首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sanguinarine (SG) and its metabolite dihydrosanguinarine (DHSG) on Na+/K+-ATPase were investigated using fluorescence spectroscopy. The results showed that the enzyme in E1 conformation can bind both charged and neutral (pseudobase) forms of SG with a KD = 7.2 ± 2.0 μM or 11.7 ± 0.9 μM, while the enzyme in E2 conformation binds only the charged form of SG with a KD = 4.7 ± 1.1 μM. Fluorescence quenching experiments suggest that the binding site in E1 conformation is located on the surface of the enzyme for both forms but the binding site in E2 conformation is protected from the solvent. We found no evidence for interaction of Na+/K+-ATPase and DHSG. This implies that any in vivo effect of SG attributable to inhibition of Na+/K+-ATPase can be considered only prior to SG → DHSG transformation in the gastro-intestinal tract and/or blood. Hence, Na+/K+-ATPase inhibition will be effective in SG topical application but its duration will be very limited in SG oral or parenteral administration.  相似文献   

2.
Four catechins, epigallocatechin-3-gallate, epigallocatechin, epicatechin-3-gallate, and epicatechin, inhibited activity of the Na+,K+-ATPase. The two galloyl-type catechins were more potent inhibitors, with IC50 values of about 1 μM, than were the other two catechins. Inhibition by epigallocatechin-3-gallate was noncompetitive with respect to ATP. Epigallocatechin-3-gallate reduced the affinity of vanadate, shifted the equilibrium of E1P and E2P toward E1P, and reduced the rate of the E1P to E2P transition. Epigallocatechin-3-gallate potently inhibited membrane-embedded P-type ATPases (gastric H+,K+-ATPase and sarcoplasmic reticulum Ca2+-ATPase) as well as the Na+,K+-ATPase, whereas soluble ATPases (bacterial F1-ATPase and myosin ATPase) were weakly inhibited. Solubilization of the Na+,K+-ATPase with a nonionic detergent reduced sensitivity to epigallocatechin-3-gallate with an elevation of IC50 to 10 μM. These results suggest that epigallocatechin-3-gallate exerts its inhibitory effect through interaction with plasma membrane phospholipid.  相似文献   

3.
Choline (Ch) plays an important role in brain neurotransmission, while Ch-deprivation (CD) has been linked to various pathophysiological states. Prolonged ingestion of Ch-deficient diet (CDD) is known to produce CD causing a reduction of rat brain acetylcholine (ACh) levels, as well as memory and growth disorders. The aim of this study was to investigate the effect of a 2-month adult-onset CD on the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-ATPase in crucial brain regions of male rats. Adult rats were divided into two groups (control and CD). The CD group was fed with CDD for 2-months. At the end of the second month, rats were sacrificed by decapitation and the brain regions were rapidly removed. Enzyme activities were measured spectrophotometrically in the homogenated frontal cortex, hippocampus, hypothalamus, cerebellum, and pons. In CD rats, AChE activity was found statistically significantly increased in the hippocampus and the cerebellum (+28%, P < 0.001 and +46%, P < 0.001, respectively, as compared to control), while it was found unaltered in the other three regions (frontal cortex, hypothalamus and pons). (Na+,K+)-ATPase activity was found increased by CD in the frontal cortex (+30%, P < 0.001), decreased in both hippocampus and hypothalamus (−68%, P < 0.001 and −51%, P < 0.001, respectively), and unaltered in both cerebellum and pons. No statistically significant changes were observed in the activities of Mg2+-ATPase in the frontal cortex and the hypothalamus, while statistically significant increases were recorded in the hippocampus (+21%, P < 0.01), the cerebellum (+85%, P < 0.001) and the pons (+19%, P < 0.05), as compared to control levels. Our data suggest that adult-onset CD can have significant effects on the examined brain parameters in the examined crucial brain regions, as well as that CD is a metabolic disorder towards which different and brain region specific neurophysiological responses seem to occur. Following a 2-month adult-onset CD, the activity of AChE was found to be increased in the hippocampus and the cerebellum and unaltered in the other three regions (frontal cortex, hypothalamus and pons), while Na+,K+-ATPase activity was found to be increased in the frontal cortex, decreased in both hippocampus and hypothalamus, and unaltered in both cerebellum and pons. Moreover, Mg2+-ATPase activity was found to be unaltered in the frontal cortex and the hypothalamus, and increased in the hippocampus, the cerebellum and the pons. The observed differentially affected activities of AChE, (Na+,K+)-ATPase and Mg2+-ATPase (induced by CD) could result in modulations of cholinergic neurotransmission, neural excitability, metabolic energy production, Mg2+ homeostasis and protein synthesis (that might have a variety of neurophysiological consequences depending on the brain region in which they seem to occur).  相似文献   

