首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In view of the controversial role of catalytic activity on the cytotoxicity of phospholipase A2 (PLA2), the present study is conducted to explore whether PLA2 induces apoptotic process of human leukemia U937 cells through catalytic activity-independent pathway. Modification of His-48 (according to the sequence alignment with porcine pancreatic PLA2) with p-bromophenacyl bromide (BPB) caused over 99.9% drop in enzymatic activity Naja naja atra PLA2. It was found that BPB–PLA2-induced apoptotic death of U937 cells was associated with mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Upon exposure to BPB–PLA2, elevation of intracellular Ca2+ levels and p38 MAPK activation were observed in U937 cells. Pretreatment with BAPTA-AM (Ca2+ chelator) and nifedipine (L-type Ca2+ channel blocker) abrogated Ca2+ increase and p38 MAPK activation, and rescued viability of BPB–PLA2-treated U937 cells. BPB–PLA2-induced dissipation of mitochondrial membrane potential and down-regulation of Bcl-2 were suppressed by SB202190 (p38MAPK inhibitor). Although PLA2 mutants in which His-48 and Asp-49 were substituted by Ala and Lys, respectively, did not display detectable PLA2 activity, they induced death of U937 cells. The signaling pathway of PLA2 mutants in inducing cell death was indistinguishable from that of BPB–PLA2. Taken together, our data indicate that catalytic activity-independent pathway is involved in PLA2-induced apoptotic death of human leukemia U937 cells via mitochondria-mediated death pathway triggering by Ca2+-mediated p38 MAPK activation.  相似文献   

2.
Arachidonic acid (AA)-induced apoptosis of human neuroblastoma SK-N-SH cells was characteristic of elevation of intracellular Ca2+ concentration ([Ca2+]i), ROS generation, activation of 38 MAPK and JNK and loss of mitochondrial membrane potential (ΔΨm). Subsequent modulation of Bcl-2 family members and cytochrome c release accompanied with activation of caspase-9 and -3 were involved in the death of SK-N-SH cells. BAPTA-AM (Ca2+ chelator) pretreatment rescued viability of AA-treated cells through abolishing phosphorylation of p38 MAPK and JNK, ΔΨm loss and ROS generation. N-Acetylcysteine (ROS scavenger) pretreatment reduced the dissipation of ΔΨm, but insignificantly affected AA-induced p38 MAPK and JNK activation. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) attenuated mitochondrial depolarization, degradation of Bcl-2/Bcl-xL, and mitochondrial translocation of Bax. Transfection of specific siRNA proved that p38α MAPK and JNK1 were involved in modulating Bcl-2 family proteins. Taken together, our data suggest that the cytotoxicity of AA toward SK-N-SH cells is mediated through mitochondria-dependent death pathway, eliciting by AA-induced ROS generation and Ca2+-evoked activation of p38α MAPK and JNK1.  相似文献   

3.
1. The aim of the present study was to explore the effect of the Naja nigricollis phospholipase A(2) CMS-9 on adaphostin-induced death of human leukaemia U937 cells. 2. Leukaemia U937 cells (Bcr/Abl-negative cells) were treated with adaphostin (0-10 μmol/L) and CMS-9 (0-1 μmol/L). The effects of CMS-9, adaphostin and their combination on cell viability, the generation reactive oxygen species (ROS), [Ca(2+) ](i) , p38 mitogen-activated protein kinase (MAPK) activation, Akt and extracellular signal-regulated kinase (ERK) inactivation, mitochondrial membrane potential (ΔΨ(m) ) and Bcl-2 family proteins were analysed. 3. Both adaphostin and CMS-9 induced U937 cell apoptosis, characterized by dissipation of ΔΨ(m) and ROS generation. Combined treatment further increased ΔΨ(m) loss and reduced the viability of adaphostin-treated cells. Unlike in CMS-9-treated cells, in adaphostin-treated cells ROS-induced increases in [Ca(2+) ](i) were observed. CMS-9-induced ROS generation resulted in p38 MAPK activation, whereas adaphostin treatment elicited ROS/Ca(2+) -mediated inactivation of Akt and ERK. Moreover, Akt was found to be involved in ERK phosphorylation. Suppression of p38 MAPK activation blocked CMS-9-induced ΔΨ(m) loss and Bcl-xL downregulation. Overexpression of constitutively active Akt and mitogen-activated protein kinase kinase (MEK) 1 rescued adaphostin-induced ΔΨ(m) loss and Bcl-2 downregulation. Similarly, CMS-9 augmented adaphostin toxicity in human leukaemia K562 cells via increased mitochondrial alterations. 4. The results suggest that two distinct pathways mediate adaphostin- and CMS-9-induced mitochondrial damage (i.e. the ROS-Ca(2+) -Akt-ERK and ROS-p38 MAPK pathways, respectively). These distinct pathway explain the augmentation by CMS-9 of ΔΨ(m) loss and apoptosis in adaphostin-treated U937 cells.  相似文献   

