首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Botulinum neurotoxin serotype A (BoNT/A), one of seven serotypes of botulinum neurotoxin, is taken up by neurons of the peripheral nervous system. Within the neurons it catalyzes cleavage of the synaptosomal-associated protein having a mass of 25 kDa, SNAP-25, thereby blocking neurotransmission. BoNT/A has been shown to interact with SV2, as well as gangliosides that are often found in lipid rafts. Lipid rafts are microdomains that can be found on the outer leaflet of the plasma membrane and are enriched in cholesterol and glycosphingolipids. To determine whether lipid rafts are needed for BoNT/A activity, those associated with the plasma membranes of murine N2a neuroblastoma cells were disrupted using either methyl-β-cyclodextrin or filipin. Disruption of cholesterol-containing lipid rafts by either reagent did not prevent the action of BoNT/A on N2a cells, in fact activity was enhanced. While our results indicate that disruption of lipid rafts enhances BoNT/A activity, disruption of clathrin-dependent endocytosis appeared to be inhibitory.  相似文献   

2.
To search for small molecular size inhibitors of botulinum neurotoxin A (BoNT/A) endopeptidase activity, we have screened the NCI library containing about 1 million structures against the substrate binding pocket of BoNT/A. Virtual screening (VS) was performed with the software Glide (Grid-based ligand docking energetics) and the findings were confirmed by AutoDock. Ten compounds were found that had favorable energetic and glide criteria and 5 of these compounds were selected for their ability to protect mice in vivo against a lethal dose of BoNT/A. Each compound was incubated at different molar excesses with a lethal dose of the toxin and then the mixture injected intravenously into mice. At 4690 M excess, compounds NSC94520 and NSC99639 protected all (100%) the mice from lethal toxicity. Compounds NSC48461 and NSC627733 gave 75% protection. Compound NSC348884 showed the least inhibition of toxicity allowing only a fraction (25%) of the mice to survive challenge with a lethal dose; and in the case of the mice that did not survive there was a considerable delay of mortality. At 2400 M excess compounds NSC94520 remained fully protective while and NSC99639 afforded 75% protection and at 1200 M excess each of these two compounds gave 50% protection. The two compounds gave no protection at 600 or less molar excess. When each compound was administered intravenously at 4690 M excess at different times (from 1 h to 6 h) after the intravenous injection of the active toxin, none of the compounds was able to protect the animals from toxicity. The findings show the value of VS in identifying potential inhibitors of the toxin for further development and improvement.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号