首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TBX1 is thought to be a critical gene in the pathogenesis of del22q11/DiGeorge syndrome (DGS). Morphological abnormalities of the external ear and hearing impairment (conductive or sensorineural) affect the majority of patients. Here we show that homozygous mutation of the mouse homolog Tbx1 is associated with severe inner ear defects that prevent the formation of the cochlea and of the vestibulum. Consistent with phenotypic abnormalities, Tbx1 is expressed early in otocyst development in the otic epithelium and in the periotic mesenchyme. Tbx1 loss-of-function blocks inner ear development at early otocyst stage and after neurogenesis. Analysis of chimeras suggests that Tbx1 function is required in the otic epithelium cell autonomously, but abnormalities of the periotic mesenchyme indicate that the pathogenesis of the inner ear phenotype is complex. We propose a model where Tbx1 is required for expansion of a subpopulation of otic epithelial cells, which is required to form the vestibular and auditory organs. Our data suggest that Tbx1 deletion in del22q11 patients may cause not only external and middle ear defects but also sensorineural and vestibular phenotypes observed in these patients.  相似文献   

2.
3.
4.
Kim K  Lambert PF 《Virology》2002,293(1):10-14
Derivatives of bovine papillomavirus 1 (BPV1) with temperature-sensitive and dominant-negative mutation the E1 gene were used to determine the requirement for E1 in the maintenance of viral plasmid DNA replication. The abilities of these mutant BPV1 genomes to replicate as nuclear plasmids were monitored at permissive (32 degrees C) and nonpermissive (37 degrees C) temperatures in mouse C127 cells. We found that the temperature-sensitive E1 mutant BPV1 genomes replicate as nuclear plasmids as efficiently as does wild-type BPV1 in C127 cells after shifting to the nonpermissive temperature. These findings indicate that BPV1 does not require E1 for the maintenance of viral plasmids.  相似文献   

5.
BACKGROUND: The transmembrane receptor Notch1 is a critical regulator of arterial differentiation and blood vessel sprouting. Recent evidence shows that functional blockade of Notch1 and its ligand, Dll4, leads to postnatal lymphatic defects in mice. However, the precise role of the Notch signaling pathway in lymphatic vessel development has yet to be defined. Here we show the developmental role of Notch1 in lymphatic vascular morphogenesis by analyzing lymphatic endothelial cell (LEC)‐specific conditional Notch1 knockout mice crossed with an inducible Prox1CreERT2 driver. RESULTS: LEC‐specific Notch1 mutant embryos exhibited enlarged lymphatic vessels. The phenotype of lymphatic overgrowth accords with increased LEC sprouting from the lymph sacs and increased filopodia formation. Furthermore, cell death was significantly reduced in Notch1‐mutant LECs, whereas proliferation was increased. RNA‐seq analysis revealed that expression of cytokine/chemokine signaling molecules was upregulated in Notch1‐mutant LECs isolated from E15.5 dorsal skin, whereas VEGFR3, VEGFR2, VEGFC, and Gja4 (Connexin 37) were downregulated. CONCLUSIONS: The lymphatic phenotype of LEC‐specific conditional Notch1 mouse mutants indicates that Notch activity in LECs controls lymphatic sprouting and growth during development. These results provide evidence that similar to postnatal and pathological lymphatic vessel formation, the Notch signaling pathway plays a role in inhibiting developmental lymphangiogenesis. Developmental Dynamics 243:957–964, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
《Genetics in medicine》2021,23(10):1944-1951
PurposeCongenital hypothyroidism (CH) is a common congenital endocrine disorder in humans. CH-related diseases such as athyreosis, thyroid ectopy, and hypoplasia are primarily caused by dysgenic thyroid development. However, the underlying molecular mechanisms remain unknown.MethodsTo identify novel CH candidate genes, 192 CH patients were enrolled, and target sequencing of 21 known CH-related genes was performed. The remaining 98 CH patients carrying no known genes were subjected to exome sequencing (ES). The functions of the identified variants were confirmed using thyroid epithelial cells in vitro and in zebrafish model organisms in vivo.ResultsFour pathogenic GBP1 variations from three patients were identified. In zebrafish embryos, gbp1 knockdown caused defective thyroid primordium morphogenesis and hypothyroidism. The thyroid cells were stuck together and failed to dissociate from each other to form individual follicles in gbp1-deficient embryos. Furthermore, defects were restored with wild-type human GBP1 (hGBP1) messenger RNA (mRNA) except for mutated hGBP1 (p.H150Y, p.L187P) overexpression. GBP1 promoted β-catenin translocation into the cytosol and suppressed the formation of cellular adhesion complexes. Suppression of cell–cell adhesion restored the thyroid primordium growth defect observed in gbp1-deficient zebrafish embryos.ConclusionThis study provides further understanding regarding thyroid development and shows that defective cellular remodeling could cause congenital hypothyroidism.  相似文献   