4.
This study examined the effect of ketoconazole on viability, apoptosis, mitogen-activated protein kinases (MAPKs) and Ca2+ levels in MG63 osteosarcoma cells. Ketoconazole at 20–200 μM decreased cell viability via apoptosis as demonstrated by propidium iodide staining and activation of caspase-3. Immunoblotting suggested that ketoconazole induced phosphorylation of ERK and JNK, but not p38, MAPKs. Ketoconazole-induced cell death and apoptosis were partially reversed by the selective JNK inhibitor SP600125, but not by the selective ERK inhibitor PD98059, suggesting that ketoconazole’s cytotoxic action was via JNK, but not via ERK and p38 MAPKs. Ketoconazole at a concentration of 100 μM induced [Ca2+]i increases. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) totally inhibited ketoconazole-induced [Ca2+]i increases without reversing ketoconazole-induced cell death. Collectively, in MG63 cells, ketoconazole induced cell death and apoptosis via evoking JNK phosphorylation in a Ca2+-independent manner.  相似文献   

5.
The p38 mitogen-activated protein kinase (MAPK) signaling pathways activated during cytostasis induced by Ca2+-independent phospholipase A2 (iPLA2) inhibition in prostate cancer cells were investigated. iPLA2 inhibition using siRNA, or the selective inhibitor bromoenol lactone (BEL) and it's enantiomers, decreased growth in LNCaP (p53 positive) and PC-3 (p53 negative) human prostate cancer cells. Decreased cell growth correlated to time- and concentration-dependent activation of the mitogen-activated protein kinase p38 in both cell lines. Inhibition of cytosolic iPLA2β using S-BEL, induced significantly higher levels of P-p53, p53, p21 and P-p38 expression than inhibition of microsomal iPLA2γ using R-BEL. Inhibition of p38 using SB202190 or SB203580 inhibited BEL-induced increases in P-p53 (ser15), p53 and p21, and altered the number of cells in G1 in LNCaP cells, and S-phase in PC-3 cells. BEL treatment also induced reactive species in PC-3 and LNCaP cells, which was partially reversed by pretreatment with N-acetyl-cysteine (NAC). NAC subsequently inhibited BEL-induced activation of p38 and p53 in LNCaP cells. In addition, treatment of cells with NAC partially reversed the effect of BEL on cell growth and preserved cell morphology. Collectively, these data demonstrate the novel findings that iPLA2 inhibition activates p38 by inducing reactive species, and further suggest that this signaling kinase is involved in p53 activation, cell cycle arrest and cytostasis.  相似文献   

6.
Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca2+ levels ([Ca2+]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca2+]i rises which were reduced by removing extracellular Ca2+. Eugenol-induced [Ca2+]i rises were not altered by store-operated Ca2+ channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca2+]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca2+]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca2+]i rises by inducing PLC-dependent release of Ca2+ from the endoplasmic reticulum and caused Ca2+ influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.  相似文献   

