首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A serine proteinase-like protein was isolated from the venom of Chinese red scorpion (Buthus martensii Karsch) by combination of gel filtration, ion-exchange and reveres-phase chromatography and named BMK-CBP. The apparent molecular weight of BMK-CBP was identified as 33kDa by SDS-PAGE under non-reducing condition. The sequence of N-terminal 40 amino acids was obtained by Edman degradation. The sequence shows highest similarity to proteinase from insect source. When tested with commonly used substrates of proteinase, no significant hydrolytic activity was observed for BMK-CBP. The purified BMK-CBP was found to bind to the cancer cell line MCF-7 and the cell binding ability was dose-dependent.  相似文献   

2.
3.
BmKK2 (α-KTx 14.2) is one of the novel short-chain peptides found in molecular cloning of a venom gland cDNA library from Asian scorpion Buthus martensi Karsch. Based upon its amino acid sequence, the peptide was proposed to adopt a classical α/β-scaffold for α-KTxs. In the present study, we purified BmKK2 from the venom of B. martensi Karsch, and investigated its action on voltage-dependent K+ currents in dissociated hippocampal neurons from neonatal rats. BmKK2 (10–100 μM) selectively inhibited the delayed rectifier K+ current, but did not affect the fast transient K+ current. The inhibition of BmKK2 on the delayed rectifier K+ current was reversible and voltage-independent. The peptide did not affect the steady-state activation of the current, but caused a depolarizing shift (about 9 mV) of its steady-state inactivation curve. The results demonstrate that BmKK2 is a novel K+ channel-blocking scorpion peptide.  相似文献   

4.
Scorpion venom glands produce a large variety of bioactive peptides. This communication reports the identification of venom components obtained by sequencing clones isolated from a cDNA library prepared with venomous glands of the Brazilian scorpion Opisthacanthus cayaporum (Ischnuridae). Two main types of components were identified: peptides with toxin-like sequences and proteins involved in cellular processes. Using the expressed sequence tag (EST) strategy 118 clones were identified, from which 61 code for unique sequences (17 contigs and 44 singlets) with an average length of 531 base-pairs (bp). These results were compared with those previously obtained by the proteomic analysis of the same venom, showing a considerable degree of similarity in terms of the molecular masses expected and DNA sequences found. About 36% of the ESTs correspond to toxin-like peptides and proteins with identifiable open reading frames (ORFs). The cDNA sequencing results also show the presence of sequences whose putative products correspond to a scorpine-like component; three short antimicrobial peptides; three K+-channel blockers; and an additional peptide containing 78 amino acid residues, whose sequence resembles peptide La1 from another Ischnuridae scorpion Liocheles australiasiae, thus far with unknown function.  相似文献   

5.
This communication describes the first general biochemical, molecular and functional characterization of the venom from the Cuban blue scorpion Rhopalurus junceus, which is often used as a natural product for anti-cancer therapy in Cuba. The soluble venom of this arachnid is not toxic to mice, injected intraperitoneally at doses up to 200 μg/20 g body weight, but it is deadly to insects at doses of 10 μg per animal. The venom causes typical alpha and beta-effects on Na+ channels, when assayed using patch-clamp techniques in neuroblastoma cells in vitro. It also affects K+ currents conducted by ERG (ether-a-go-go related gene) channels. The soluble venom was shown to display phospholipase, hyaluronidase and anti-microbial activities. High performance liquid chromatography of the soluble venom can separate at least 50 components, among which are peptides lethal to crickets. Four such peptides were isolated to homogeneity and their molecular masses and N-terminal amino acid sequence were determined. The major component (RjAa12f) was fully sequenced by Edman degradation. It contains 64 amino acid residues and four disulfide bridges, similar to other known scorpion toxins. A cDNA library prepared from the venomous glands of one scorpion allowed cloning 18 genes that code for peptides of the venom, including RjA12f and eleven other closely related genes. Sequence analyses and phylogenetic reconstruction of the amino acid sequences deduced from the cloned genes showed that this scorpion contains sodium channel like toxin sequences clearly segregated into two monophyletic clusters. Considering the complex set of effects on Na+ currents verified here, this venom certainly warrant further investigation.  相似文献   

