首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been reported to exhibit anti-cancer effect on several human cancers such as liver cancers and lung cancers. However, the molecular mechanisms of emodin-mediated tumor regression have not been fully defined. In this study, we show that treatment with 50 μM emodin resulted in a pronounced release of cytochrome c, activation of caspase-2, -3, and -9, and apoptosis in human lung adenocarcinoma A549 cells. These events were accompanied by the inactivation of ERK and AKT, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential (Δψm), decrease of mitochondrial Bcl-2, and increase of mitochondrial Bax content. Ectopic expression of Bcl-2, or treatment with aurintricarboxylic acid, furosemide or caspase inhibitors markedly blocked emodin-induced apoptosis. Conversely, pharmacologic ERK and AKT inhibition promoted emodin-induced apoptosis. Furthermore, the free radical scavenger ascorbic acid and N-acetylcysteine attenuated emodin-mediated ROS production, ERK and AKT inactivation, mitochondrial dysfunction, Bcl-2/Bax modulation, and apoptosis. Take together, these findings suggest that in A549 cells, emodin-mediated oxidative injury acts as an early and upstream change in the cell death cascade to antagonize cytoprotective ERK and AKT signaling, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, mitochondrial cytochrome c release, caspase activation, and consequent leading to apoptosis.  相似文献   

2.
We have found in the previous study that 6-methoxydihydrosanguinarine (6ME), a benzophenanthridine alkaloid isolated from Hylomecon species, may have potential as a chemotherapeutic agent. However, the mechanisms of 6ME-induced cell death have not been investigated. The purpose of the present study was to determine the apoptosis-inducing potential of 6ME in human hepatocarcinoma HepG2 cells and the role of reactive oxygen species in 6ME-induced apoptosis. It can be concluded from the results that 6ME inhibits the growth of HepG2 cells in a concentration- and time-dependent manner (IC50=3.8+/-0.2 microM following 6 h incubation). Treatment of HepG2 cells with 6ME resulted in the release of mitochondrial cytochrome c followed by the activation of caspase proteases, and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. 6ME increased the expression of p53 and bax and decreased the expression of bcl-2. The cytotoxic effect of 6ME is mediated by the time-dependent generation of reactive oxygen species. Our results also show that preincubation of HepG2 cells with vitamin C decreased the expression of p53 and bax and inhibited the release of cytochrome c, activation of downstream caspase and the cleavage of poly(ADP-ribose) polymerase, thus inhibiting the apoptosis inducing effect of 6ME.  相似文献   

3.
The pathophysiological relevance of S-nitrosoglutathione (GSNO)-induced endothelial cell injury remains unclear. The main objective of this study was to elucidate the molecular mechanisms of GSNO-induced oxidative stress in endothelial cells. Morphological evaluation through DAPI staining and propidium iodide (PI) flow cytometry was used to detect apoptosis. In cultured EA.hy926 endothelial cells, exposure to GSNO led to a time- and dose-dependent apoptotic cascade. When intracellular reactive oxygen species (ROS) production was measured in GSNO-treated cells with the fluorescent probes 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate, we observed elevated ROS levels and a concomitant loss in mitochondrial membrane potential, indicating that GSNO-induced death signaling is mediated through a ROS-mitochondrial pathway. Importantly, we found that peroxynitrite formation and Omi/HtrA2 release from mitochondria were involved in this phenomenon, whereas changes of death-receptor dependent signaling were not detected in the same context. The inhibition of NADPH oxidase activation and Omi/HtrA2 by a pharmacological approach provided significant protection against caspase-3 activation and GSNO-induced cell death, confirming that GSNO triggers the death cascade in endothelial cells in a mitochondria-dependent manner. Taken together, our results indicate that ROS overproduction and loss of mitochondrial Omi/HtrA2 play a pivotal role in reactive nitrogen species-induced cell death, and the modulation of these pathways can be of significant therapeutic benefit.  相似文献   