7.
Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Gö6976, a specific inhibitor of PKCα had no effect on the tolerance, both the PKCε translocation inhibitor and the PKCζ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCε and PKCξ, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.  相似文献   

8.
The effects of CdCl2 on the liberation of arachidonic acid (20∶4) from membrane phospholipids of A23187-stimulated rabbit alveolar macrophages and on the activity of phospholipase A2 (PLA2) in a cytosolic fraction were studied. Alveolar macrophages were prelabeled with [3H]arachidonic acid (20∶4) and then treated with A23187. This treatment resulted in a remarkable increase in the liberation of [3H]20∶4 from their phospholipids. Exposure of cells to Cd2+ inhibited the liberation of [3H]20∶4 in a dose-dependent manner. Liberation of [3H]20∶4 from cell lipids was calcium dependent and the inhibitory effect of Cd2+ competed with the stimulatory effect of Ca2+. When Ca2+ was removed from the incubation medium, Cd2+ did not influence the liberation of [3H]20∶4. Entry of45Ca2+ into cells was enhanced by treatment of A23187. However, Cd2+ did not influence the cellular uptake of45Ca2+. Treatment with A23187 markedly enhanced entry of109Cd2+ into cells. The effect of Cd2+ on the activity of phospholipase A2 was determined with 1-palmitoyl-2-[14C]arachidonoyl-sn-glycero-3-phosphocholine as substrate. Calcium-dependent activation of PLA2 was observed and Cd2+ inhibited activation in a dose-dependent manner. These results suggest that exposure of alveolar macrophages to Cd2+ causes a reduction in the rate of liberation of 20∶4 from cell lipids, as a possible result of the inhibition of PLA2 activity by Cd2+.  相似文献   

9.
Exposure of human Jurkat T cells to MG132 caused apoptosis along with upregulation of Grp78/BiP and CHOP/GADD153, activation of JNK and p38MAPK, activation of Bak, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of caspase-12, -9, -3, -7, and -8, cleavage of Bid and PARP, and DNA fragmentation. However, these MG132-induced apoptotic events, with the exceptions of upregulation of Grp78/BiP and CHOP/GADD153 and activation of JNK and p38MAPK, were abrogated by overexpression of Bcl-xL. Pretreatment with the pan-caspase inhibitor z-VAD-fmk prevented MG132-induced apoptotic caspase cascade, but allowed upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of JNK and p38MAPK, Δψm loss, and cleavage of procaspase-9 (47 kDa) to active form (35 kDa). Further analysis using selective caspase inhibitors revealed that caspase-12 activation was required for activation of caspase-9 and -3 to the sufficient level for subsequent activation of caspase-7 and -8. MG132-induced cytotoxicity, apoptotic sub-G1 peak, Bak activation, and Δψm loss were markedly reduced by p38MAPK inhibitor, but not by JNK inhibitor. MG132-induced apoptotic changes, including upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of caspase-12, p38MAPK and Bak, and mitochondria-dependent activation of caspase cascade were more significant in p56lck-stable transfectant JCaM1.6/lck than in p56lck-deficient JCaM1.6/vector. The cytotoxicity of MG132 toward p56lck-positive Jurkat T cell clone was not affected by the Src-like kinase inhibitor PP2. These results demonstrated that MG132-induced apoptosis was caused by ER stress and subsequent activation of mitochondria-dependent caspase cascade, and that the presence of p56lck enhances MG132-induced apoptosis by augmenting ER stress-mediated apoptotic events in Jurkat T cells.  相似文献   

