首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following refeeding, c-fos expression is induced in a particular set of brain regions that include the nucleus of the solitary tract (NTS), parabrachial nucleus (PB), central amygdala (CeA), paraventricular hypothalamic nucleus (PVH), supraoptic nucleus (SON) and the circumventricular organs. Within the PVH, the expression is particularly intense in the magnocellular division of the nucleus and it is as yet not clear how this activation occurs. The respective contribution of the vagus afferents and lamina terminalis, which conveys signals entering the brain through the forebrain circumventricular organs, has been investigated in rats subjected to a unilateral cervical vagotomy (UCV) or a unilateral lesion of the fibres running within the lamina terminalis (ULT) and projecting to the neuroendocrine hypothalamus. UCV significantly decreased postprandial c-fos expression in the NTS, PB, CeA and parvocellular division of the PVH. In contrast, ULT impaired postprandial activation of the magnocellular neurons in the PVH and SON. The present study also characterized the types of neurons activated in the PVH and SON during refeeding. In the magnocellular regions, arginine-vasopressin (AVP) neurons were activated upon refeeding whereas there was no apparent induction of Fos expression in oxytocin cells. In the parvocellular PVH, postprandial Fos was induced only in 30% of the corticotrophin-releasing factor (CRF) and AVP neurons. The results of the present study suggest that the postprandial activation of the brain requires the integrity of both the vagal- and lamina terminalis-associated pathways.  相似文献   

2.
The present study was designed to investigate Fos-positive neurons of the female rat brain at various reproductive states in order to analyze the metabolic map connected with pregnancy, parturition and lactation. The number of Fos-positive neurons in each brain nucleus was analyzed with a quantitative immunohistochemical method in virgin, pregnant, parturient, lactating and arrested lactating rats. In parturient rats, a significant number of Fos-positive neurons was observed as compared to virgin or pregnant females in the following brain regions; the bed nucleus of the stria terminalis (BST), lateral septal nucleus (LS), medial preoptic area (MPA), periventricular hypothalamic nucleus (Pe), parvocellular paraventricular hypothalamic nucleus (PaPVN), magnocellular paraventricular hypothalamic nucleus (MaPVN), supraoptic nucleus (SON), paraventricular thalamic nucleus (PV), anterior hypothalamic area (AHA), lateral hypothalamic area (LH), amygdaloid nucleus (AM), supramammillary nucleus (SuM), substantia nigra (SN), central grey (CG), microcellular tegmental nucleus (MiTg), subparafascicular thalamic nucleus (SPF), posterior hypothalamic area (PH), dorsal raphe nucleus (DR), locus coeruleus (LC), dorsal parabrachial nucleus (DPB), nucleus of solitary tract (Sol), and ventrolateral medulla (VLM). Significant differences were found in the number of Fos-positive neurons between parturient and lactating females, although localization of Fos-positive neurons in lactating females was quite similar to parturient ones. Between parturient and lactating rats: (1) In the MPA, PaPVN, AHA, arcuate hypothalamic nucleus (Arc), ventromedial hypothalamic nucleus (VMH), mesencephalic lateral tegmentum (MLT), and genual nucleus (Ge), the number of Fos-positive neurons of lactating females were significantly higher than those of parturient ones; (2) In the LS, Pe, PV, LH, AM, SuM, CG, MiTg, SPF, PH, DR, LC, and VLM, there was no significant differences in the number of Fos-positive neurons; (3) In the BST, MaPVN, SON, SN, DPB and Sol, the number of Fos-positive neurons of lactating rats were significantly lower than those of parturient ones. These different patterns of Fos expression among many brain regions may be owing to the functional differences in each region. Fos expression in lactating rats was apparently induced by suckling stimulation because the removal of their litters immediately after parturition completely eliminated expression of Fos protein in each nucleus. These results suggest that the localization of Fos-positive neurons in a number of neural populations throughout the brain may be revealing the neural circuits in response to parturition or lactation.  相似文献   