4.
CDA-II (cell differentiation agent II) was a urinary preparation, isolated from healthy human urine. We determined the anticancer activity of CDA-II using human acute myeloid leukemia (AML) cell lines, K562, Kasumi-1 and KG-1. An in vitro cytotoxicity assay showed that CDA-II exhibited growth arrest in leukemic cells, while it did not induce cytotoxicity in normal peripheral blood monouclear cells (PBMCs). In vivo studies using the Kasumi-1 xenografted SCID mouse model showed tumor inhibition rate were increased and the survival time were prolonged in a dose-dependent manner, without any significant toxicity on mice body. Depolarized mitochondrial membranes and the activation of caspase-3, 9 as well as PARP were found in leukemic cells treated with CDA-II for 6–24 h. We further found NF-κB nuclear translocation were prevented by CDA-II treatment, which therefore inactivated NF-κB and down-regulated its target genes expression, including Bcl-2/Bax ratio, Mcl-1 and XIAP. The caspase-3 inhibitor Z-DEVD-FMK inhibited CDA-II-induced apoptosis and CDA-II combined with NF-κB inhibitor PDTC significantly increased the apoptotic rate of leukemic cells. We concluded that CDA-II potently induced caspase-dependent leukemia-specific apoptosis in leukemic cells mediated through inactivation of NF-κB, involving in Bcl-2 family and XIAP, which has no cytotoxicity on normal cells.  相似文献   

5.
Cordycepin (3′-deoxyadenosin), a specific polyadenylation inhibitor, is the main functional component in Cordyceps militaris, one of the top three renowned traditional Chinese medicines. Cordycepin has been shown to possess many pharmacological activities including immunological stimulation, and anti-bacterial, anti-viral, and anti-tumor effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, the apoptotic effects of cordycepin were investigated in human leukemia cells. Treatment with cordycepin significantly inhibited cell growth in a concentration-dependent manner by inducing apoptosis but not necrosis. This induction was associated with generation of reactive oxygen species (ROS), mitochondrial dysfunction, activation of caspases, and cleavage of poly(ADP-ribose) polymerase protein. However, apoptosis induced by cordycepin was attenuated by caspase inhibitors, indicating an important role for caspases in cordycepin responses. Administration of N-acetyl-l-cysteine, a scavenger of ROS, also significantly inhibited cordycepin-induced apoptosis and activation of caspases. These results support a mechanism whereby cordycepin induces apoptosis of human leukemia cells through a signaling cascade involving a ROS-mediated caspase pathway.  相似文献   

6.
Suppression of hepatic stellate cell (HSC) activation and proliferation, and induction of apoptosis in activated HSCs have been proposed as therapeutic strategies for the treatment and prevention of the hepatic fibrosis. We previously showed that 2′,4′,6′-tris(methoxymethoxy) chalcone (TMMC), a synthesized chalcone derivative, inhibits platelet-derived growth factor-induced HSC proliferation at 5–20 μM. Here, we showed that TMMC induces apoptosis in activated HSCs at higher concentrations (30–50 μM), but is not cytotoxic to primary hepatocytes. Moreover, TMMC induces hyperacetylation of histone by inhibiting histone deacetylase (HDAC) in activated HSCs. Interestingly, TMMC treatment remarkably increased Fas-ligand (FasL) mRNA expression in a dose-dependent manner. Cycloheximide treatment reversed the induction of TMMC on apoptosis, indicating that de novo protein synthesis was required for TMMC-induced apoptosis in activated HSCs. In addition, FasL synthesis by TMMC is closely associated with maximal procaspase-3 proteolytic processing. In vivo, TMMC reduced activated HSCs in CCl4-intoxicated rats during liver injury recovery, as demonstrated by α-smooth muscle actin expression in rat liver. TMMC treatment also resulted in apoptosis, as demonstrated by cleavage of poly(ADP-ribose) polymerase in rat liver. In conclusion, TMMC may have therapeutic potential by inducing HSC apoptosis for the treatment of hepatic fibrosis.  相似文献   

7.
Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 μg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified β-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as anticarcinogenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement.  相似文献   