10.
Kao PH  Chiou YL  Chen YJ  Lin SR  Chang LS 《Toxicon》2012,59(1):47-58
To address the requirement of phospholipase A2 (PLA2) activity in membrane fusion events and membrane perturbation activity of notexin and guanidinated notexin (Gu-notexin), the present study was conducted. Notexin and Gu-notexin did not show PLA2 activity after the removal of Ca2+ with EDTA. Metal-free notexin and Gu-notexin were found to induce membrane leakage and fusion of phospholipid vesicles. Fusogenic activity of native and modified notexin correlated positively with their membrane-damaging activity underlying the deprivation of PLA2 activity. Compared with Ca2+-bound Gu-notexin, fusogenicity of metal-free Gu-notexin was notably increased by incorporation of cholesterol, cholesterol sulfate, phosphatidylethanolamine, α-tocopherol and phosphatidic acid that supplied negative curvature into phospholipid bilayer. The ability of Gu-notexin to induce membrane fusion of vesicles with lipid-supplied negative curvature was higher than that of notexin regardless of the absence or presence of Ca2+. Consistently, metal-free Gu-notexin markedly induced membrane fusion of red blood cells (RBCs) compared with metal-free notexin, and fusion activity of metal-free Gu-notexin on cholesterol-depleted RBCs notably reduced. Compared with notexin, Gu-notexin highly induced uptake of calcein-loaded phosphatidylcholine (PC)/cholesterol and PC/cholesterol sulfate vesicles by K562 cells in the presence of EDTA. Taken together, our data suggest that notexin and Gu-notexin could induce vesicle leakage and fusion via a PLA2 activity-independent mechanism, and guanidination promotes PLA2 activity-independent fusogenicity of notexin on vesicles with lipid-supplied negative curvature.  相似文献   

11.
The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca2+ on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca2+ pools (EGTA or BAPTA-AM) and NO (l-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca2+ entrance was induced by A23187 in HepG2. Cell death, Ca2+ mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca2+ concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and l-NAME enhanced, GCDCA-induced cell death. The reduction of Ca2+ entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca2+ entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca2+ concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca2+-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.  相似文献   

12.
Phospholipase A2 (PLA2) are esterases that cleave glycerophospholipids to release fatty acids and lysophospholipids. Several studies demonstrate that PLA2 regulate growth and signaling in several cell types. However, few of these studies have focused on Ca2+-independent phospholipase A2 (iPLA2 or Group VI PLA2). This class of PLA2 was originally suggested to mediate phospholipid remodeling in several cell types including macrophages. As such, it was labeled as a housekeeping protein and thought not to play as significant of roles in cell growth as its older counterparts cytosolic PLA2 (cPLA2 or Group IV PLA2) and secretory PLA2 (sPLA2 or Groups I-III, V and IX-XIV PLA2). However, several recent studies demonstrate that iPLA2 mediate cell growth, and do so by participating in signal transduction pathways that include epidermal growth factor receptors (EGFR), mitogen activated protein kinases (MAPK), mdm2, and even the tumor suppressor protein p53 and the cell cycle regulator p21. The exact mechanism by which iPLA2 mediates these pathways are not known, but likely involve the generation of lipid signals such as arachidonic acid, lysophosphatidic acid (LPA) and lysophosphocholines (LPC). This review discusses the role of iPLA2 in cell growth with special emphasis placed on their role in cell signaling. The putative lipid signals involved are also discussed.  相似文献   

13.
Receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular Ca2+ mobilization in a form of oscillations, which plays essential roles by activating sequentially Ca2+/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether Ca2+ mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated Ca2+ mobilization induced by aluminum fluoride (AlF4-), a G-protein activator, with or without RANKL and the effects of AlF4- on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that AlF4- induces intracellular Ca2+ concentration ([Ca2+]i) oscillations, which is dependent on extracellular Ca2+ influx. Notably, co-stimulation of AlF4- with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by AlF4-. Taken together, these results demonstrate that G-protein would be a novel modulator responsible for [Ca2+]i oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.  相似文献   

14.
TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-l-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47phox, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure.  相似文献   

15.

Background and purpose:

We have previously shown that lipid mediators, produced by phospholipase D and C, are generated in OX1 orexin receptor signalling with high potency, and presumably mediate some of the physiological responses to orexin. In this study, we investigated whether the ubiquitous phospholipase A2 (PLA2) signalling system is also involved in orexin receptor signalling.