7.
In this article we report the initial biochemical, genetic, and electron microscopic analysis of a previously uncharacterized, 8.9-kDa, predicted thiol-redox protein. The name A2.5L was assigned to the corresponding vaccinia virus gene, which is conserved in all sequenced poxviruses. Multiple alignment analysis and secondary structure prediction indicated that the A2.5L gene product is an all-alpha-helical protein with a conserved Cxx(x)C motif in the N-terminal alpha-helix. The DNA replication requirement and kinetics of A2.5L protein accumulation in virus-infected cells were typical of a late gene product, in agreement with the predicted promoter sequence. The A2.5L protein was a monomer under reducing conditions, but was mostly associated with the vaccinia virus E10R redox protein as a heterodimer under nonreducing conditions. The A2.5L protein was detected in virus particles at various stages of assembly, suggesting that it is an integral component of intracellular virions. An inducer-dependent A2.5L null mutant was constructed: in the absence of inducer, infectious virus formation was abolished and electron microscopy revealed an assembly block with an accumulation of crescent membranes and immature virions. This stage of assembly block was similar to that occurring when the E10R and G4L redox proteins were repressed, which is compatible with the involvement of E10R, A2.5L, and G4L in the same redox pathway.  相似文献   

8.
Of 11 genes involved in nonspecific X-linked mental retardation (MRX), three encode regulators or effectors of the Rho GTPases, suggesting an important role for Rho signaling in cognitive function. It remains unknown, however, how mutations in Rho-linked genes lead to MRX. Here we report that oligophrenin-1, a Rho-GTPase activating protein that is absent in a family affected with MRX, is required for dendritic spine morphogenesis. Using RNA interference and antisense RNA approaches, we show that knock-down of oligophrenin-1 levels in CA1 neurons in rat hippocampal slices significantly decreases spine length. This phenotype can be recapitulated using an activated form of RhoA and rescued by inhibiting Rho-kinase, indicating that reduced oligophrenin-1 levels affect spine length by increasing RhoA and Rho-kinase activities. We further demonstrate an interaction between oligophrenin-1 and the postsynaptic adaptor protein Homer. Our findings provide the first insight into how mutations in a Rho-linked MRX gene may compromise neuronal function.  相似文献   

9.
10.
Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis.   总被引:5,自引:0,他引:5  
T Ohkawa  L E Volkman 《Virology》1999,264(1):1-4
During nucleocapsid assembly, filamentous actin (F-actin) colocalizes with the major capsid protein of Autographa californica M nucleopolyhedrovirus (AcMNPV) within nuclei of infected lepidopteran host cells. Cytochalasin D (CD) disrupts actin filaments and prevents assembly of progeny AcMNPV, suggesting that nuclear F-actin is essential for nucleocapsid morphogenesis. Direct proof for this hypothesis was provided by the demonstration that two AcMNPV recombinants engineered to express either wild-type- or CD-resistant actin at equivalent rates were differentially sensitive to CD. The AcMNPV requirement for nuclear F-actin is unique among intracellular pathogens and may constitute a significant host range factor.  相似文献   