8.
Bcl-2 family proteins are key regulators of the intrinsic apoptotic pathway, either facilitating (Bax, Bak, BH3-only) or inhibiting (Bcl-2, Bcl-xL, Mcl-1, A1) mitochondrial release of apoptogenic factors. The role of caspases in this process is a matter of controversy. We have analyzed the relative contribution of caspases and Bcl-2 family of proteins in the induction phase of apoptosis triggered by doxorubicin in two p53-deficient leukemia cell lines, Jurkat and U937. First, we have found that caspases are dispensable for the induction phase of doxorubicin-induced apoptosis in both cell lines but they are needed to speed up the execution phase in Jurkat cells, not expressing Bax. Thus, down-regulation of Bak expression by siRNA significantly prevented doxorubicin-induced apoptosis in Jurkat but not in U937 cells. Reduction of Mcl-1 protein levels with siRNA increased sensitivity to apoptosis in both cell lines. Moreover, our results indicate that the contribution of BH3-only proteins to apoptosis is cell line specific. In Jurkat cells simultaneous silencing of Bim and PUMA was necessary to reduce doxorubicin-induced apoptosis. In U937 cells silencing of Bim or Noxa reduced sensitivity to doxorubicin. Immunoprecipitation experiments discarded an interaction between Mcl-1 and Bak in both cell lines and underscored the role of Bim and PUMA as mediators of Bax/Bak activation.  相似文献   

9.
(-)-Anonaine has been shown to have some anticancer activities, but the mechanisms of (-)-anonaine inducing cell death of human cancer cells is not fully understood. We investigated the mechanisms of apoptosis induced by (-)-anonaine in human HeLa cancer cells. Treatment with (-)-anonaine induces dose-dependent DNA damage that is correlated with increased intracellular nitric oxide, reactive oxygen species, glutathione depletion, disruptive mitochondrial transmembrane potential, activation of caspase 3, 7, 8, and 9, and poly ADP ribose polymerase cleavage. Our data indicate that (-)-anonaine up-regulated the expression of Bax and p53 proteins in HeLa cancer cells. The apoptosis and expression of Bax induced by (-)-anonaine could be inhibited when the HeLa cells were pretreated with Boc-Asp(OMe)-fmk, which is a broad caspases inhibitor. There was no obvious DNA damage in the (-)-anonaine-treated Madin-Darby canine kidney and Vero cell lines. Both Madin-Darby canine kidney and Vero cell lines are kidney epithelial cellular morphology. These results suggest that (-)-anonaine might be considered a potent compound for chemotherapy against cervical cancer or a health food supplement for cancer chemoprevention.  相似文献   

10.
Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G2/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways.  相似文献   

11.
Diphenyleneiodonium (DPI) inhibits activity of flavoenzymes like NADPH oxidase, the major source of superoxide anion in cardiovascular system, but affects also other oxidoreductases. Contradictory data have been published concerning the effect of diphenyleneiodonium on the production of reactive oxygen species in cells, both inhibitory and stimulatory action of DPI being reported. We have examined the effect of DPI on the cellular production of reactive oxygen and nitrogen species (ROS/RNS) and on the proliferation and apoptosis of human vascular endothelial cells. We found increased oxidation of ROS-sensitive probes (dihydrorhodamine 123 and 2',7'-dichlorodihydrofluorescein diacetate) when DPI (20 microM-100 microM) was present in the treated cells. However, oxidation of the fluorogenic probes was inhibited if DPI (20 microM-100 microM) was removed from the reaction medium after cell preincubation. These results suggest an artifactual oxidation of the fluorogenic probes by DPI or its metabolites. A similar pattern of influence of DPI on the production of NO (measured with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) was observed. Modulation of generation of reactive oxygen and nitrogen species in DPI-treated cells influenced the nitration of tyrosine residues of cellular proteins, estimated by Western blotting. Decreased level of nitration generally paralleled the lowered production of ROS. A decreased 3-(4,5-dimethylthiazolyl)-3-3(4-sulphophenyl) tetrazolium (MTT) reducing activity of cells for was observed immediately after 1h treatment of human endothelial cells with DPI (1 microM-100 microM), in spite of lack of changes in cell viability estimated by other methods. These results point to a next limitation of MTT in estimation of viability of cells treated with oxidoreductase inhibitors. DPI inhibited the proliferation of HUVECs as well as immortalized cell line HUVEC-ST, as assessed by acid phosphatase activity test and measurement of total nucleic acid content. Proapoptotic action of DPI was observed 12 h after incubation with this compound.  相似文献   

