首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To compare cardiac cine MR imaging using steady state free precession (SSFP) and fast low angle shot (FLASH) techniques at 1.5 and 3 T, and to establish their variabilities and reproducibilities for cardiac volume and mass determination in volunteers. To assess the feasibility of SSFP imaging in patients at 3 T and to determine comparability to volume data acquired at 1.5 T. MATERIALS AND METHODS: Ten healthy volunteers underwent cardiac magnetic resonance imaging using SSFP and segmented gradient-echo FLASH, using both a 1.5 and a 3 T MR system on the same day. Ten patients with impaired left ventricular (LV) function were also studied at both field strengths with SSFP. RESULTS: For both SSFP and FLASH, field strength had no effect on the quantification of LV and right ventricular (RV) volumes, mass, or function (P > or = 0.05 for field strength for all parameters). At both 1.5 and 3 T, SSFP yielded smaller LV mass (e.g., at 3 T 109 +/- 30 g vs. 142 +/- 37 g; P = 0.011) and larger LV volume (e.g., at 3 T end-diastolic volume 149 +/- 37 mL vs. 133 +/- 31 mL at 5 T; P = 0.041) measurements than FLASH. In patients with reduced LV function, all volume and mass measurements were again similar for SSFP sequences at 1.5 vs. 3 T. In volunteers and patients, measurement variabilities for LV parameters were small for both field strength and sequences, ranging between 3.7% and 10.7% for mass. CONCLUSION: Compared to 1.5 T, cardiac cine MR imaging at 3 T, using either FLASH or SSFP sequences, is feasible and highly reproducible. Field strength does not have an influence on quantification of cardiac volume or mass, but the systematic overestimation of LV mass and underestimation of LV volume by FLASH compared to SSFP is present at both 1.5 and 3 T. Normal values for cardiac volumes and mass established at 1.5 T can be applied to scans obtained at 3 T.  相似文献   

2.
BACKGROUND: Although myocardial gated single photon emission computed tomography (SPECT) is routinely used for functional measurements in patients with coronary artery disease (CAD) and heart failure, day-to-day variability of left ventricular ejection fraction (LVEF), left ventricular (LV) volumes, and global perfusion scoring has not yet been investigated. METHODS AND RESULTS: In 20 consecutive patients with CAD and an LVEF lower than 40% who routinely underwent a resting tetrofosmin gated SPECT study, we performed an additional gated SPECT study at rest 1 to 5 days later under the same circumstances. LV volumes and LVEF were calculated from the gated SPECT data by commercially available software (QGS). Myocardial perfusion was scored visually by use of a 20-segment, 5-point scoring method. For global LV function and perfusion, agreement between data was investigated by use of Bland-Altman plotting. The 95% limits of agreement found by Bland-Altman analysis were -0.9% +/- 6.0% for LVEF, 3 +/- 20 mL for LV end-diastolic volume, and 4 +/- 20 mL for LV end-systolic volume. CONCLUSION: In CAD patients with an LVEF lower than 40%, day-to-day variability of measurements of global myocardial function and perfusion is quite similar to interobserver and intraobserver variability. Day-to-day variability of global LV functional parameters obtained by gated cardiac SPECT is fairly small, which indicates that myocardial gated SPECT can be used in daily clinical practice to determine changes in global LV function and perfusion over time in patients with diminished LV function.  相似文献   