3.
To identify brain neurons that participate in the acute phase response, rat brains were examined immunocytochemically for Fos protein following the intravenous administration of bacterial endotoxin (lipopolysaccharide, LIPS). Two to three hours after the injection of LPS, 150 μg/kg body weight, to adult male Long-Evans rats, a consistent anatomic pattern of Fos immunostained cell nuclei is seen. In the brain stem, prominant Fos immunostaining is induced in tyrosine hydroxylase immunoreactive neurons of the caudal ventral-lateral medulla (the A1 cell group), in both tyrosine hydroxylase positive and negative neurons of nu. tractus solitarius, in the parabrachial nu., and in a few neurons of the locus ceruleus. In the hypothalamus, endotoxin induces Fos expression in magnocellular neurons of the paraventricular and supraoptic nuclei and intemuclear cell groups. A higher percentage of oxytocin-immunoreactive cells is double labeled for Fos nuclear immunostaining than vasopressin-immunoreactive cells. A minority of somatostatin immunoreactive periventricutar hypothalamic neurons are Fos positive. Other hypothalamic nuclei that contain endotoxin-induced Fos nuclear immunostaining include the parvocellular neurons of the paraventricular nu., the dorsomedial and arcuate nuclei, the lateral hypothalamus, the dorsal hypothalamic area (zona incerta), and the median nucleus of the preoptic area. LPS induces numerous Fos-positive neurons in regions known to respond to a variety of stressful stimuli; these regions include the preoptic area, bed nucleus of the stria terminalis, lateral septum, and the central and medial nuclei of the amygdala. Moreover, Fos nuclear immunostaining is seen in neurons of circumventricular organs: the organum vasculosum of the lamina terminalis, the subfomical organ, and the area postrema. The maximum intensity of Fos nuclear immunostaining occurs 2–3 h after endotoxin administration and declines thereafter. It is attenuated by pretreatment with indomethacin, 25 mg/kg body weight SC, or dexamethasone, l mg/kg III. These observations are consistent with the participation of a variety of brain neuronal systems in the acute phase response and elucidate the functional neuroanatomy of that response at the cellular level.  相似文献   

4.
Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta‐like ligand 4 (DLL4) in the hypothalamic‐neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double‐labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)‐ and oxytocin (OXT)‐containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT‐ but not AVP‐containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP‐ and OXT‐containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4‐immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity‐dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.  相似文献   

5.
The aim of the present study was to investigate the effect of indomethacin on the Fos expression in arginine vasopressin (AVP)-containing neurons in the hypothalamus and tyrosine hydroxylase (TH)-containing neurons in the locus coeruleus (LC) using dual-labeled immunohistochemistry. In the hypothalamus, intraperitoneal (i.p) injection of different doses [2.5 microg/100 g, 125 microg/100 g body weight (b.w.)] of lipopolysaccharide (LPS) induced a significant Fos expression in AVP neurons in the supraoptic nucleus (SON), the magnocellular division (mPVN) and the parvocellular division (pPVN) of the paraventricular nucleus (PVN). Pretreatment with the cyclooxygenase inhibitor indomethacin (0.8 mg/100 g b.w.) significantly blocked the Fos expression in these AVP neurons induced by a low dose of LPS (2.5 microg/100 g) but had no effect on the Fos expression induced by a high dose of LPS (125 microg/100 g). Similarly, in the brain stem, a large number of TH-positive neurons in the LC expressed Fos after administration of either dose of LPS. Indomethacin prevented the Fos expression induced only by a low dose of LPS, but not by a high dose of LPS. These results suggest that the activation of AVP neurons in PVN and SON and TH neurons in LC response to immune challenge might be mediated-at least partially-by prostaglandins.  相似文献   