12.
Growth inhibitory effects of 15-lipoxygenase-1 [13-(S)-HPODE and 13-(S)-HODE] and 15-lipoxygenase-2 [15-(S)-HPETE and 15-(S)-HETE] (15-LOX-1 and LOX-2) metabolites and the underlying mechanisms were studied on chronic myeloid leukemia cell line (K-562). The hydroperoxy metabolites, 15-(S)-HPETE and 13-(S)-HPODE rapidly inhibited the growth of K-562 cells by 3h with IC(50) values, 10 and 15microM, respectively. In contrast, the hydroxy metabolite of 15-LOX-2, 15-(S)-HETE, showed 50% inhibition only at 40microM by 6h and 13-(S)-HODE, hydroxy metabolite of 15-LOX-1, showed no significant effect up to 160microM. The cells exposed to 10microM of 15-(S)-HPETE and 40microM of 15-(S)-HETE showed typical apoptotic features like release of cytochrome c, caspase-3 activation and PARP-1 (poly(ADP) ribose polymerase-1) cleavage. A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI, a pharmacological inhibitor of NADPH oxidase, NAC (N-acetyl cysteine) and GSH revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line.  相似文献   

13.
In the present study, we investigated the anticancer activity of WP 631, a new anthracycline analog, in weakly doxorubicin-resistant SKOV-3 ovarian cancer cells. We studied the time-course of apoptotic and necrotic events: the production of reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in human ovarian cancer cells exposed to WP 631 in the presence and absence of an antioxidant, N-acetylcysteine (NAC). The effect of WP 631 was compared with the activity of doxorubicin (DOX), the best known first-generation anthracycline.Cytotoxic activity was determined by the MTT assay. The morphological changes characteristic of apoptosis and necrosis in drug-treated cells were analyzed by double staining with Hoechst 33258 and propidium iodide (PI) using fluorescence microscopy. The production of reactive oxygen species and changes in mitochondrial membrane potential were studied using specific fluorescence probes: DCFH2-DA and JC-1, respectively.The experiments showed that WP 631 was three times more cytotoxic than DOX in the tested cell line. It was found that the new anthracycline analog induced mainly apoptosis and, marginally, necrosis. Apoptotic cell death was associated with morphological changes and a decrease in mitochondrial membrane potential. In comparison to DOX, the novel bisanthracycline induced a significantly higher level of ROS and a greater drop in the membrane potential.The results provide direct evidence that the novel anthracycline WP 631 is considerably more cytotoxic to human SKOV-3 ovarian cancer cells than doxorubicin. The drug can produce ROS, which are immediately involved in the induction of apoptotic cell death.  相似文献   

14.
Our previous studies have shown that murine fibroblast cells, in which PARP-1 gene was inactivated by gene disruption, are extremely sensitive to triazoloacridone compound C-1305, an inhibitor of DNA topoisomerase II with unusual properties. Here, we show that pharmacological inhibition of PARP-1 activity by its inhibitor compound NU1025, sensitizes human cervical carcinoma HeLa cells to compound C-1305 compared to treatment with drug alone. Cytotoxic effect of drug/NU1025 of other topoisomerase II inhibitors varied depending on the dose of PARP-1 inhibitor. Increased cytotoxicity of topoisomerase II inhibitor/NU1025 combinations was attributable to the re-activation of the p53 pathway in drug-treated HeLa cells. This lead to a more stringent cell cycle checkpoint control during G2 and M and enhanced cell death by mitotic catastrophe induced by drug/NU1025 combinations. Interestingly, treatment of HeLa cells with NU1025 alone also increased p53 expression. This effect is, at least in part, related to the inhibition of proteasome activity by drug treatments. Together, our results show that concomitant inhibition of topoisomerase II and PARP-1 leads to the synergistic cytotoxic effect toward tumor cells that may be important for combination therapies with NU1025 and topoisomerase II inhibitors. We also confirmed our earlier work and show the important role of PARP-1 activity in the maintenance of the G2 arrest induced by DNA damaging drugs. Finally, based on our studies we propose that NU1025 and possibly other inhibitors of PARP-1 may be used as non-genotoxic agents to activate p53 in tumor cells with non-functional p53 pathways.  相似文献   