3.
François CJ  Fieno DS  Shors SM  Finn JP 《Radiology》2004,230(2):389-395
PURPOSE: To evaluate the accuracy of manually and automatically segmented true fast imaging with steady-state precession (FISP) and fast low-angle shot (FLASH) cine magnetic resonance (MR) imaging in the determination of left ventricular (LV) mass. MATERIALS AND METHODS: Nine dogs and five pigs underwent cine MR imaging of the entire LV from base to apex. Manual and automatic segmentation times were recorded, and LV masses determined with each were compared with each other and with the true LV mass at autopsy. Estimated mass and true mass at autopsy were compared by calculating the correlation coefficient and the mean difference between the two for each MR sequence and segmentation method. RESULTS: True LV mass at autopsy correlated well with masses determined with manual and automatic contours on true FISP MR images. Mean differences between true LV mass and masses determined from manual contours on true FISP and FLASH images were -0.8 g +/- 2.6 and 3.7 g +/- 6.8, respectively. When manually drawn end-diastolic contours were automatically propagated to end systole, mean differences were 2.0 g +/- 3.6 (P =.05) and 9.1 g +/- 6.5 (P <.05) for true FISP and FLASH images, respectively. For automatic contours, mean differences were 10.6 g +/- 8.5 (P <.05) and 27.7 g +/- 13.4 (P <.05) for true FISP and FLASH images, respectively. Mean automatic segmentation time was six times less than mean manual segmentation time. CONCLUSION: LV mass was determined most accurately by using manual contours on true FISP images. In these animal models, fully automatic segmentation of true FISP images was performed in one-sixth of the time of manual segmentation and yielded LV masses with a mean error of approximately 5% of true LV mass.  相似文献   

4.
RATIONALE AND OBJECTIVES: We sought to evaluate the automatic detection of the papillary muscle and to determine its influence on quantitative left ventricular (LV) mass assessment. MATERIALS AND METHODS: Twenty-eight Yorkshire-Landrace swine and 10 volunteers underwent cardiac magnetic resonance imaging (CMR) of the left ventricle. The variability in measurements of LV papillary muscles traced automatically and manually were compared to intra- and interobserver variabilities. CMR-derived LV mass with the papillary muscle included or excluded from LV mass measurements was compared to true mass at autopsy of the Yorkshire-Landrace swine. RESULTS: Automatic LV papillary muscle mass from all subjects correlated well with manually derived LV papillary muscle mass measurements (r = 0.84) with no significant bias between both measurements (mean difference +/- SD, 0.0 +/- 1.5 g; P = .98). The variability in results related to the contour detection method used was not statistically significant different compared to intra- and interobserver variabilities (P = .08 and P = .97, respectively). LV mass measurements including the papillary muscle showed significantly less underestimation (-10.6 +/- 7.1 g) with the lowest percentage variability (6%) compared to measurements excluding the papillary muscles (mean underestimation, -15.1 +/- 7.4 g percentage variability, 7%). CONCLUSION: The automatic algorithm for detecting the papillary muscle was accurate with variabilities comparable to intra- and interobserver variabilities. LV mass is determined most accurately when the papillary muscles are included in the LV mass measurements. Taken together, these observations warrant the inclusion of automatic contour detection of papillary muscle mass in studies that involve the determination of LV mass.  相似文献   