4.
In the myocardium the inhibitory guanine nucleotide-binding regulatory proteins (Gi proteins) mediate negative chronotropic and negative inotropic effects by activation of K+ channels and inhibition of adenylyl cyclase. The concept of a uniform inhibitory action of Gi proteins on myocardial cellular activity has been questioned by the recent observations of adenosine-induced activation of the Na+/Ca2+ exchange and a carbachol-induced inhibition of the Na+/K+-ATPase activity in cardiac sarcolemmal membranes. The aim of the present study, therefore, was to reinvestigate the putative regulation of Na+/Ca2+ exchange and Na+/K+-ATPase activity in purified canine sarcolemmal membranes. These membranes were enriched in adenosine A1 (Maximum number of receptors, B max 0.033 pmol/mg) and muscarinic M2 (B max 2.9 pmol/mg) receptors and contained Gi2 and Gi3, two Gi protein isoforms, and Go, another pertussis toxin-sensitive G protein, as detected with specific antibodies. The adenosine A1-selective agonist, (–)-N 6-(2-phenylisopropyl)-adenosine, and the muscarinic agonist, carbachol, both inhibited isoprenaline-stimulated adenylyl cyclase activity by 25% and 35% respectively, and the stable GTP analogue 5-guanylylimidodiphosphate inhibited forskolin-stimulated adenylyl cyclase activity by 35% in these membranes. The characteristics of Na+/Ca2+ exchange and Na+/K+-ATPase activity as well as those of the ouabain-sensitive, K+-activated 4-nitrophenylphosphatase, an ATP-independent, partial reaction of the Na+/K+-ATPase, were in agreement with published data with regard to specific activity, time course of activity and substrate dependency. However, none of these activities were influenced by adenosine, (–)-N 6-(2-phenylisopropyl)-adenosine, carbachol, or stable GTP analogs, suggesting that Na+/Ca2+ exchange and Na+/K+-ATPase are not regulated by Gi proteins in canine cardiac sarcolemmal membranes.  相似文献   

5.
This study investigated the cadmium (Cd) intoxication on cognitive, motor and anxiety performance of rats subjected to long-term exposure to diet with Cd salt or with Cd from contaminated potato tubers. Potato plantlets were micropropagated in MS medium and transplanted to plastic trays containing sand. Tubers were collected, planted in sand boxes and cultivated with 0 or 10 μM Cd and, after were oven-dried, powder processed and used for diet. Rats were divided into six groups and fed different diets for 5 months: control, potato, potato + Cd, 1, 5 or 25 mg/kg CdCl2. Cd exposure increased Cd concentration in brain regions. There was a significant decrease in the step-down latency in Cd-intoxicated rats and, elevated plus maze task revealed an anxiolytic effect in rats fed potato diet per se, and an anxiogenic effect in rats fed 25 mg/kg Cd. The brain structures of rats exposed to Cd salt or Cd from tubers showed an increased AChE activity, but Na+,K+-ATPase decreased in cortex, hypothalamus, and cerebellum. Therefore, we suggest an association between the long-term diet of potato tuber and a clear anxiolytic effect. Moreover, we observed an impaired cognition and enhanced anxiety-like behavior displayed by Cd-intoxicated rats coupled with a marked increase of brain Cd concentration, and increase and decrease of AChE and Na+,K+-ATPase activities, respectively.  相似文献   

6.
The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)–UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na+/K+-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC50 (72 h) values, in M, were: 7.5 × 10−6/3.4 × 10−5, 8.7 × 10−5/6.6 × 10−5, and 3.0 × 10−5/4.6 × 10−5 for fibroblast, erythrocyte and lymphocyte AChE/Na+/K+-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC50 (20 min)-7.8 × 10−5M), while diazinon concentrations below 10 mM did not noticeably affect Na+/K+-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2 × 10−6 M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28–45%) and Na+/K+-ATPase (up to 35–40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.  相似文献   