6.
Peripheral administration of cholecystokinin (CCK)-8 selectively activates oxytocin (OXT)-secreting neurons in the supraoptic (SON) and the paraventricular nuclei (PVN) with the elevation of plasma OXT level in rats. We examined the effects of intravenous (iv) administration of CCK-8 on the neuronal activity of hypothalamic OXT-secreting neurons and plasma OXT level in Otsuka Long-Evans Tokushima Fatty (OLETF) rats that have a congenital defect in the expression of the CCK-A receptor gene. In situ hybridization histochemistry (ISH) for c-fos mRNA revealed that the expression of the c-fos gene was not induced in the SON, the PVN, the nucleus of the tractus solitarius (NTS) and the area postrema (AP) 30 min after iv administration of CCK-8 (20 and 40 microg/kg) in OLETF rats. In Long-Evans Tokushima Otsuka (LETO) rats (controls), c-fos mRNA was detected abundantly in those nuclei 30 min after iv administration of CCK-8 (20 microg/kg). Immunohistochemistry for c-fos protein (Fos) showed that the distributions of Fos-like immunoreactivity (LI) were identical to the results obtained from ISH. Dual immunostaining for OXT and Fos revealed that Fos-LI was mainly observed in OXT-secreting neurons in the SON and the PVN of LETO rats 90 min after iv administration of CCK-8 (20 microg/kg). Radioimmunoassay for OXT and arginine vasopressin (AVP) showed that iv administration of CCK-8 did not cause significant change in the plasma OXT and AVP levels in OLETF rats, while iv administration of CCK-8 caused a significant elevation of plasma OXT level without changing the plasma AVP level in LETO rats. These results suggest that peripheral administration of CCK-8 may selectively activate the hypothalamic OXT-secreting neurons and brainstem neurons through CCK-A receptor in rats.  相似文献   

7.
Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of the melatonin receptor MT1 in the human hypothalamus and pituitary by immunocytochemistry. MT1 immunoreactivity showed a widespread pattern in the hypothalamus. In addition to the area of the suprachiasmatic nucleus (SCN), a number of novel sites, including the paraventricular nucleus (PVN), periventricular nucleus, supraoptic nucleus (SON), sexually dimorphic nucleus, the diagonal band of Broca, the nucleus basalis of Meynert, infundibular nucleus, ventromedial and dorsomedial nucleus, tuberomamillary nucleus, mamillary body, and paraventricular thalamic nucleus were observed to have neuronal MT1 receptor expression. No staining was observed in the nucleus tuberalis lateralis and bed nucleus of the stria terminalis. The MT1 receptor was colocalized with some vasopressin (AVP) neurons in the SCN, colocalized with some parvocellular and magnocellular AVP and oxytocine (OXT) neurons in the PVN and SON, and colocalized with some parvocellular corticotropin-releasing hormone (CRH) neurons in the PVN. In the pituitary, strong MT1 expression was observed in the pars tuberalis, while a weak staining was found in the posterior and anterior pituitary. These findings provide a neurobiological basis for the participation of melatonin in the regulation of various hypothalamic and pituitary functions. The colocalization of MT1 and CRH suggests that melatonin might directly modulate the hypothalamus-pituitary-adrenal axis in the PVN, which may have implications for stress conditions such as depression.  相似文献   

8.
The hypothalamo-neurohypophysial system synthesizes and releases arginine vasopressin (AVP) and oxytocin (OXT) with physiological stimulation. In the present study, we investigated localization of a chondroitin sulfate proteoglycan (CSPG), phosphacan/RPTPbeta, in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of adult rats at both the light and electron microscopic levels. Immunohistochemical analyses demonstrated stronger phosphacan/RPTPbeta immunoreactivity within the SON and PVN compared with adjacent hypothalamic areas. Double labeling experiments showed phosphacan/RPTPbeta immunoreactivity constituting punctate networks to surround the somata and dendrites of AVP- and OXT-secreting magnocellular neurons. Electron microscopic examination further revealed strong phosphacan/RPTPbeta immunoreactivity at extracellular membrane surface of some axons, somata, and dendrites of the SON, but not of synaptic junctions. Interestingly, phosphacan/RPTPbeta immunoreactivity was also observed at extracellular surface membrane between astrocytic processes and neurons rather than between magnocellular neurons. The present results indicate the high expression of the CSPG, phosphacan/RPTPbeta at the extracellular space in the hypothalamic AVP- and OXT-secreting magnocellular neurons.  相似文献   