5.
To identify the optimum sequence at gadoxetic acid enhanced hepatic dynamic magnetic resonance imaging in the arterial phase, we studied phantoms that contained gadoxetic acid or gadopentetate dimeglumine diluted in human blood. We obtained magnetic resonance images at 3.0 T and 1.5 T with one vendor (Siemens) using 3D‐gradient echo (GRE)‐, 2D‐fast low angle shot (FLASH)‐, and turbo spin echo sequences. Contrast ratio was highest for 3D‐GRE; at both 3.0 T and 1.5 T it was superior when the contrast agent was gadoxetic acid. With both gadoxetic acid and gadopentetate dimeglumine, contrast ratio peaked at around 5‐and 2 mmol/L on 3D‐GRE‐ and 2D‐FLASH images, respectively. Compared with gadopentetate dimeglumine, at 3.0 T, the peak contrast ratio of gadoxetic acid was 14.1% better on 3D‐GRE images and 14.0% better on 2D‐FLASH images; at 1.5 T it was 16.4% better on 3D‐GRE‐ and 5.7% better on 2D‐FLASH images. With respect to the magnetic field strength, at 3.0 T the peak contrast ratio of gadoxetic acid was 6.0% better than at 1.5 T on 3D‐GRE images and 49.5% better on 2D‐FLASH images; it was 8.5% better on 3D‐GRE‐ and 44.6% better on 2D‐FLASH images than when the contrast agent was gadopentetate dimeglumine. Thus, gadoxetic acid yielded better enhancement on 3D‐GRE images acquired at 3.0 T than at 1.5 T and enhancement was better than that obtained with gadopentetate dimeglumine at the same concentration. Magn Reson Med 66:213–218, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
PURPOSE: To compare left ventricular (LV) volume and mass assessment using two-dimensional (2D) cine steady-state free precession (SSFP) and k-t space broad-use linear acquisition speed-up technique (k-t BLAST) accelerated 3D magnetic resonance imaging (MRI). MATERIALS AND METHODS: On a commercially available 1.5T MR scanner, 2D cine SSFP, six- and eight-fold accelerated 3D k-t BLAST were performed to evaluate LV volumes and mass in 17 volunteers. After semiautomatic segmentation of the different MR data sets, the resulting volumes and mass were compared according to the mean difference, 95% confidence interval, standard deviation (SD), Pearson's correlation coefficient, Bland-Altman analysis, and the Pitman-Morgan test. RESULTS: Data acquisition was successful in all subjects. The number of required breathholds was reduced from a maximal of five for the 2D cine SSFP sequence to two for 3D k-t BLAST sequences. Comparing LV volumes, there was excellent agreement between 2D and 3D cine 8x k-t BLAST SSFP volumes (mean difference +/- 2SD end-diastolic volume [EDV] = 5 +/- 8 mL, end-systolic volume [ESV] = 1 +/-12 mL, and stroke volume [SV] = 3 +/- 8 mL), and mass (-1.8 +/- 9 g). CONCLUSION: k-t BLAST-accelerated 3D sequences allow accurate assessment of LV volumes and mass compared to 2D cine SSFP. This method may reduce costs and increase patient comfort due to shortened data acquisition time and reduced number of breathholds.  相似文献   

7.
PURPOSE: To study the effects of field strength and parallel imaging on image contrast and interstudy reproducibility of right and left ventricular (RV and LV) measurements using steady-state free precession (SSFP) cardiovascular magnetic resonance (CMR). MATERIALS AND METHODS: Thirty-two subjects (20 normal, 12 cardiac patients) underwent four SSFP cine short-axis imaging studies: two at 1.5T, one at 3T, and another at 3T with parallel imaging (SENSE). RV and LV contrast-to-noise ratios (CNRs) were compared between methods. Interstudy reproducibility of RV and LV measurements were assessed by Bland-Altman analyses. RESULTS: 3T SENSE imaging reduced total imaging time from 8 +/- 2 minutes to 3 +/- 1 minute (P < 0.001). A significant gain in LV CNR was detected between 1.5T and 3T with SENSE (43.8 +/- 6.5 vs. 48.4 +/- 7.4, P = 0.01), but no significant gain was detected in RV CNR. The reproducibility of LV and RV measurements between two 1.5T studies was not significantly different from the reproducibility between a 1.5T study and a 3T study with SENSE. CONCLUSION: SENSE imaging at 3T is a reproducible technique for assessing RV and LV structure and function.  相似文献   