Experimental approach:

Recombinant Chinese hamster ovary-K1 cells, expressing human OX1 receptors, were used as a model system. Arachidonic acid (AA) release was measured from 3H-AA-labelled cells. Ca2+ signalling was assessed using single-cell imaging.

Key results:

Orexins strongly stimulated [3H]-AA release (maximally 4.4-fold). Orexin-A was somewhat more potent than orexin-B (pEC50= 8.90 and 8.38 respectively). The concentration–response curves appeared biphasic. The release was fully inhibited by the potent cPLA2 and iPLA2 inhibitor, methyl arachidonyl fluorophosphonate, whereas the iPLA2 inhibitors, R- and S-bromoenol lactone, caused only a partial inhibition. The response was also fully dependent on Ca2+ influx, and the inhibitor studies suggested involvement of the receptor-operated influx pathway. The receptor-operated pathway, on the other hand, was partially dependent on PLA2 activity. The extracellular signal-regulated kinase, but not protein kinase C, were involved in the PLA2 activation at low orexin concentrations.

Conclusions and implications:

Activation of OX1 orexin receptors induced a strong, high-potency AA release, possibly via multiple PLA2 species, and this response may be important for the receptor-operated Ca2+ influx. The response coincided with other high-potency lipid messenger responses, and may interact with these signals.  相似文献   

16.
We report the purification and biochemical/pharmacological characterization of two myotoxic PLA2 (BbTX-II K49 PLA2 homologue and BbTX-III PLA2) from Bothrops brazili venom. Both were purified by a single chromatographic step on reverse phase HPLC, showing Mr 14 kDa for both myotoxins, showing high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BbTX-II K49 PLA2 homologue and BbTX-III PLA2, had a sequence of 121 amino acid residues. BbTX-II: SLFELGKMILQETGKNPAKSYGAYGCYCGVLGRGKPKDATDRCCYVHKCCYKLTGCDNKKKDRYSYSWKDKTIVCGENNPCLKELCECDKAVAICLRENLNTYNKKYRYHLKPLCKKADAC with pI value 8.73. BbTX-III: SLWEWGQMILKETGKNPFPYYGAYGCYCGWGGRRKPKDATDRCCFVHDCCRYKKLTGCPKTNDRYSYSRLDYTIVCGEDDPCKEICECDKAAAVCFRENLRTYNKKYMAHLRVLCKKDKPC with a pI value of 8.46. BbTX-III presented PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35–45 °C. Maximum PLA2 activity required Ca2+. In vitro, BbTX-II K49 PLA2 homologue and BbTX-III PLA2 caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other Bothrops species. In mice, BbTX-II K49 PLA2 homologue and BbTX-III PLA2 induces myonecrosis and edema-forming activity. All these biological effects induced by the BbTX-II K49 PLA2 homologue, occur in the absence of a measurable PLA2 activity in vitro, further supporting the concept of catalytic independent mechanisms exerted by Lys49 proteins.  相似文献   

17.

BACKGROUND AND PURPOSE

SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca2+ influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored.

EXPERIMENTAL APPROACH

The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca2+ imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence.

KEY RESULTS

SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca2+ ([Ca2+]i) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na+/Ca2+ exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca2+ chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells.

CONCLUSIONS AND IMPLICATIONS

At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca2+]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca2+ homeostasis and suppress human glioblastoma cells.  相似文献   

18.
In this study, the production of prostaglandin E2 (PGE2) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A2 (PLA2), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA2s (cytosolic PLA2 and Ca2+-independent PLA2) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE2 levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE2 production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF3), an intracellular PLA2 inhibitor, but not bromoenol lactone (BEL), an iPLA2 inhibitor, suppressed the MT-III-induced AA and PGE2 release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE2. COX-2 isoform is preeminent over COX-1 for production of PGE2 stimulated by MT-III. PGE2 and AA release by MT-III probably is related to cPLA2 activation.  相似文献   

19.
20.
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号