9.
Oxytocin (OXT)‐containing neurosecretory cells in the parvocellular divisions of the paraventricular nucleus (PVN), which project to the medulla and spinal cord, are involved in various physiological functions, such as sensory modulation and autonomic processes. In the present study, we examined OXT expression in the hypothalamo‐spinal pathway, as well as the hypothalamo‐neurohypophysial system, which includes the magnocellular neurosecretory cells in the PVN and the supraoptic nucleus (SON), after s.c. injection of saline or formalin into the hindpaws of transgenic rats that express the OXT and monomeric red fluorescent protein 1 (mRFP1) fusion gene. (i) The numbers of OXT‐mRFP1 neurones that expressed Fos‐like immunoreactivity (‐IR) and OXT‐mRFP1 intensity were increased significantly in the magnocellular/parvocellular PVN and SON after s.c. injection of formalin. (ii) OXT‐mRFP1 neurones in the anterior parvocellular PVN, which may project to the dorsal horn of the spinal cord, were activated by s.c. injection of formalin, as indicated by a significant increases of Fos‐IR and mRFP1 intensity intensity. (iii) Formalin injection caused a significant transient increase in plasma OXT. (iv) OXT, mRFP1 and corticotrophin‐releasing hormone mRNAs in the PVN were significantly increased after s.c. injection of formalin. (v) An intrathecal injection of OXT‐saporin induced hypersensitivity in conscious rats. Taken together, these results suggest that the hypothalamo‐neurohypophysial/‐spinal OXTergic pathways may be involved in acute nociceptive responses in rats.  相似文献   

10.
The effect of intracerebroventricular (ICV) injections of synthetic human or rat relaxin (25 or 250  ng) on the distribution of Fos detected immunohistochemically in the rat forebrain was investigated. Following ICV relaxin, many Fos-positive neurons were observed in the periphery of the subfornical organ, dorsal part of the organum vasculosum of the lamina terminalis, throughout the median preoptic nucleus, supraoptic nucleus and hypothalamic paraventricular nucleus. Such effects did not occur following ICV injection of artificial cerebrospinal fluid or the separated A and B chains of relaxin, nor following the intravenous injection of 250  ng of relaxin. Both vasopressin and oxytocin containing neurons identified immunohistochemically in the supraoptic and paraventricular nuclei exhibited Fos following ICV relaxin, and many neurons in the medial parvocellular part of the paraventricular nucleus contained Fos. The results indicate that centrally administered relaxin may increase neuronal activity in regions of the hypothalamus and lamina terminalis which are associated with cardiovascular and body fluid regulation and oxytocin secretion.  相似文献   

11.
Oxytocin (OXT) is a well‐known neurohypophysial hormone that is synthesised in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus. The projection of magnocellular neurosecretory cells, which synthesise OXT and arginine vasopressin in the PVN and SON, to the posterior pituitary plays an essential role in mammalian labour and lactation through its peripheral action. However, previous studies have shown that parvocellular OXTergic cells in the PVN, which project to the medulla and spinal cord, are involved in various physiological functions (e.g. sensory modulation and autonomic). In the present study, we examined OXT expression in the PVN, SON and spinal cord after chronic inflammation from adjuvant arthritis (AA). We used transgenic rats that express OXT and the monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualise both the magnocellular and parvocellular OXTergic pathways. OXT‐mRFP1 fluorescence intensity was significantly increased in the PVN, SON, dorsal horn of the spinal cord and posterior pituitary in AA rats. The levels of OXT‐mRFP1 mRNA were significantly increased in the PVN and SON of AA rats. These results suggested that OXT was up‐regulated in both hypothalamic magnocellular neurosecretory cells and parvocellular cells by chronic inflammation, and also that OXT in the PVN‐spinal pathway may be involved in sensory modulation. OXT‐mRFP1 transgenic rats are a very useful model for visualising the OXTergic pathways from vesicles in a single cell to terminals in in vitro preparations.  相似文献   