8.
OBJECTIVES: We sought to determine the agreement for the quantification of cardiac chamber dimensions, volumes, and myocardial mass between dual-source computed tomography (DSCT) and echocardiography. MATERIAL AND METHODS: One-hundred patients underwent DSCT and transthoracal echocardiography within 1 week. Measurements of dimensions were obtained in standardized planes in end-systole and end-diastole and included the anterior-posterior diameter of the left atrium, septal and posterior wall thickness, and inner diameter of the left ventricle. Global left ventricular (LV) functional parameters [end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction, and LV myocardial mass (LVMM)] were computed using semiautomated software. ESV, EDV, and LVMM were normalized to the body-surface-area (BSA). Intraobserver and interobserver agreement of DSCT analysis was assessed. Correlation between DSCT and echocardiography was tested through linear regression and Bland-Altman analysis. RESULTS: DSCT measurements had an excellent inter- and intraobserver agreement with close limits of agreement (R = 0.85-0.99, P < 0.001). All measurements obtained with DSCT showed a significant correlation with echocardiography, with close limits of agreement between modalities for all parameters. Significant differences of the mean difference from zero were only found for septal and posterior wall thickness (P < 0.001) (with a homogenous underestimation) and for EDV/BSA (P < 0.05) (showing an overestimation) in DSCT compared with echocardiography. No significant directional measurement bias was found for any parameter except for LVMM/BSA (R = 0.24, P < 0.05). CONCLUSION: Our results indicate that DSCT provides reliable measurements of LV dimensions, volumes, and myocardial mass with similar values as compared with echocardiography.  相似文献   

9.
BACKGROUND: Observer variability of 99Tcm-sestamibi myocardial perfusion imaging (MPI) has rarely been investigated. The aim of our study was to evaluate the interpretive reproducibility with this technique. PATIENTS: We report on 108 consecutive male patients with stable angina pectoris, investigated before and after percutaneous transluminal angioplasty (PTCA). METHODS: A 2-day rest/stress 99Tcm-sestamibi gated single photon emission computed tomography (SPECT) protocol was used. MPI was interpreted by two independent observers without knowledge of clinical data, using a 20-segment scoring model. RESULTS: Intra- and interobserver agreement was found to be good to excellent (kappa = 0.71-0.85) with regard to the overall diagnosis as well as the individual vessel diagnosis (kappa = 0.60-0.87). However, agreement was higher for left anterior descending coronary artery (LAD) and left circumflex coronary artery (LCX) vascular territories than for the right coronary artery (RCA) territory. Moderate to good intraobserver agreement (kappa = 00.54-0.68) and slightly lower interobserver agreement (kappa = 0.52-0.56) was found for segmental score interpretation. When comparing the interpretive reproducibility before and after PTCA intra- and interobserver agreement was better after PTCA, probably reflecting the increase in normal scans after revascularization. CONCLUSIONS: In a group of consecutive male patients with stable angina pectoris interpretive reproducibility (overall and individual vessel diagnosis) was good to excellent. However, segmental scoring reproducibility was moderate to good.  相似文献   

10.
A prospective study approved by the local ethics committee was performed to establish the normal range and reproducibility of myocardial T1 values as assessed with single-breath-hold T1 mapping with high spatial resolution. With a 1.5-T magnetic resonance (MR) imaging system, baseline and contrast material-enhanced modified Look-Locker inversion recovery, or MOLLI, imaging was performed in 15 healthy volunteers who had given written informed consent. Image quality scores and myocardial T1 values were derived for standard short-axis segments and sections. Results were compared with those from a second MR imaging study performed on the same day (baseline only) and those from a third study performed on a different day (baseline and contrast enhanced; eight volunteers). Intra- and interobserver agreement were determined. Myocardial T1 maps were obtained rapidly in a reproducible fashion. A normal range for baseline and postcontrast myocardial T1 was established (baseline mean T1 in short-axis sections, 980 msec +/- 53 [standard deviation]; 95% confidence interval: 964, 997; number of sections, 43). This technique could enable direct quantification of changes in tissue characteristics in ischemic and inflammatory myocardial diseases.  相似文献   