7.
The effects of ouabain, an inhibitor of the plasmalemmal Na+/K+-ATPase activity, were examined in human isolated bronchus. Ouabain produced concentration-dependent contraction with –logEC50=7.16±0.11 and maximal effect of 67±4% of the response to acetylcholine (1 mM). Ouabain (10 M)-induced contraction was epithelium-independent and was not depressed by inhibitors of cyclooxygenase and lipoxygenase, antagonists of muscarinic, histamine H1-receptors and -adrenoceptors, or neuronal Na+ channel blockade. The inhibition of ouabain contraction in tissues bathed in K+-free medium, and the inhibition by ouabain of the K+-induced relaxation confirm that the contractile action of ouabain is mediated by inhibition of Na+/K+-ATPase. Furthermore, depolarization (16.4±0.9 mV) was observed in human isolated bronchus by intracellular microelectrode recording. Ouabain (10 M)-induced contractions were abolished by a Ca2+-free solution but not by blockers of L-type Ca2+ channels. In human cultured bronchial smooth muscle cells, ouabain (10 M) produced a sustained increase in [Ca2+]i (116±26 nM) abolished in Ca2+-free medium. Incubation with a Na+-free medium or amiloride (0.1 mM) markedly inhibited the spasmogenic effect of ouabain thus suggesting the role of Na+/Ca2+ exchange in ouabain contraction while selective inhibitors of Na+/H+-antiport, Na+/K+/Cl-antiport, or protein kinase C had no effect. Ouabain (10 M) failed to increase inositol phosphate accumulation in human bronchus. Ouabain (10 M) did not alter bronchial responsiveness to acetylcholine or histamine but inhibited the relaxant effects of isoprenaline, forskolin, levcromakalim, or sodium nitroprusside. These results indicate that ouabain acts directly to produce contraction of human airway smooth muscle that depends on extracellular Ca2+ entry unrelated to L-type channels and involving the Na+/Ca2+-antiporter.  相似文献   

8.

Aim:

To investigate the effect of acute insulin administration on the subcellular localization of Na+/K+-ATPase isoforms in cardiac muscle of healthy and streptozotocin-induced diabetic rats.

Methods:

Membrane fractions were isolated with subcellular fractionation and with cell surface biotinylation technique. Na+/K+-ATPase subunit isoforms were analysed with ouabain binding assay and Western blotting. Enzyme activity was measured using 3-O-methylfluorescein-phosphatase activity.

Results:

In control rat heart muscle α1 isoform of Na+/K+ ATPase resides mainly in the plasma membrane fraction, while α2 isoform in the intracellular membrane pool. Diabetes decreased the abundance of α1 isoform (25 %, P<0.05) in plasma membrane and α2 isoform (50%, P<0.01) in the intracellular membrane fraction. When plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of α2- but not α1-subunits was detected. α1-Subunit translocation was only detectable by cell surface biotinylation technique. After insulin administration protein level of α2 increased by 3.3-fold, α1 by 1.37-fold and β1 by 1.51-fold (P<0.02) in the plasma membrane of control, and less than 1.92-fold (P<0.02), 1.19-fold (not significant) and 1.34-fold (P<0.02) in diabetes. The insulin-induced translocation was wortmannin sensitive.

Conclusion:

This study demonstrate that insulin influences the plasma membrane localization of Na+/K+-ATPase isoforms in the heart. α2 isoform translocation is the most vulnerable to the reduced insulin response in diabetes. α1 isoform also translocates in response to insulin treatment in healthy rat. Insulin mediates Na+/K+-ATPase α1- and α2-subunit translocation to the cardiac muscle plasma membrane via a PI3-kinase-dependent mechanism.  相似文献   