6.
Scorpion venoms contain a variety of peptides toxic to mammals, insects and crustaceans. Most of the scorpion toxins have been isolated from the venoms of scorpions in the family Buthidae, but little interest has been paid to non-Buthidae scorpions. In this study, we isolated a short-chain insecticidal toxin (LaIT1) from the venom of the scorpion Liocheles australasiae belonging to the Hemiscorpiidae family. This toxin showed insect toxicity against crickets at a dose of 1.0 microg/insect, but no toxicity was observed against mice even after injection of 1.0 microg of LaIT1 via the intracerebroventricular route, suggesting that the effect of the toxin is insect-selective. Edman sequencing and mass spectrometric analysis revealed that the toxin is composed of 36 amino acid residues and cross-linked by only two disulfide bridges. The pattern of the disulfide bridges was assigned by LC/MS analysis after enzymatic digestion. LaIT1 shows no sequence homology to any other known toxins, suggesting that this toxin represents a novel structural motif class.  相似文献   

7.
Multidrug resistant bacterial infections are one of the most important health problems in recent years. Resistance to conventional antibiotics limits the therapeutic options causing increase rate in morbid-mortality in hospitals. Therefore, new antibacterial agents with new bacterial targets have been searched and found in many different sources, including scorpion venom and scorpion hemolymph. Here, we report a new anti-microbial peptide named Vejovine. This peptide was isolated from the venom of the Mexican scorpion Vaejovis mexicanus by two steps of reversed phase high performance liquid chromatography (RP-HPLC). It is composed of 47 amino acid residues with no cysteine residues in its sequence, with a molecular weight of 4873 Da. The chemical synthesis of Vejovine was performed by the solid phase method of Merrifield, using fluoren-9-ylmethoxycarbonyl (Fmoc)-amino acids. Both the native and synthetic peptides were shown to have essentially the same activity. Vejovine inhibits growth of clinical isolates of Gram-negative multidrug resistant (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Acinetobacter baumanii) causing nosocomial infections with a minimum inhibitory concentration (MIC) of 4.4 μM up to 50 μM. This peptide has also hemolytic activity against human erythrocytes with a HC50 value of 100 μM. A cDNA library of the venomous gland of this scorpion provided material for cloning the gene encoding Vejovine. This peptide is a new type of antibiotic, showing less than 50% similarity to other known scorpion peptides. Vejovine is a candidate to be used as a leading compound for future development of an effective peptide against multidrug resistant bacteria.  相似文献   

8.
A novel cDNA sequence encoding a new type of scorpion venom peptide (BmKAPi) was first isolated from the venom gland of Buthus martensiiKarsch by cDNA library screening combined with 5′-race. The encoded precursor of BmKAPi consisted of 89 amino acid residues including a signal peptide of 24 residues, a putative mature peptide of 64 residues (BmKAPi) and an extra basic residue at the C-terminus which might be removed in the post-translational processing. BmKAPi is stabilized by five disulfide bridges, whereas all other disulfide-bridged scorpion toxins described are cross-linked by three or four disulfide bridges. It suggested the three-dimensinal scaffold of BmKAPi might be different from other scorpion toxins. The amino acid sequence of BmKAPi showed no homology with other scorpion venom peptides, but shared a little similarity with some anticoagulant peptides and proteinase inhibitors isolated from hookworm, honeybee or European frog, respectively. RT-PCR analysis showed that BmKAPi mRNA could be induced by venom extraction suggesting BmKAPi might be a component of scorpion venom. These results suggest that BmKAPi is a new type of scorpion venom peptide different from other described scorpion toxins in structural and functional aspects.  相似文献   

9.
This communication reports the identification and characterization of two new toxins from the venom of the scorpion Centruroides suffusus suffusus, named: CssVIII and CssIX, according to the original nomenclature of toxins previously described for this scorpion. The isolation was obtained by means of two chromatographic steps, and a cDNA library was used to fully identify their precursors. CssVIII and CssIX contain signal peptides of 19 and 17 amino acid residues, and mature peptides of 66 and 65 residues, respectively. Intracranial injections into mice of both purified toxins showed toxicity results similar to those found for toxins CssII and CssIV. Additionally, they compete with the parent toxin CssIV, in binding and displacement experiments, conducted with brain synaptosomes showing nanomolar affinities. These results strongly support the conclusion that they are new β-neurotoxins and certainly would be of the interest of researchers in the field of venomics for studying sodium channels.  相似文献   