12.
Systemic lipopolysaccharide (LPS) administration has been shown to cause profound Fos expression in multiple regions of the brain. In the present experiment, Fos expression in the hypothalamic supraoptic nucleus (SON), posterior pituitary, and anterior pituitary was investigated using quantitative immunohistochemistry. In the SON and anterior pituitary, a large number of Fos-positive cells were observed by restraint stress, hyperosmotic administration (1.5, 3, and 9% NaCl), and LPS administration (5, 25, and 125 microg/kg). In the posterior pituitary, LPS administration caused a significant increase in the number of Fos-positive nuclei in a dose-dependent manner, whereas restraint stress and hyperosmotic stimulation (1.5 and 3% NaCl) did not increase the number of Fos-positive cells and 9% NaCl administration induced weak Fos immunoreactivity. Moreover, a dual-labeling study using a confocal microscope revealed that Fos-positive cells in the posterior pituitary were astrocytes using MAP2, an astrocytic marker in the posterior pituitary. Here, we demonstrated that the astrocytes of the posterior pituitary expressed Fos in response to LPS administration, which suggests that Fos expression participates in the activation of astrocytes during acute-phase responses with LPS administration.  相似文献   

13.
Induction of the c-fos protein product (Fos) was used to immunocytochemically identify oxytocin (OT) neurons that may be activated during copulatory interactions. Fos induction was quantified in sexually-experienced male rats after either (a) exposure to a testing arena recently vacated by an estrous female, (b) copulatory interactions such as mounting and intromission without ejaculation, or (c) mounting and intromissions culminating in ejaculation. In the parvocellular regions of the paraventricular nucleus of the hypothalamus (PVN), the number of neurons expressing Fos increased following either intromission (53%) or ejaculation (124%). Significant, but less striking, increases in the number of cells expressing Fos were noted in magnocellular regions of the PVN where intromission resulted in a 13% increase and ejaculation in a 49% increase in Fos. The number of perikarya immunoreactive for OT and AVP did not differ as a function of increasing sexual contacts. In control (novel arena) males, 33–73% of the Fos labeling occurred in OT cells. Sexual interactions did not enhance the number of double-labeled cells in most parvocellular regions. However, in lateral parvocellular regions located in the most caudal aspects of the PVN, 31% of the Fos-positive cells occurred in OT neurons in ejaculated males, while in control males none of the OT cells were double-labeled. This PVN subdivision is known to consist of neurons that project to the brain stem and spinal cord at lumbar levels which contain motor neurons that regulate penile reflexes. The present data suggest a possible neurochemical circuit which incorporates oxytocinergic neurons in the mediation of masculine sexual responses.  相似文献   

