received tremendous attention as perhaps an ideal target class to address the multiple metabolic anomalies associated with the diabetic state. This review focuses on a variety of novel PPAR approaches currently being investigated for Type 2 diabetes or the metabolic syndrome, including the highly potent selective PPAR agonists, PPAR combination agonists and alternative PPAR ligands. 相似文献
12.
Miyachi H 《Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan》2004,124(11):803-813
The molecular pharmacological discovery of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR alpha) as the master regulator of lipid and lipoprotein homeostasis, and the rapid development of a parallel screening approach to evaluate activity towards other PPAR subtypes (PPAR delta, and PPAR gamma) have provided an opportunity to develop novel PPAR alpha-selective, PPAR alpha/gamma dual, and PPAR pan agonists. This review focuses on the molecular pharmacology of PPAR alpha, and summarizes our current design, synthesis, and evaluation of subtype-selective PPAR alpha agonists. The species selectivity of several classes of PPAR alpha selective agonists in response to in vitro PPAR alpha transactivation activity is also reported. These studies should help us to understand the structure-activity relationships and the mode of interaction between ligands and PPAR alpha, and also help to create novel therapeutic choices for the treatment of metabolic disorders. 相似文献
13.
14.
15.
Drew BG Calkin AC 《Current opinion in investigational drugs (London, England : 2000)》2007,8(4):324-330
Kozva Co Ltd, under license from Roche Holding AG, is developing K-111, an orally available peroxisome proliferator-activated receptor a ligand and insulin-potentiating agent, for the potential treatment of type 2 diabetes. Phase II clinical trials of K-111 are underway. 相似文献
16.
17.
Yu ZP Matsuoka M Wispriyono B Iryo Y Igisu H 《Toxicology and applied pharmacology》2000,168(3):200-207
Effects of tributyltin chloride (TBT) and other organotin compounds on mitogen-activated protein kinases (MAPKs) were examined in CCRF-CEM human T lymphoblastoid cells. In response to the incubation with 0.25-2 microM TBT for 1 h, the levels of the phosphorylated form of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK increased in a dose-dependent manner. The phosphorylation was observed after 15 min and lasted for 4 h following exposure to 1 microM TBT, while the cell viability was not lowered significantly within 6 h. On the other hand, no clear changes were found in the total protein levels of ERK, JNK, and p38 MAPK. The in vitro activities of MAPKs also increased in response to TBT exposure. The potentials of MAPKs phosphorylation and of cellular damage were TBT > dibutyltin dichloride (DBT) > monobutyltin trichloride (MBT). When compared to other triorganotin compounds such as trimethyltin chloride (TMT), triphenyltin chloride (TPT), and triethyltin bromide (TET), TBT exposure induced the most marked phosphorylation of MAPKs. Chelation of intracellular Ca(2+) suppressed TBT-induced MAPKs phosphorylation almost completely, but removal of external Ca(2+) did not. The present results showed that tributyltin is a potent activator of ERK, JNK, and p38 MAPK pathways, and Ca(2+) mobilized from intracellular stores plays an important role for the phosphorylation of MAPKs in this human T cell line. 相似文献
18.
19.