9.
In the present study we investigated the effects of lipoic acid (LA) on δ-aminolevulinic dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain after seizures induction by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (10 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), or the combination of LA (10 mg/kg, i.p.) with pilocarpine (400 mg/kg, i.p.), 30 min before administration of LA (LA plus pilocarpine group). After the treatments all groups were observed for 1 h. The enzyme activities (δ-ALA-D and Na+, K+-ATPase) were measured using spectrophotometric methods, and the results were compared with that obtained from saline and pilocarpine-treated animals. Neuroprotective effects of LA against seizures were evaluated based on those enzyme activities. The pilocarpine group showed a reduction in δ-ALA-D and Na+, K+-ATPase activities after seizures. In turn, LA plus pilocarpine abolished the appearance of seizures and reversed the decreased in δ-ALA-D and Na+, K+-ATPase activities produced by seizures, when compared to the pilocarpine seizing group. The results from the present study demonstrate that preadministration of LA abolished seizure episodes induced by pilocarpine in rat, probably by increasing δ-ALA-D and Na+, K+-ATPase activities in rat brain during seizures.  相似文献   

10.

Aim:

To determine whether replacing Mg2+ in magnesium lithospermate B (Mg-LSB) isolated from danshen (Salvia miltiorrhiza) with other metal ions could affect its potency in inhibition of Na+/K+-ATPase activity.

Methods:

Eight metal ions (Na+, K+, Mg2+, Cr3+, Mn2+, Co2+, Ni2+, and Zn2+) were used to form complexes with LSB. The activity of Na+/K+-ATPase was determined by measuring the amount of inorganic phosphate (Pi) liberated from ATP. Human adrenergic neuroblastoma cell line SH-SY5Y was used to assess the intracellular Ca2+ level fluctuation and cell viability. The metal binding site on LSB and the binding mode of the metal-LSB complexes were detected by NMR and visible spectroscopy, respectively.

Results:

The potencies of LSB complexed with Cr3+, Mn2+, Co2+, or Ni2+ increased by approximately 5 times compared to the naturally occurring LSB and Mg-LSB. The IC50 values of Cr-LSB, Mn-LSB, Co-LSB, Ni-LSB, LSB, and Mg-LSB in inhibition of Na+/K+-ATPase activity were 23, 17, 26, 25, 101, and 128 μmol/L, respectively. After treatment of SH-SY5Y cells with the transition metal-LSB complexes (25 μmol/L), the intracellular Ca2+ level was substantially elevated, and the cells were viable for one day. The transition metals, as exemplified by Co2+, appeared to be coordinated by two carboxylate groups and one carbonyl group of LSB. Titration of LSB against Co2+ demonstrated that the Co-LSB complex was formed with a Co2+:LSB molar ratio of 1:2 or 1:1, when [Co2+] was less than half of the [LSB] or higher than the [LSB], respectively.

Conclusion:

LSB complexed with Cr3+, Mn2+, Co2+, or Ni2+ are stable, non-toxic and more potent in inhibition of Na+/K+-ATPase. The transition metal-LSB complexes have the potential to be superior substitutes for cardiac glycosides in the treatment of congestive heart failure.  相似文献   

11.
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 μM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current–voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 ± 0.8 μM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 μM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.  相似文献   

12.
Summary The sodium pump, (Na++K+)-ATPase, which is involved in the transport of cations and water movement by the colonic mucosa, may be decreased in various diarrhoeal states. In this study, we have measured 3H-ouabain binding and (Na++K+)-ATPase activity in human colonic biopsy homogenates and the influence of various inflammatory and antiinflammatory compounds on these parameters. 3H-ouabain binds to one site of high affinity (K D 1.9±0.2×10–9 mol/l) with a maximal binding capacity of 7.5±0.8×1014 binding sites/g protein. Both arachidonic and linoleic acid inhibited (Na++K+)-ATPase activity (IC50 arachidonic acid: 7.5×10–5 mol/l, linoleic acid: 6.5×10–5 mol/l) and Mg2+-ATPase activity (IC50 arachidonic acid: 9×10–5 mol/l, linoleic acid: 4×10–5 mol/l). Arachidonic acid inhibited 3H-ouabain binding, (IC50 3.2×10–5 mol/l). The following antiinflammatory compounds, at concentrations up to 1×10–3 mol/l, did not influence ATPase activity directly nor reverse the arachidonic acid-induced inhibition: indomethacin (cyclooxygenase inhibitor), nordihydroguaretic acid (lipoxygenase inhibitor), sulphasalazine and its metabolites: 5-aminosalicylic acid, N-acetylaminosalicylic acid and sulphapyridine.These results indicate that human colonic (Na++K+)-ATPase is inhibited by the prostanoid precursors, arachidonic and linoleic acid. From a therapeutic point of view (effect on colonic (Na++K+)-ATPase and perhaps diarrhoea), the suppression of the production of these prostanoid precursors by drugs may, therefore, be beneficial in the treatment of inflammatory bowel disease.Supported by DFG (Er65/4-4)  相似文献   