11.
The forkhead genes are involved in patterning, morphogenesis, cell fate determination, and proliferation. Several Fox genes (Foxi1, Foxg1) are expressed in the developing otocyst of both zebrafish and mammals. We show that Foxg1 is expressed in most cell types of the inner ear of the adult mouse and that Foxg1 mutants have both morphological and histological defects in the inner ear. These mice have a shortened cochlea with multiple rows of hair cells and supporting cells. Additionally, they demonstrate striking abnormalities in cochlear and vestibular innervation, including loss of all crista neurons and numerous fibers that overshoot the organ of Corti. Closer examination shows that some anterior crista fibers exist in late embryos. Tracing these fibers shows that they do not project to the brain but, instead, to the cochlea. Finally, these mice completely lack a horizontal crista, although a horizontal canal forms but comes off the anterior ampulla. Anterior and posterior cristae, ampullae, and canals are reduced to varying degrees, particularly in combination with Fgf10 heterozygosity. Compounding Fgf10 heterozygotic effects suggest an additive effect of Fgf10 on Foxg1, possibly mediated through bone morphogenetic protein regulation. We show that sensory epithelia formation and canal development are linked in the anterior and posterior canal systems. Much of the Foxg1 phenotype can be explained by the participation of the protein binding domain in the delta/notch/hes signaling pathway. Additional Foxg1 effects may be mediated by the forkhead DNA binding domain.  相似文献   

12.
Iroquois homeobox‐like 1 (irxl1) is a novel member of the TALE superfamily of homeobox genes that is most closely related to the Iroquois class. We have identified the zebrafish irxl1 gene and characterized its structure. The protein contains a homeodomain that shares 100% sequence identity with other vertebrate orthologs. During embryogenesis, irxl1 is expressed from 18 hours postfertilization onward and prominent expression is detected in the pharyngeal arches. Knockdown of irxl1 by morpholinos results in malformed brain and arch structures, which can be partially rescued by cRNA injection. The heads of the morphants become small and flat, and extensions along the anterior–posterior/dorso–ventral axes are reduced without affecting regional specification. Loss of irxl1 function also causes deficit in neural crest cells which consequently results in partial loss of craniofacial muscles and severe deformation of arch cartilages. These observations suggest that irxl1 may regulate factors involved in brain and pharyngeal arch development. Developmental Dynamics 239:639–650, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Background : In most vertebrates, the segmentation of the paraxial mesoderm involves the formation of metameric units called somites through a mesenchymal‐epithelial transition. However, this process is different in Xenopus laevis because it does not form an epithelial somite. Xenopus somitogenesis is characterized by a complex cells rearrangement that requires the coordinated regulation of cell shape, adhesion, and motility. The molecular mechanisms that control these cell behaviors underlying somite formation are little known. Although the Paraxis has been implicated in the epithelialization of somite in chick and mouse, its role in Xenopus somite morphogenesis has not been determined. Results : Using a morpholino and hormone‐inducible construction approaches, we showed that both gain and loss of function of paraxis affect somite elongation, rotation and alignment, causing a severe disorganization of somitic tissue. We further found that depletion or overexpression of paraxis in the somite led to the downregulation or upregulation, respectively, of cell adhesion expression markers. Finally, we demonstrated that paraxis is necessary for the proper expression of myotomal and sclerotomal differentiation markers. Conclusions : Our results demonstrate that paraxis regulates the cell rearrangements that take place during the somitogenesis of Xenopus by regulating cell adhesion. Furthermore, paraxis is also required for somite differentiation. Developmental Dynamics 244:973–987, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Metaphase chromosome protein 1 (MCP1) is a nuclear autoantigen that is associated with condensed chromosomes throughout mitosis. During interphase, this antigen shows a speckle distribution in the nucleus, excluding the nucleolus. Additionally, MCP1 binds tightly to the scaffold/matrix component of nuclei and isolated chromosomes. In order to determine the in-vivo localization of the antigen, we have expressed MCP1 fused to EGFP in tissue culture cells. The results demonstrate that MCP1 is located in the nucleus during interphase and during mitosis associates tightly to condensed chromosomes. Furthermore, microinjection of specific antibody confirms these results. We have used a specific monoclonal antibody (mAb 402) against MCP1 to assess the function of this antigen during cell cycle progression. HeLa and Ptk-2 cells that were microinjected into the nucleus and/or cytoplasm at G1/S and very early S phase were not able to progress and complete DNA replication. However, injection of mAb 402 at mid or late S phase does not prevent completion of DNA replication and subsequent progression into mitosis. Microinjection of mAb 402 in Ptk-2 cells synchronized in mitosis did not interfere with progression of mitosis and cells divided. Our results suggest that MCP1 is required at the G1/S transition and during early S phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Intestinal growth, morphogenesis, differentiation, and homeostasis are regulated by reciprocal interactions between the epithelium and the underlying mesenchymal stroma. The identification of BMPR1A mutations in patients with Juvenile Polyposis implicates Bmp signaling as an important mediator of these interactions. To test this hypothesis, we inhibited Bmp signaling in the mouse proximal intestine by transgenic misexpression of the BMP antagonist, noggin, using regulatory elements of the fatty acid binding protein (Fabp1) gene. This leads to abnormal villus morphogenesis, stromal and epithelial hyperplasia, and ectopic crypt formation. The resulting intestinal histopathology resembles that seen in human Juvenile Polyposis. Misexpression of noggin in the large intestine gives a similar abnormal phenotype in this region of the gut. Analysis of gene expression in the transgenic small intestine raises the possibility that Hedgehog and Pdgf signaling play a role in the development of the Juvenile Polyposis-like phenotype.  相似文献   