14.
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis releases glucocorticoids to maintain homeostasis, whereas prolonged exposure to elevated glucocorticoids has deleterious effects. Due to the potential benefits of limiting stress-induced glucocorticoid secretion, the present study uses drinking in dehydrated rats as a model to delineate mechanisms mobilized to rapidly inhibit HPA activity during stress. Using Fos expression as an indicator of neuronal activation, the effect of a single or repeated episode of dehydration-induced drinking on the activity of magnocellular and parvocellular neurons in the paraventricular nucleus (PVN) of the hypothalamus was examined. Adult male rats underwent a single episode or repeated (six) episodes of water restriction and were sacrificed before or after drinking water in the AM. Plasma osmolality, vasopressin (AVP), adrenocorticotropic hormone (ACTH) and corticosterone were elevated by water restriction and reduced after drinking in both models. Fos expression was elevated in AVP-positive magnocellular PVN neurons and AVP- and corticotropin releasing hormone (CRH)-positive parvocellular PVN neurons after water restriction. Fos expression was reduced in magnocellular AVP neurons after both models of restriction-induced drinking. In contrast, Fos expression did not change in AVP and CRH parvocellular neurons after a single episode of restriction-induced drinking, but was reduced after repeated episodes of restriction-induced drinking. These data indicate that drinking-induced decreases in glucocorticoids in dehydrated rats involve multiple factors including reduction in magnocellular release of vasopressin and reduction in parvocellular neuronal activity. The differential inhibition of PVN parvocellular neurons after repeated rehydration may reflect a conditioned response to repeated stress reduction.  相似文献   

15.
Adrenomedullin (ADM), encoded by the preproadrenomedullin (ppADM) gene, exerts multiple effects in a wide variety of peripheral and central tissues. Although ADM-like immunoreactivity has been shown to be widely distributed throughout the rat central nervous system (CNS), the detailed distribution of ppADM gene expression in the CNS and its modulation by physiological stimuli remain unknown. In our study, in situ hybridization was used to localize ppADM mRNA in the rat brain and to quantify its levels after exposure to different stressors including lipopolysaccharide (LPS; 100 microg/kg, iv), restraint stress (2 cycles of 1 hour restraint/1 hour rest), and 24 hours of dehydration. In addition, Fos immunoreactivity was used to identify the activation of neurons in response to LPS. Our results show that ppADM mRNA is widely distributed throughout the rat CNS, with especially high levels in autonomic centers including the hypothalamic paraventricular nucleus (PVN), hypothalamic supraoptic nucleus (SON), locus coeruleus, ventrolateral medulla, and intermediolateral cell column of the spinal cord. Furthermore, LPS inhibits ppADM gene expression in the parvocellular PVN (pPVN), magnocellular PVN (mPVN), SON, dorsal motor nucleus of the vagus, and area postrema among examined regions; restraint stress reduces ppADM mRNA levels in the pPVN, mPVN, SON, nucleus of the solitary tract, dorsal motor nucleus of the vagus, area postrema, and subfornical organ; 24 hours of water deprivation decreases ppADM gene expression only in the mPVN and SON. Taken together, our results suggest that ADM is involved in the regulation of the hypothalamo-neurohypophysial system, the hypothalamo-pituitary-adrenal axis, and central autonomic functions.  相似文献   