13.
Summary In bovine adrenal medullary cells, we reported that 22Na+ influx via nicotinic receptor-associated Na+ channels is involved in 45Ca2+ influx, a requisite for initiating the secretion of catecholamines (Wada et al. 1984, 1985b).In the present study, we investigated whether the inhibition of Na+-pump modulates carbachol-induced 22Na+ influx, 45Ca2+ influx and catecholamine secretion in cultured bovine adrenal medullary cells. We also measured 86Rb+ uptake by the cells to estimate the activity of Na+, K+-ATPase. (1) Ouabain and extracellular K+ deprivation remarkably potentiated carbachol-induced 22Na+ influx, 45Ca2+ influx and catecholamine secretion; this potentiation of carbachol-induced 45Ca2+ influx and catecholamine secretion was not observed in Na+ free medium. (2) Carbachol increased the uptake of 86Rb+; this increase was inhibited by hexamethonium and d-tubocurarine. In Na+ free medium, carbachol failed to increase 86Rb+ uptake. (3) Ouabain inhibited carbachol-induced 86Rb+ uptake in a concentration-dependent manner, as it increased the accumulation of cellular 22Na+. These results suggest that Na+ influx via nicotinic receptor-associated Na+ channels increases the activity of Na+, K+-ATPase and the inhibition of Na+, K+-ATPase augmented carbachol-induced Ca2+ influx and catecholamine secretion by potentiating cellular accumulation of Na+. It seems that nicotinic receptor-associated Na+ channels and Na+, K+-ATPase, both modulate the influx of Ca2+ and secretion of catecholamines by accomodating cellular concentration of Na+.  相似文献   

14.
Palytoxin (PLTX), produced by dinoflagellates from the genus Ostreopsis was first discovered, isolated, and purified from zoanthids belonging to the genus Palythoa. The detection of this toxin in contaminated shellfish is essential for human health preservation. A broad range of studies indicate that mammalian Na+,K+-ATPase is a high affinity cellular receptor for PLTX. The toxin converts the pump into an open channel that stimulates sodium influx and potassium efflux. In this work we develop a detection method for PLTX based on its binding to the Na+,K+-ATPase. The method was developed by using the phenomenon of surface plasmon resonance (SPR) to monitor biomolecular reactions. This technique does not require any labeling of components. The interaction of PLTX over immobilized Na+,K+-ATPase is quantified by injecting different concentrations of toxin in the biosensor and checking the binding rate constant (kobs). From the representation of kobs versus PLTX concentration, the kinetic equilibrium dissociation constant (KD) for the PLTX-Na+,K+-ATPase association can be calculated. The value of this constant is KD = 6.38 × 10−7 ± 6.67 × 10−8 M PLTX. In this way the PLTX-Na+,K+-ATPase association was used as a suitable method for determination of the toxin concentration in a sample. This method represents a new and useful approach to easily detect the presence of PLTX-like compounds in marine products using the mechanism of action of these toxins and in this way reduce the use of other more expensive and animal based methods.  相似文献   