15.
In this study, we investigated the effects of DADS on human colon cancer cell line COLO 205 on cell cycle arrest and apoptosis in vitro. After 24 h treatment of COLO 205 cells with DADS, the dose- and time-dependent decreases of viable cells were observed and the IC50 was 22.47 μM. The decreased percentages of viable cells are associated with the production of ROS. Treatment of COLO 205 cells with DADS resulted in G2/M phase arrest and apoptosis occurrence through the mitochondrial-pathway (Bcl-2, Bcl-xL down-regulation and Bak, Bax up-regulation). DADS increased cyclin B, cdc25c-ser-216-9 and Wee1 but did not affect CDK1 protein and gene expression within 24 h of treatment. DADS-induced apoptosis was examined and confirmed by DAPI staining and DNA fragmentation assay. DADS promoted caspase-3, -8 and -9 activity and induced apoptosis were accompanied by increasing the levels of Fas, phospho-Ask1 and -JNK, p53 and decreasing the mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-9 and -3. The COLO 205 cells were pre-treated with JNK inhibitor before leading to decrease the percentage of apoptosis which was induced by DADS. Inhibition of caspase-3 activation blocked DADS-induced apoptosis on COLO 205 cells.  相似文献   

16.
Previous reports have demonstrated that cadmium (Cd) may induce cell death via apoptosis, but the mechanism responsible for cellular death is not clear. In this study, we investigated the signaling pathways implicated in Cd-induced apoptosis in lung epithelial fibroblast (WI 38) cells. Apoptotic features were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, propidium iodide staining and DNA laddering. A treatment of cadmium caused the caspase-8-dependent Bid cleavage, the release of cytochrome c (Cyt c), activation of caspase-9 and -3, and PARP cleavage. A caspase-8 specific inhibitor prevented the Bid cleavage, caspase-3 activation and cell death. Alternatively, we observed that full-length Bax was cleaved into 18-kDa fragment (p18/Bax); this was initiated after 12 h and by 36 h the full-length Bax protein was totally cleaved to the p18/Bax, which caused a drastic release of Cyt c from mitochondria. The p18/Bax was detected exclusively in the mitochondrial fraction, and it originated from mitochondrial full-length Bax, but not from the cytosol full-length Bax. Cd also induced the activation of the mitochondrial 30-kDa small subunit of calpain that was preceded by Bax cleavage. Cd induced the upregulation of Bcl-2 and the degradation of p53 protein. N-acetyl cysteine effectively inhibited the Cd-induced DeltaPsim reduction, indicating ROS acts upstream of mitochondrial membrane depolarization. Taken together, our results suggest that Cd-induced apoptosis was thought to be mediated at least two pathways; caspase-dependent Bid cleavage, and the other is calpain-mediated mitochondrial Bax cleavage. Moreover, we found that the function of Bid and Bax was not dependent of Bcl-2, and that ROS can also contribute in the Cd-induced cell death.  相似文献   