11.
PURPOSE: To evaluate prospectively the diagnostic accuracy of magnetic resonance (MR) imaging in the identification of cartilage abnormalities at 3.0 and 1.5 T in cadaveric wrists, with gross pathologic findings as the standard of reference. MATERIALS AND METHODS: The study was approved by the hospital review board, and informed consent for scientific use of body parts had been provided by the subjects. Ten cadaveric wrists from nine subjects were evaluated (seven left wrists, three right; five women, four men; age range, 46-99 years; mean age, 80 years). All wrists were examined with MR imaging in a 1.5-T unit and a 3.0-T unit, with the same imaging protocol used with both systems. Imaging protocol included intermediate-weighted fast spin-echo sequences and three-dimensional gradient-recalled-echo sequences. Cartilage surfaces of the proximal and distal carpal row, including the scaphotrapeziotrapezoidal joint, were analyzed in blinded fashion by two musculoskeletal radiologists working independently and then in consensus. Open inspection of the wrists was used as the standard of reference. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated. The McNemar test was used to assess differences in diagnostic assessment. Weighted kappa values were calculated for interobserver agreement. RESULTS: One hundred seventy cartilage surfaces were graded. The sensitivity and specificity for cartilage lesions were 43%-52% and 82%-89%, respectively, at 1.5 T and 48%-52% and 82% at 3.0 T. Differences in assessment did not reach statistical significance (P > .99). Highest sensitivities were found in the proximal carpal row (67%-71%); lowest sensitivities were found in the distal carpal row (14%-24%). Interobserver agreement was higher for imaging at 3.0 T (kappa = 0.634) than at 1.5 T (kappa = 0.267). CONCLUSION: The performance of MR imaging for the detection of articular cartilage abnormalities in the wrist depends on anatomic location. Interobserver agreement is higher for imaging at 3.0 than at 1.5 T, but diagnostic performances were not significantly different (P > .99) at either field strength.  相似文献   

12.
OBJECTIVE: Cardiac magnetic resonance imaging (MRI) at 3.0 T has recently become available and potentially provides a significant improvement of tissue contrast in T1-weighted imaging techniques relying on Gd-based contrast enhancement. Imaging at high-field strength may be especially advantageous for methods relying on strong T1-weighting and imaging after contrast material administration. The aim of this study was to compare cardiac delayed enhancement (DE) MRI at 3.0 T and 1.5 T with respect to image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) between infarcted and normal myocardium. MATERIALS AND METHODS: Forty consecutive patients with history of myocardial infarction were examined at 3.0 T (n = 20) or at 1.5 T (n = 20). Myocardial function was assessed using cine steady-state-free-precession (SSFP) sequences (TR 3.1 milliseconds, TE 1.6 milliseconds, flip angle 70 degrees , and a matrix of 168 x 256 at 1.5 T and TR 3.4 milliseconds, TE 1.7 milliseconds, flip angle 50 degrees and a matrix of 168 x 256 at 3.0 T), acquired in long- and short-axes views. DE images were obtained 15 minutes after the administration of 0.15 mmol of Gd-DTPA/kg body weight using a segmented inversion recovery prepared gradient echo sequence at 1.5 T (TR 9.6 milliseconds, TE 4.4 milliseconds, flip angle 25 degrees , matrix 160 x 256, bandwidth 140 Hertz/pixel) and at 3.0 T (TR 9.8 milliseconds, TE 4.3 milliseconds, flip angle 30 degrees , matrix 150 x 256, bandwidth 140 Hertz/pixel). For image analysis, standardized SNR and CNR measurements were performed in infarcted and remote myocardial regions. Two independent observers rated image quality on a 4-point scale (0 = poor image quality, 1 = sufficient image quality, 2 = good image quality, 3 = excellent image quality). RESULTS: High diagnostic image quality was obtained in all patients. Rating of mean image quality was 2.2 +/- 0.8 at 1.5 T and 2.5 +/- 0.6 at 3.0 T (P = 0.012) for observer 1 and 2.2 +/- 0.7 at 1.5 T and 2.6 +/- 0.6 at 3.0 T (P = 0.003) for observer 2, respectively. Interobserver agreement was good (kappa = 0.68 at 1.5 T and 0.78 at 3.0 T). SNR measurements yielded a mean SNR of 37.8 +/- 13.9/22.9 +/- 6.0 in infarcted myocardium (P < 0.001) and 5.6 +/- 2.2/5.9 +/- 2.4 in normal myocardium (P = 0.45) at 3.0 T/1.5 T, respectively. CNR measurements revealed mean values of 32.4 +/- 13.0/16.7 +/- 5.4 (P< 0.001) at 3.0 T/1.5 T, respectively. CONCLUSIONS: Delayed enhancement MRI at 3.0 T is feasible and provides superior image quality compared with 1.5 T. Furthermore, using identical contrast doses, increased SNR and CNR values were recorded at 3.0 T.  相似文献   