16.
17.
Acute administration of antipsychotics elicits regionally distinct patterns of Fos expression in the rat brain. Stimulation of oxytocin (OXY) and vasopressin (AVP) release in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei indicates that antipsychotics may play a role in autonomic, neuroendocrine, and behavioral processes. This study was focused to reveal the responsiveness of hypothalamic OXY‐ and AVP‐ producing magnocellular neurons, in terms of quantitative and topographical distinctions, to antipsychotics displaying different pharmacological profiles. Naive male Wistar rats were injected intraperitoneally with haloperidol (1 mg/kg), clozapine (30 mg/kg), olanzapine (30 mg/kg), risperidone (2mg/kg), and vehicle (5% chremophor) and were sacrificed 60 min later by a fixative. Fos, Fos/OXY, and Fos/AVP labelings were visualized by immunohistochemistry in the SON, 5 accessory (ACS) cell groups, and 4 distinct PVN subdivisions using a computerized light microscope. Most apparent activation of single Fos, Fos/OXY, and Fos/AVP cells was induced by clozapine and olanzapine; effects of risperidone and haloperidol were substantially lower; no colocalizations were revealed in naive or vehicle treated control rats. The data indicate the existence of a substantial diversity in the stimulatory effect of the selected antipsychotics on quantity of Fos, Fos/OXY, and Fos/AVP immunostainings with the preferential action of the atypicals clozapine over olanzapine and little effects of risperidone and haloperidol. Variabilities in Fos distribution in the PVN, SON, and ACS induced by antipsychotics may be helpful to understand more precisely the extent of their extra‐forebrain actions with possible presumption of their functional impact and side effect consequences. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Fos expression in the hypothalamus and its quantification in vasopressinergic (AVP), oxytocinergic (OXY) and tyrosine hydroxylase (TH) immunoreactive cells in the hypothalamic paraventricular (PVN), supraoptic (SON), suprachiasmatic (SCh), and arcuate (Arc) nuclei was performed in response to physiologically two different, i.e. osmotic (i.p. hypertonic saline, HS) and immobilization (IMO), stimuli in mouse using a dual Fos-neuropeptide immunohistochemistry. Both 60 min of HS and 120 min of IMO evoked Fos induction in many hypothalamic structures, whereas, HS evoked more extensive Fos labeling than IMO in the SON, ventromedial (VMN) and dorsomedial (NDM) hypothalamic nuclei and the retrochiasmatic area (RCh). Other hypothalamic structures including the anterior hypothalamic area (AHA), the latero-anterior hypothalamic nucleus (LA), the Arc, the perifornical nucleus (PeF), and the lateral hypothalamic area (LH) showed similar Fos incidence after both HS and IMO. However, after both stimuli explicitly most extensive Fos expression was observed in the PVN. In addition, in the PVN substantially more Fos-AVP (62-67% versus 10-15%) and Fos-OXY (38-45% versus 4-8%) perikarya were observed after HS than IMO, respectively. Incidence of TH-immunoreactive Fos labeled cells in the PVN was also more frequent after HS. In the SON, HS activated more than 50% of AVP and OXY neurons while IMO less than 4%. The number of TH activated neurons in Arc was also higher after HS (11%) than IMO (4%). Lowest number of colocalizations was revealed in the SCh where both HS and IMO activated around 2% of AVP neurons. The present data demonstrate that both HS and IMO are powerful stimuli for the majority of hypothalamic structures displaying considerable topographic similarity in Fos expression suggesting their multifunctional involvement. The quantity and phenotypic differences of activated hypothalamic neurons may speak out for functional dissimilarities in response to HS and IMO.  相似文献   

19.
The vasopressin (AVP) and oxytocin (OXT) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) display reversible structural plasticity of neurons and glial cells under different conditions of neuropeptide secretion. In the present study, we investigated the expression of two immunoglobulin superfamily (IgSF) proteins, Kilon and OBCAM, in the magnocellular neurons by using monoclonal antibodies. Anti-Kilon antibody reacted specifically with the bacterially expressed recombinant Kilon but not with the recombinant OBCAM, and similarly anti-OBCAM antibody specifically recognized the recombinant OBCAM. Western blotting analysis revealed the specific expression of Kilon and OBCAM in the SON homogenates. Although Kilon and OBCAM of the SON homogenates were present as the insoluble form, most Kilon was present in the Triton-insoluble fraction, and OBCAM was localized mainly in the Triton-soluble fraction. Immunocytochemistry revealed Kilon and OBCAM immunoreactivity in the magnocellular neurons of the SON and PVN of the rat hypothalamus compared with outside of the SON and PVN in the hypothalamus. The double-labeling study with confocal microscopy further demonstrated that Kilon immunoreactivity was observed mainly in the dendrites of AVP-secreting neurons and also occasionally OXT-secreting neurons. However, OBCAM immunoreactivity was exclusively seen in the dendrites of AVP-secreting magnocellular neurons. Chronic physiological stimulation by 2% NaCl had no effect on the expression levels of either IgLON protein in the SON. Our study thus demonstrated specific expression of Kilon and OBCAM in the hypothalamic magnocellular neurons, particularly in dendrites, suggesting that they confer on magnocellular neurons the ability to rearrange dendritic connectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号