15.
Summary Endogenous kidney dopamine (DA) causes natriuresis and diuresis, at least partly, via inhibition of proximal tubular Na+,K+-ATPase. The present study was done to identify the dopamine receptor subtype(s) involved in dopamine-induced inhibition of Na+,K+-ATPase activity. Suspensions of renal proximal tubules from Sprague-Dawley rats were incubated with dopamine, the DA-1 receptor agonist fenoldopam or the DA-2 receptor agonist SK&F 89124 in the presence or absence of either the DA-1 receptor antagonist SCH 23390 or the DA-2 receptor antagonist domperidone. Dopamine and fenoldopam (10–5 to 10–8 mol/1) produced a concentration-dependent inhibition of Na+,K+-ATPase activity. However, SK&F 89124 failed to produce any significant effect over the same concentration range. Incubation with fenoldopam (10–5 to 10–8 mol/1) in the presence of SK&F 89124 (10–6 mol/l) inhibited Na+,K+-ATPase activity to a degree similar to that with fenoldopam alone. Furthermore, DA-induced inhibition of Na+,K+-ATPase activity was attenuated by SCH 23390, but not by domperidone. Since -adrenoceptor activation is reported to stimulate Na+,K+-ATPase activity and, at higher concentrations, dopamine also acts as an a-adrenoceptor agonist, the potential opposing effect from -adrenoceptor activation on DA-induced inhibition of Na+,K+-ATPase activity was investigated by using the -adrenoceptor blocker phentolamine. We found that, in the lower concentration range (10–5 to 10–7 mol/1), dopamine-induced inhibition of Na+,K+-ATPase activity in the presence of phentolamine was similar in magnitude to that observed with dopamine alone. However, at the highest concentration used (10–4 mol/1), dopamine produced a significantly larger degree of inhibition of Na+,K+-ATPase activity in the presence of phentolamine. These results indicate that the DA-1 dopamine receptor subtype, but not the DA-2 receptor subtype, is involved in dopamine-mediated inhibition of Na+,K+-ATPase. At higher concentrations of dopamine, the DA-1 receptor-mediated inhibitory effect on Na+,K+-ATPase activity may be partly opposed by a simultaneous -adrenoceptor-mediated stimulation of the activity of this enzyme.  相似文献   

16.

Aim:

To examine if magnesium lithospermate B (MLB), a potent inhibitor of Na+/K+-ATPase, leads to the elevation of intracellular Ca2+ level as observed in cells treated with cardiac glycosides.

Methods:

Viability of SH-SY5Y neuroblastoma cells treated with various concentrations of ouabain or MLB was measured. Intracellular Ca2+ levels were visualized using Fluo4-AM (fluorescent dye) when cells were treated with ouabain or MLB in the presence or absence of KB-R7943 (Na+/Ca2+ exchanger inhibitor) and 2-APB (IP3 receptor antagonist). Molecular modeling was conducted for the docking of ouabain or MLB to Na+/K+-ATPase. Changes of cell body and dendrite morphology were monitored under a microscope.

Results:

severe toxicity was observed in cells treated with ouabain of concentration higher than 1 μmol/L for 24 h while no apparent toxicity was observed in those treated with MLB. Intracellular Ca2+ levels were substantially elevated by MLB (1 μmol/L) and ouabain (1 μmol/L) in similar patterns, and significantly reduced in the presence of KB-R7943 (10 μmol/L) or 2-APB (100 μmol/L). Equivalent interaction with the binding cavity of Na+/K+-ATPase was simulated for ouabain and MLB by forming five hydrogen bonds, respectively. Treatment of ouabain (1 μmol/L), but not MLB (1 μmol/L), induced dendritic shrink of SH-SY5Y cells.

Conclusion:

Comparable to ouabain, MLB leads to the elevation of intracellular Ca2+ level presumably via the same mechanism by inhibiting Na+/K+-ATPase. The elevated Ca2+ levels seem to be supplied by Ca2+ influx through the reversed mode of the Na+/Ca2+ exchanger and intracellular release from endoplasmic reticulum.  相似文献   