17.
Covalent modifications of histones integrate intracellular and extracellular cues to regulate the genome. H3 Lys 9 methylation (H3K9me) can direct heterochromatin formation and DNA methylation, while phosphorylation of H3 Ser 10 (H3S10p) drives gene activation and chromosome condensation. To examine the relationship between H3S10p, H3K9me, and DNA methylation in Neurospora crassa, we built and tested mutants of the putative H3S10 phosphatase, PP1. A PP1-impaired mutant showed increased H3S10p and selective reduction of methylation of H3K9 and DNA. Similarly, amino acid substitutions of H3S10 abolished methylation of H3K9 and DNA. Thus, H3S10 dephosphorylation by PP1 is required for DNA methylation of some loci.  相似文献   

18.
The novel PGMY L1 consensus primer pair is more sensitive than the MY09 and MY11 primer mix for detection and typing with PCR of human papillomavirus (HPV) DNA in genital specimens. We assessed the diagnostic yield of PGMY primers for the detection and typing of HPV by comparing the results obtained with PGMY09/PGMY11 and MY09/MY11/HMB01 on 299 genital samples. Amplicons generated with PGMY primers were typed with the line blot assay (PGMY-line blot), while HPV amplicons obtained with the degenerate primer pool MY09/MY11/HMB01 were detected with type-specific radiolabeled probes in a dot blot assay (standard consensus PCR test). Cervicovaginal lavage samples (N = 272) and cervical scrape samples (N = 27) were tested in parallel with both PCR tests. The PGMY-line blot test detected the presence of HPV DNA more frequently than the standard consensus PCR assay. The concordance for HPV typing between the two assays was 84.3% (214 of 255 samples), for a good kappa value of 0.69. Of the 177 samples containing HPV DNA by at least one method, 40 samples contained at least one HPV type detected only with PGMY-line blot, whereas positivity exclusively with the standard consensus PCR test was found for only 7 samples (P < 0.001). HPV types 45 and 52 were especially more frequently detected with PGMY than MY primers. However, most HPV types were better amplified with PGMY primers, including HPV-16. Samples with discordant results between the two PCR assays more frequently contained multiple HPV types. Studies using PGMY instead of MY primers have the potential to report higher detection rates of HPV infection not only for newer HPV types but also for well-known genital types.  相似文献   

19.
Recombinant human papillomavirus (HPV) virus-like particle (VLP) vaccines based on the L1 capsid protein have been shown to be efficient prophylactic vaccines, albeit type-specific. As a first step to investigate the feasibility of extending protection against non-vaccine types, HPV-16 L1 chimaeras were generated. The region downstream of L1 amino acid (aa) 413 was replaced with selected cross-neutralising epitopes (aa 108-120; 56-81 and 17-36) derived from the HPV-16 L2 protein, generating proteins designated SAF, L2.56 and L2.17, respectively. The chimaera L1BPV containing BPV-1 L2 peptide aa 1-88 was similarly constructed. The chimaeras were evaluated for expression in insect cells; their ability to form particles was studied by electron microscopy, and their immunogenicity was evaluated in mice. SAF, L2.56 and L2.17 proteins were expressed to high concentrations in insect cells and elicited HPV-16 pseudovirus-neutralising anti-L1 antibodies. L2.56 and L2.17 also elicited anti-L2 antibodies. L1BPV was a poor vaccine candidate due to low levels of expression with concomitant lack of immunogenicity. All chimaeras assembled into tertiary structures. The results indicate that chimaeric L1 vaccines incorporating cross-neutralising L2 peptides could be promising second-generation prophylactic HPV vaccine candidates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号