13.
PURPOSE: To prospectively validate the ability of customized three-dimensional (3D) software to enable bronchial tree skeletonization, orthogonal reconstruction of the main bronchial axis, and measurement of cross-sectional wall area (WA) and lumen area (LA) of any visible bronchus on thin-section computed tomographic (CT) images. MATERIALS AND METHODS: Institutional review board approval and patient agreement and informed consent were obtained. Software was validated in a phantom that consisted of seven tubes and an excised human lung obtained and used according to institutional guidelines. In vivo validation was performed with multi-detector row CT in six healthy subjects (mean age, 47 years; range, 20-55 years). Intra- and interobserver agreement and reproducibility over time for bronchial tree skeletonization were evaluated with Bland-Altman analysis. Concordance in identifying bronchial generation was assessed with the kappa statistic. WA and LA obtained with the manual method were compared with WA and LA obtained with validated software by means of the Wilcoxon test and Bland-Altman analysis. RESULTS: WA and LA measurements in the phantom were reproducible over multiple sessions (P > .90) and were not significantly different from WA and LA assessed with the manual method (P > .62). WA and LA measurements in the excised lung and the subjects were not different from measurements obtained with the manual method (intraclass correlation coefficient > 0.99). All lobar bronchi and 80.8% of third generation bronchi, 72.5% of fourth generation bronchi, and 37.7% of fifth generation bronchi were identified in vivo. Intra- and interobserver agreement and reproducibility over time for airway skeletonization and concordance in identifying bronchial generation were good to excellent (intraclass correlation coefficient > 0.98, kappa > 0.54, respectively). CONCLUSION: This method enables accurate and reproducible measurement of WA and LA on reformatted CT sections perpendicular to the main axis of bronchi visible on thin-section CT scans.  相似文献   

14.
BACKGROUND AND PURPOSE: The new 3.0-T imagers theoretically yield double the signal-to-noise ratio (SNR) and spectral resolution of 1.5-T instruments. To assess the possible improvements for multivoxel 3D proton MR spectroscopy (1H-MRS) in the human brain, we compared the SNR and spectral resolution performance with both field strengths. METHODS: Three-dimensional 1H-MRS was performed in four 21-29-year-old subjects at 1.5 and 3.0 T. In each, a volume of interest of 9 x 9 x 3 cm was obtained within a field of view of 16 x 16 x 3 cm that was partitioned into four (0.75-cm-thick) 16 x 16-voxel sections, yielding 324 (0.75-cm3) signal voxels per examination. RESULTS: In an acquisition protocol of approximately 27 min, average voxel SNRs increased 23-46% at 3.0 versus 1.5 T in the same brain regions of the same subjects. SNRs for N-acetylaspartate, creatine, and choline, respectively, were as follows: 15.3 +/- 4, 8.2 +/- 2.2, and 8.0 +/- 2.0 at 1.5 T and 22.4 +/- 7.0, 10.1 +/- 3.5, and 10.1 +/- 3.6 at 3.0 T. Spectral resolution (metabolite linewidths) were 3.5 +/- 0.5 Hz at 1.5 T versus 6.1 +/- 1.5 Hz at 3.0 T in approximately 900 voxels. Spectral baselines were noticeably flatter at 3.0 T. CONCLUSION: Expected gains in SNR and spectral resolution were not fully realized in a realistic experiment because of intrinsic and controllable factors. However, the 23-46% improvements obtained enable more reliable peak-area estimation and an 1H-MRS acquisition approximately 50% shorter at 3.0 versus 1.5 T.  相似文献   