17.
Summary The relationship between Na+, K+-ATPase inhibition by monovalent cations and their inotropic effect was studied in guinea pig hearts. The activity of partially purified cardiac enzyme was assayed in the presence of 5.8 mM KCl and either 20 or 150 mM NaCl. Rb+ and Tl+ inhibited Na+, K+-ATPase activity, the magnitude of the inhibition by these cations being greater in the assay media containing lower Na+ concentrations. Tl+ produced a dose-dependent inhibition of Na+, K+-ATPase activity in the presence of 20 mM Na+ and 75 mM K+, a cationic condition similar to that of intracellular fluid. Other monovalent cations such as K+, Cs+, NH4 +, Na+ or Li+ produced essentially no effect on the Na+, K+-ATPase activity or slightly stimulated it. In left atrial strips stimulated with field electrodes and bathed in Krebs-Henseleit solution (5.8 mM K+ and 145 mM Na+), addition of Cs+ failed to alter the isometric contractile force significantly. NH4 + and K+ caused a transient positive inotropic effect which was partially blocked by propranolol. The positive inotropic response to K+ was followed by a negative inotropic response. Rb+ produced a sustained, dose-dependent inotropic response reaching a plateau at 1–2 min, whereas Tl+ produced a dose-dependent positive inotropic effect which developed slowly over a 30-min period. The positive inotropic effects produced by Rb+ and Tl+ were insensitive to propranolol pretreatment. Concentrations of Tl+ and cardiac glycosides which produce similar inotropic effects appear to cause the same degree of Na+-pump inhibition. The onset of the positive inotropic response to Rb+ or Tl+ was not dependent on the number of contractions which is in contrast to the cardiac glycoside-induced inotropic response. Substitution of 20 mM LiCl for an equimolar amount of NaCl in Krebs-Henseleit solution produced a significantly greater inotropic response than that observed when sucrose was substituted for NaCl. It appears that, among monovalent cations, only sodium pump inhibitors produce a sustained positive inotropic response.  相似文献   

18.
Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K+ channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K+ channels and Na+/K+-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O2 production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K+-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K+-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K+ channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress.  相似文献   

19.
This study was designed to determine whether K+ channels play a role in nitric oxide (NO)-dependent acetylcholine relaxation in porcine internal mammary artery (IMA). IMA segments were isolated and mounted in organ baths to record isometric tension. Acetylcholine-elicited vasodilation was abolished by muscarinic receptor blockade with atropine (10-6 M). Incubation with indomethacin (3 × 106 M), superoxide dismutase (150 U/ml) and bosentan (105 M) did not modify the acetylcholine response ruling out the participation of cyclooxygenase-derivates, reactive oxygen species or endothelin. The relaxation response to acetylcholine was strongly diminished by NO synthase- or soluble guanylyl cyclase-inhibition using l-NOArg (104 M) or ODQ (3 × 106 M), respectively. The vasodilation induced by acetylcholine and a NO donor (NaNO2) was reduced when rings were contracted with an enriched K+ solution (30 mM), by voltage-dependent K+ (Kv) channel blockade with 4-amynopiridine (4-AP; 104 M), by Ca2+-activated K+ (KCa) channel blockade with tetraethylammonium (TEA; 103 M), and by apamin (5 × 107 M) plus charybdotoxin (ChTx; 107 M) but not when these were added alone. In contrast, large conductance KCa (BKCa), ATP-sensitive K+ (KATP) and inwardly rectifying K+ (Kir) channel blockade with iberiotoxin (IbTx; 107 M), glibenclamide (106 M) and BaCl2 (3 × 105 M), respectively, did not alter the concentration-response curves to acetylcholine and NaNO2. Na+−K+ ATPase pump inhibition with ouabain (105 M) practically abolished acetylcholine and NaNO2 relaxations. Our findings suggest that acetylcholine-induced relaxation is largely mediated through the NO-cGMP pathway, involving apamin plus ChTx-sensitive K+ and Kv channels, and Na+−K+-ATPase pump activation.  相似文献   

20.
The effects of Pacific ciguatoxin-4B (P-CTX-4B, also named gambiertoxin), extracted from toxic Gambierdiscus dinoflagellates, were assessed on nodal K+ and Na+ currents of frog myelinated axons, using a conventional voltage-clamp technique. P-CTX-4B decreased, within a few minutes, both K+ and Na+ currents in a dose-dependent manner, without inducing any marked change in current kinetics. The toxin was more effective in blocking K+ than Na+ channels. P-CTX-4B shifted the voltage-dependence of Na+ conductance by about 14 mV towards more negative membrane potentials. This effect was reversed by increasing Ca2+ in the external solution. A negative shift of about 16 mV in the steady-state Na+ inactivation-voltage curve was also observed in the presence of the toxin. Unmodified and P-CTX-4B-modified Na+ currents were similarly affected by the local anaesthetic lidocaine. The decrease of the two currents by lidocaine was dependent on both the concentration and the membrane potential during pre-pulses. In conclusion, P-CTX-4B appears about four times more effective than P-CTX-1B to affect K+ channels, whereas it is about 50 times less efficient to affect Na+ channels of axonal membranes. These actions may be related to subtle differences between the two chemical structures of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号