10.
Scorpion venom is a rich source of bioactive peptides. From the venom of Chinese scorpion Buthus martensi Karsch (BmK), a novel short chain peptide BmKX of 31-amino acid residues was purified, and its amino acid sequence and gene structure were determined. The gene of BmKX was composed of two exons interrupted by an 86-bp intron at the codon-7 upstream of the mature peptide. Although its gene structure is similar to those of other known scorpion toxins, its amino acid sequence, especially the cysteine framework, is different from those of all other known subfamilies of short-chain scorpion toxins. The solution structure of BmKX, determined with two-dimensional NMR spectroscopy, shows that BmKX also forms a typical cysteine-stabilized alpha/beta scaffold adopted by most short-chain scorpion toxins, consisting of a short 3(10)-helix and a two-stranded antiparallel beta-sheet, and the short N-terminal segment forms a pseudo-strand of the beta-sheet. However, the orientation between the helix and the beta-sheet is significantly different from the others, which might be the reason for its unique but still unclear physiological function.  相似文献   

11.
A blood coagulation factor IX-binding protein (TSV-FIX-BP) was isolated from the snake venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-FIX-BP showed a single band with an apparent molecular weight of 23,000 under non-reducing conditions, and two distinct bands with apparent molecular weights of 14,800 and 14,000 under reducing conditions. cDNA clones containing the coding sequences of TSV-FIX-BP were isolated and sequenced to determine the structure of the precursors of TSV-FIX-BP subunits. The deduced amino acid sequences of two subunits of TSV-FIX-BP were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. TSV-FIX-BP was a non-enzymatic C-type lectin-like anti-coagulant. The anti-coagulant activity of TSV-FIX-BP was mainly caused by its dose dependent interaction with blood coagulation factor IX but not with blood coagulation factor X.  相似文献   

12.
BmKK2 (alpha-KTx 14.2) is one of the novel short-chain peptides found in molecular cloning of a venom gland cDNA library from Asian scorpion Buthus martensi Karsch. Based upon its amino acid sequence, the peptide was proposed to adopt a classical alpha/beta-scaffold for alpha-KTxs. In the present study, we purified BmKK2 from the venom of B. martensi Karsch, and investigated its action on voltage-dependent K+ currents in dissociated hippocampal neurons from neonatal rats. BmKK2 (10-100 microM) selectively inhibited the delayed rectifier K+ current, but did not affect the fast transient K+ current. The inhibition of BmKK2 on the delayed rectifier K+ current was reversible and voltage-independent. The peptide did not affect the steady-state activation of the current, but caused a depolarizing shift (about 9 mV) of its steady-state inactivation curve. The results demonstrate that BmKK2 is a novel K+ channel-blocking scorpion peptide.  相似文献   

13.
A novel toxin was identified, purified and characterized from the venom of the Mexican scorpion Hadrurus gertschi (abbreviated HgeTx1). It has a molecular mass of 3950 atomic mass units (a.m.u.) and contains 36 amino acids with four disulfide bridges established between Cys1–Cys5, Cys2–Cys6, Cys3–Cys7 and Cys4–Cys8. It blocks reversibly the Shaker B K+-channels with a Kd of 52 nM. HgeTx1 shares 60%, 45% and 40% sequence identity, respectively, with Heterometrus spinnifer toxin1 (HsTX1), Scorpio maurus K+-toxin (maurotoxin) and Pandinus imperator toxin1 (Pi1), all four-disulfide bridged toxins. It is 57–58% identical with the other scorpion K+-channel toxins that contain only three disulfide bridges. Sequence comparison, chain length and number of disulfide bridges analysis classify HgeTx1 into subfamily 6 of the -KTx scorpion toxins (systematic name: -KTx 6.14).  相似文献   