15.
In this phase I clinical study, the new ultrasmall superparamagnetic iron oxide contrast agent, NC100150 Injection (Nycomed AS, Oslo, Norway, a part of Nycomed Amersham), was assessed for first-pass magnetic resonance myocardial perfusion studies and its ability to produce equilibrium signal changes, as a possible indicator of myocardial blood volume. Data were acquired in 18 healthy male volunteers at 0.5 T and 1.5 T. At both field strengths, first-pass studies using T1-weighted sequences were acquired. Long TE spin-echo echoplanar imaging (EPI) was used at 0.5 T and short TE fast low-angle shot (FLASH) imaging at 1.5 T. With both sequences, T1 effects dominated the images for low doses, and time intensity curves potentially suitable for perfusion analysis were generated. At higher doses, T2 and T2* effects were observed. At 1.5 T, these predominantly affected the blood pool signal; however, at 0.5 T the myocardial signal was also involved, reflecting the relative T2 and T2* sensitivity of the spin-echo EPI sequence as a result of the long TE and long readout window, respectively. Equilibrium changes were assessed at both field strengths using T1-weighted FLASH sequences and in addition at 1.5 T using T2*-weighted gradient-echo EPI. With the T1-weighted images at both field strengths, signal changes were observed in all subjects; however, no dose-response relationship could be shown. With the T2*-weighted EPI there was significantly lower signal (P < 0.05) with the 3 and 4 mg/kg doses than with the 2 mg/kg dose. In conclusion, NC100150 Injection is useful for first-pass myocardial perfusion using T1-weighted sequences; however, low doses in combination with short TE sequences are required to minimize sensitivity to T2* effects. Equilibrium signal changes can also be induced in the myocardium. More work is required to optimize the imaging sequences and dose of NC100150 Injection for first-pass studies and also to determine whether the equilibrium signal changes can be used to measure myocardial blood volume changes in ischemic heart disease.  相似文献   

16.
To prospectively evaluate feasibility, image quality and diagnostic accuracy of dynamic MR imaging the pelvic floor at 3.0 T in patients with urinary incontinence and to compare these results with those of MRI performed at 1.5 T. Ten patients with the diagnosis of urinary incontinence (clinical symptoms, clinical examination, pelvic ultrasound) were examined with a dynamic balanced FFE (B-FFE) sequence at 1.5 T and 3.0 T on the same day in a randomized order. Spatial (1.5 × 1.5 × 8 mm) and temporal (0.44 s) resolution at 3.0 T were comparable to the 1.5-T B-FFE sequence. Two radiologists assessed visual signal to noise (three-point scale), artefact level (five-point scale) and final MR diagnoses with regard to pelvic floor weakness (independent analysis). The diagnoses obtained at 1.5-T field strength and the results of the clinical tests served as standard of reference. In addition, ROI-based quantitative measurements were performed to assess different tissue contrasts at both field strengths. Data were analyzed for statistical differences by using the Wilcoxon's matched pairs test and the marginal homogeneity test. Visual signal to noise was rated higher at 3.0 T for all ten studies by both radiologists. With regard to artefact level, there was no statistically significant difference between the studies obtained at 3.0 T as compared to the corresponding 1.5-T studies (marginal homogeneity test: p = 0.18 for reviewer 1 and 0.41 for reviewer 2). Mean artefact level was rated minor to moderate by both reviewers for both field strengths (excellent interobserver agreement with Kendall-W value of 0.973). Except for a higher tissue contrast between fat and urethra at 1.5 T, there were no statistically significant differences between tissue contrast at 1.5 T as compared to 3.0 T (Wilcoxon's test). Final MR diagnoses regarding pelvic floor weakness did not differ between 3.0-T and 1.5-T field strength and correlated well with the results of the clinical tests. Dynamic pelvic floor MR imaging is feasible at 3.0 T. Our preliminary data indicate that evaluation of pelvic floor disease seems to be possible with 3.0 T equally well as compared to 1.5 T.  相似文献   