17.
This study was designed to investigate the hypothesis that the toxic effects of di(2-ethylhexyl)phthalate (DEHP), the most abundantly used plasticizer and ubiquitous environmental contaminant that cause alterations in endocrine and spermatogenic functions in animals is mediated through the induction of reactive oxygen species (ROS) and activation of nuclear p53 and p21 proteins in LNCaP human prostate adenocarcinoma cell line. Protective effects of two selenocompounds, sodium selenite (SS) and selenomethionine (SM) were also examined. It was demonstrated that 24 h exposure of the cells to 3 mM DEHP or its main metabolite, mono(2-ethylhexyl)phthalate (MEHP, 3 μM) caused strongly amplified production of ROS. Both SS (30 nM) and SM (10 μM) supplementations reduced ROS production, and p53 and p21 activation that induced significantly only by MEHP-exposure. The overall results of this study indicated that the induction of oxidative stress is one of the important mechanisms underlying the toxicity of DEHP and this is mainly through the effects of the metabolite, MEHP. Generated data also emphasized the critical role of Se in modulation of intracellular redox status, implicating the importance of the appropriate Se status in cellular response against testicular toxicity of phthalates.  相似文献   

18.
BPR0Y007, a bis-benzylidenecyclopentanone derivative (2,5-bis- (4-hydroxy-3-methoxybenzylidene) cyclopentanone), was identified in our laboratory as a novel antineoplastic agent with a broad spectrum of antitumor activity against many human cancer cells. A previous study showed that BPR0Y007 inhibited DNA topoisomerase I (Top 1) activity and prevented tubulin polymerization. Notably, no cross-resistance with BPR0Y007 was observed in camptothecin-, VP-16- or vincristine-resistant cell lines. In this study, we further investigated the cellular and molecular events underlying the antitumoral function of this compound in human oral epidermoid carcinoma KB cells, focusing on the early cytotoxic effect. Treatment of KB cells with BPR0Y007-induced G(2)/M phase arrest followed by sub-G(1) phase accumulation. Annexin-V-propidium iodide (PI) binding assay and DNA fragmentation assay further indicated that BPR0Y007-induced cell death proceeded through an apoptotic pathway as opposed to via necrosis. This compound produced a time-dependent activation of caspases-3 and -8, however, another caspase-3 initiator, caspase-9, was only marginally activated at later time point. We further demonstrated that the activation of the caspases cascade and nuclear fragmentation was not associated with inactivated Bcl-2 and perturbed mitochondrial membrane potential by BPR0Y007. The finding that BPR0Y007-induced apoptosis through a membrane-mediated mechanism was supported by up-regulated expression of Fas (CD95/APO-1), but not Fas-L. Furthermore, up-regulation of p53 and its affected gene, MDM2, in KB cells was found after BPR0Y007 exposure. Overall, our results demonstrated that the BPR0Y007 could induce an early cytotoxic apoptosis through a caspase-8-dependent but mitochondrial-caspase-9 independent pathway, and involving upregulation of p53.  相似文献   

19.
20.
The peripheral benzodiazepine receptor (PBR) is a component of a multiprotein complex, located at the contact site between the inner and outer mitochondrial membranes, which constitutes the mitochondrial permeability transition (MPT)-pore. The opening of the MPT-pore, leading to the transmembrane mitochondrial potential (DeltaPsi(m)) dissipation, is a critical event in the mechanism of apoptosis. In the present work, we investigated the ability of the specific PBR ligands, PK 11195 or Ro5-4864, to affect mitochondrial potential and to induce apoptotic cell death in rat C6 glioma cells. Both specific ligands inhibited cell survival in a dose- and time-dependent manner, as assessed by MTS conversion assay, whereas the non-site selective ligand Diazepam or the low-affinity benzodiazepine Clonazepam showed no significant effects. After cell exposure to PK 11195 or Ro5-4864 we evidenced typical alterations of apoptotic cell death such as DNA fragmentation and chromatin condensation assessed by flow cytometric and transmission electron microscopy (TEM) analysis, respectively. Activation of the "effector" caspase-3 confirmed the ability of specific PBR ligands to induce apoptosis. Moreover, PK 11195 and Ro5-4864 induced a decrease of DeltaPsi(m), as evidenced by JC-1 flow cytometry analysis. Our data demonstrate the pro-apoptotic effects of specific PBR ligands on rat C6 glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号