14.
One novel snake venom factor (termed trimecetin) was isolated and purified from the venom of Taiwan habu (Trimeresurus mucrosquamatus). The purified venom factor was shown to consist of two subunit chains linked by one disulfide bond. This two-chain factor showed high sequence homology at their N-terminal segments to some previously reported venom proteins such as alboaggregin-B isolated from Trimeresurus albolabris and agkicetin from Agkistrodon acutus. The cDNA clones corresponding to the two subunit chains, a basic chain (pI 8.97) of 133 amino acids and an acidic chain (pI 6.32) of 121 amino acids, were found to share a sequence similarity of 42.6 %. Similar to botrocetin, bitiscetin and flavocetin A characterized from other snake species, trimecetin from Taiwan habu was also shown to be a C-type lectin based on the phylogenetic and sequence comparisons of various two-chain factors from snake species of different families. The unique functional variation and evolution of trimecetin may offer some insights into the mechanism underlying the receptor recognition associated with activation or inhibition of platelet aggregation for this family of snake venom proteins.  相似文献   

15.
Abstract: A neurotoxic peptide, huwentoxin-II (HWTX-II), was purified from the venom of the Chinese bird spider Selenocosmia huwena by ion exchange chromatography and reversed phase HPLC. The toxin can reversibly paralyse cockroaches for several hours, with an ED50 of 127 ± 54 µg/g. HWTX-II blocks neuromuscular transmission in an isolated mouse phrenic nerve diaphragm preparation and acts cooperatively to potentiate the activity of huwentoxin-I. The complete amino sequence of HWTX-II was determined and found to consist of 37 amino acid residues, including six Cys residues. There is microheterogeneity (Ile/GIn) in position 10, and mass spectrometry indicated that the two isoproteins have a tendency to dimerize. It was determined by mass spectrometry that the six Cys residues are involved in three disulphide bonds. The sequence of HWTX-II is highly homologous with ESTX, a toxin from the tarantula Eurypefina californicum.  相似文献   

16.
Presynaptic neurotoxins are one of the major components in Bungarus venom. Unlike other Bungarus species that have been studied, β-bungarotoxin has never been isolated from Bungarus fasciatus venom. It was hypothesized that the absence of β-bungarotoxin in this species was due to divergence during evolution prior to evolution of β-bungarotoxin. In this study, we have isolated a β-bungarotoxin isoform we named P-elapitoxin-Bf1a by using gel filtration, cation-exchange and reverse-phase chromatography from Malaysian B. fasciatus venom. The toxin consists of two heterogeneous subunits, subunit A and subunit B. LCMS/MS data showed that subunit A was homologous to acidic phospholipase A2 subunit A3 from Bungarus candidus and B. multicinctus venoms, whereas subunit B was homologous with subunit B1 from B. fasciatus venom that was previously detected by cDNA cloning. The toxin showed concentration- and time-dependent reduction of indirect-twitches without affecting contractile responses to ACh, CCh or KCl at the end of experiment in the chick biventer preparation. Toxin modification with 4-BPB inhibited the neurotoxic effect suggesting the importance of His-48. Tissue pre-incubation with monovalent B. fasciatus (BFAV) or neuro-polyvalent antivenom (NPV), at the recommended titer, was unable to inhibit the twitch reduction induced by the toxin. This study indicates that Malaysian B. fasciatus venom has a unique β-bungarotoxin isoform which was not neutralized by antivenoms. This suggests that there might be other presynaptic neurotoxins present in the venom and there is a variation in the enzymatic neurotoxin composition in venoms from different localities.  相似文献   

17.
Using high-performance liquid chromatography Tst26, a novel potassium channel blocker peptide, was purified from the venom of the Brazilian scorpion Tityus stigmurus. Its primary structure was determined by means of automatic Edman degradation and mass spectrometry analysis. The peptide is composed of 37 amino acid residues and tightly folded through three disulfide bridges, similar to other K+ channel blocking peptides purified from scorpion venoms. It contains the “essential dyad” for K+ channel recognition comprised of a lysine at position 27 and a tyrosine at position 36. Electrophysiological assays revealed that Tst26 blocked hKv1.2 and hKv1.3 channels with high affinity (Kd = 1.9 nM and 10.7 nM, respectively) while it did not affect several other ion channels (mKv1.1, hKv1.4, hKv1.5, hERG, hIKCa1, hBK, hNav1.5) tested at 10 nM concentration. The voltage-dependent steady-state parameters of K+ channel gating were unaffected by the toxin in both channels, but due to the fast association and dissociation kinetics Tst26 slowed the rate of inactivation of Kv1.3 channels. Based on the primary structure, the systematic nomenclature proposed for this peptide is α-KTx 4.6.  相似文献   