17.
Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. METHODS: Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. RESULTS: LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. CONCLUSION: Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.  相似文献   

18.
A system for grading lumbar nerve root compromise (no compromise, contact of disk material with nerve root, deviation of nerve root, and compression of nerve root) was tested in the interpretation of routine magnetic resonance images of 500 lumbar nerve roots in 250 symptomatic patients. Intra- and interobserver reliability was assessed for three independent observers. In the 94 nerve roots evaluated at surgery, surgical grading was correlated with image-based grading. kappa statistics indicated substantial agreement between different readings by the same observer and between different observers (for intraobserver agreement, kappa = 0.72-0.77; for interobserver agreement, kappa = 0.62-0.67). Correlation of image-based grading with surgical grading was high (r = 0.86). The image-based grading system enabled reliable evaluation and reporting of nerve root compromise.  相似文献   

19.
Purpose: To assess the intra- and interobserver agreement of ultrasound assessment of clubfoot patho-anatomy in early childhood.

Material and Methods: Seventeen clubfeet in 12 children were sequentially scanned by 2 examiners and repeat assessments were carried out independently. Three well-defined imaging planes were chosen to evaluate navicular displacement: the medial malleolus-navicular (MM-N) distance, soft tissue thickness, talar deformity and the calcaneo-cuboid (C-C) distance. Intra- and interobserver agreement was analysed using Cohen's kappa for the discrete variables and by Bland-Altman's graphic technique for measurements.

Results: Kappa values for intra-observer agreement were 0.82 for navicular displacement, 0.93 for “talar head pointing laterally”, and 0.70 for medial deviation of the talar neck. The corresponding interobserver kappa values were 0.70, 0.68, and 0.36. The mean difference between the two observers for the MM-N distance was 0.42±3.0 mm and for the soft tissue thickness 0.35±2.0 mm; the C-C distance showed a mean interobserver distance of 0.0±2.8 mm.

Conclusion: The imaging planes used to study the talo-navicular and calcaneo-cuboid relationships are reproducible and relatively easy to learn. Intra- and interobserver assessments were acceptable for MM-N distance, soft tissue thickness, navicular displacement and “talar head pointing laterally”, but questionable for the C-C distance and medial deviation of the talar neck.  相似文献   

20.
RATIONALE AND OBJECTIVES: To compare manganese dipyridoxyl diphosphate (MnDPDP)-enhanced magnetic resonance imaging (MRI) with cine MRI for distinguishing the dysfunctional myocardium from the normal myocardium. MATERIALS AND METHODS: Seventeen cats were prepared for acute myocardial infarction with 90 minutes of occlusion followed by 120 minutes of reperfusion. In vivo inversion-recovery gradient-recalled echo MRI and cine MRI were performed. Two radiologists independently analyzed the MR images and recorded the size of the unenhanced area on the MnDPDP-enhanced MR images as well as that of the dysfunctional area on the cine MR images. Agreement between these abnormal areas was evaluated using Bland-Altman analysis. Interobserver agreement was assessed using Bland-Altman analysis. RESULTS: The sizes of the unenhanced area on the MnDPDP-enhanced MR images and the dysfunctional area on the cine MR images showed good agreement on Bland-Altman analysis (the limits of agreement: observer 1= 1.8% +/- 11.6, observer 2 = 0.1% +/- 9.9). The abnormal segments on both types of MR imaging showed a good interobserver agreement (the limits of agreement: MnDPDP-enhanced MRI = 0.3% +/- 7.6, cine MRI = -1.4% +/- 10.9). CONCLUSION: The size of the dysfunctional area on the cine MR images was well correlated with that of the unenhanced area on the MnDPDP-enhanced MR images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号