18.
Etsuko Oyama 《Toxicon》2008,52(5):651-654
The amino acid sequence of a bradykinin-releasing enzyme, named KR-E-1, isolated from the venom of Agkistrodon caliginosus (Kankoku-mamushi) was determined by Edman sequencing of the peptides which was derived from digests with cyanogen bromide, hydroxylamine, achromobacter protease I, trypsin, V8 protease, arginine endopeptidase, and endoproteinase Asp-N. KR-E-1 consisted of 235 amino acids and showed conservation of the catalytic amino acid residues (His57, Asp102, and Ser195) of the chymotrypsin family of serine protease in its amino acid sequence. The carboxy-terminal amino acid, Phe, was determined using carboxypeptidase Y. This enzyme contains glucosamine and an N-linked glycosylation site. KR-E-1 showed 32, 31, 65, 65, and 67% sequence homology to human kallikrein, bovine thrombin, KN-BJ 2, elegaxobin, and elegaxobin II, respectively. The characteristic of structure of KR-E-1 was found to involve hydrophobic amino acid residues abundantly localizing in positions 1-50, with lysine residues abundantly localizing in positions 73-101.  相似文献   

19.
Snake venoms have demonstrated antinociceptive activity, and certain isolated neurotoxins have demonstrated significant analgesia in animal models. Here we report a novel analgesic toxin which was isolated from Naja naja atra and was given the name ‘najanalgesin’. The LD50 of the crude venom and najanalgesin were 0.89 mg/kg and 2.69 mg/kg, respectively. We used the writhing test and hot plate test to evaluate the antinociceptive properties of the crude venom and najanalgesin after intraperitoneal (ip) administration. The analgesic mechanism of najanalgesin was also studied. The response latency time was significantly prolonged in the hot plate test after ip administration of the crude venom of Naja naja atra (0.111-0.445 mg/kg) in a dose-dependent manner. Najanalgesin (1 mg/kg) elicited almost the same antinociceptive effect as that of the crude venom of Naja naja atra at the dose of 0.445 mg/kg and remained for 6 h after intraperitoneal injection, shown by hot plate test. The percentage of increase in the latency time for the venom and the najanalgesin 3 h after drug administration was 96.2% and 112%, respectively. The number of writhes decreased to almost 1/3, 1/6, and 1/12 of the NS (physiological saline) group after intraperitoneal administration of najanalgesin at 0.25, 0.5, and 1.0 mg/kg, respectively. Pretreatment with atropine (1 mg/kg) or naloxone (3 mg/kg) blocked the antinociception of najanalgesin in the hot plate test. Based on the sequence information, najanalgesin is found to be highly homologous with the conventional CTXs (cardiotoxins). To our knowledge, no study had previously reported that a toxin which was homologous with CTXs possessed the antinociceptive activity. Thus, this is the first report that the antinociceptive effect induced by najanalgesin is mediated by cholinergic and opioidergic mechanisms.  相似文献   

20.
BaP1 is a P-I class of Snake Venom Metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomations by Bothrops asper, a medically-important species in Central America and parts of South America. Six monoclonal antibodies (MoAb) against BaP1 (MABaP1) were produced and characterized regarding their isotype, dissociation constant (Kd), specificity and ability to neutralize BaP1-induced hemorrhagic and proteolytic activity. Two MABaP1 are IgM, three are IgG1 and one is IgG2b. The Kds of IgG MoAbs were in the nM range. All IgG MoAbs recognized conformational epitopes of BaP1 and B. asper venom components but failed to recognize venoms from 27 species of Viperidae, Colubridae and Elapidae families. Clone 7 cross-reacted with three P-I SVMPs tested (moojeni protease, insularinase and neuwiedase). BaP1-induced hemorrhage was totally neutralized by clones 3, 6 and 8 but not by clone 7. Inhibition of BaP1 enzymatic activity on a synthetic substrate by MABaP1 was totally achieved by clones 3 and 6, and partially by clone 8, but not by clone 7. In conclusion, these neutralizing MoAbs against BaP1 may become important tools to understand structure-function relationships of BaP1 and the role of P-I class SVMP in snakebite envenomation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号