首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Szilvassy  SJ; Cory  S 《Blood》1993,81(9):2310-2320
Lymphomyeloid stem cells from the bone marrow of C57BL/6 mice treated with 5-fluorouracil (5-FU) were characterized with respect to 12 parameters using fluorescence-activated cell sorting and a competitive long-term repopulation assay. Stem cells were larger than lymphocytes and exhibited side light-scatter characteristic of blast cells. Most expressed low levels of Thy-1.2, high levels of Sca-1 (Ly6-A/E), H-2Kb, and AA4.1 antigens and stained brightly with rhodamine-123. Significantly, most long-term repopulating cells also expressed CD4, some at high density. In addition, a significant proportion displayed low to medium levels of the "lineage-specific" markers CD45R (B220), Gr- 1, and TER-119. A simple and rapid multiparameter sorting procedure enriched the stem cells 100-fold and substantially removed most other clonogenic cell types, including day 12 spleen colony-forming cells. Cells able to generate cobblestone colonies on stromal cells in vitro were co-enriched. Lethally irradiated mice transplanted with limiting numbers of the sorted stem cells did not survive unless cotransplanted with "compromised" marrow cells prepared by prior serial transplantation and shown to be depleted of long-term repopulating activity. A significant number of recipients transplanted with 25 to 100 sorted cells contained donor-derived B and T lymphocytes and granulocytes in their peripheral blood for at least 6 months. Limiting dilution analysis in vivo indicated that the frequency of competitive long-term repopulating units (CRU) in the sorted population was at least 1 in 60 cells. The calculated frequency of CRU was largely independent of the time of recipient analysis between 10 and 52 weeks, indicating that highly enriched stem cells can be recruited relatively early in certain transplant settings. This simple enrichment and assay strategy for repopulating hematopoietic stem cells should facilitate further analysis of their regulation in vivo.  相似文献   

2.
Pawliuk  R; Eaves  C; Humphries  RK 《Blood》1996,88(8):2852-2858
Recent assessment of the long-term repopulating activity of defined subsets of hematopoietic cells has offered new insights into the characteristics of the transplantable stem cells of this system; however, as yet, there is very little known about mechanisms that regulate their self-renewal in vivo. We have now exploited the ability to quantitate these cells using the competitive repopulating unit (CRU) assay to identify the role of both intrinsic (ontological) and extrinsic (transplanted dose-related) variables that may contribute to the regulation of CRU recovery in vivo. Ly5.1 donor cells derived from day-14.5 fetal liver (FL) or the bone marrow (BM) of adult mice injected 4 days previously with 5-fluorouracil were transplanted at doses estimated to contain 10, 100, or 1,000 long-term CRU into irradiated congenic Ly5.2 adult recipient mice. Eight to 12 months after transplantation, there was a complete recovery of BM cellularity and in vitro clonogenic progenitor numbers and a nearly full recovery of day-12 colony-forming unit-spleen numbers irrespective of the number or origin of cells initially transplanted. In contrast, regeneration of Ly5.1+ donor-derived CRU was incomplete in all cases and was dependent on both the origin and dose of the transplant, with FL being markedly superior to that of adult BM. As a result, the final recovery of the adult marrow CRU compartment ranged from 15% to 62% and from 1% to 18% of the normal value in recipients of FL and adult BM transplantation, respectively, with an accompanying maximum CRU amplification of 150- fold for recipients of FL cells and 15-fold for recipients of adult BM cells. Interestingly, the extent of CRU expansion from either source was inversely related to the number of CRU transplanted. These data suggest that recovery of mature blood cell production in vivo may activate negative feedback regulatory mechanisms to prematurely limit stem cell self-renewal ability. Proviral integration analysis of mice receiving retrovirally transduced BM cells confirmed regeneration of totipotent lymphomyeloid repopulating cells and provided evidence for a greater than 300-fold clonal amplification of a single transduced stem cell. These results highlight the differential regenerative capacities of CRU from fetal and adult sources that likely reflect intrinsic, genetically defined determinants of CRU expansion but whose contribution to the magnitude of stem cell amplification ultimately obtained in vivo is also strongly influenced by the initial number of CRU transplanted. Such findings set the stage for attempts to enhance CRU regeneration by administration of agents that may enable full expression of regenerative potential or through the expression of intracellular gene products that may alter intrinsic regenerative capacity.  相似文献   

3.
Cashman JD  Eaves CJ 《Blood》2000,96(12):3979-3981
Transplantable human hematopoietic stem cells (competitive repopulating units [CRU]) can be quantitated based on their ability to produce large populations of lymphoid and myeloid progeny within 6 weeks in the marrow of intravenously injected, sublethally irradiated NOD/SCID mice. It is shown that the proportions of total injected human fetal liver and cord blood CRU in the marrow of mice 24 hours after transplantation are 5% and 7%, respectively, as determined by limiting-dilution assays in other primary and secondary NOD/SCID mice. The similarity in these 2 seeding efficiency values suggests that mechanisms regulating the ability of human hematopoietic stem cells to enter the marrow from the blood, at least in this xenotransplant model, do not change between fetal life and birth. In addition, it appears that previously reported human stem cell frequencies and their in vivo self-renewal activity measured in NOD/SCID mice have been markedly underestimated. (Blood. 2000;96:3979-3981)  相似文献   

4.
Analysis of the stem cell sparing properties of cyclophosphamide   总被引:3,自引:0,他引:3  
OBJECTIVES: Cyclophosphamide was examined for its ability to spare the most primitive hematopoietic stem cell (PHSC). METHODS: C57BL6/J mice (Groups A and B) were sacrificed 24 h and 4-6 wk, respectively, after a single or second injection of low-dose cyclophosphamide (90 mg/kg) on days 1, 3, 7, or 15. A competitive repopulation assay was then performed, using B6-HbbdGpi-1a competitor cells, to determine the repopulating ability of exposed PHSC. Results and CONCLUSIONS: PHSC function was preserved after a single injection of cyclophosphamide and after a second injection on days 7 and 15 in both groups. In Group A, PHSC repopulating ability declined after a second injection on days 1 and 3 (p<0.05 only for day 1), as did repopulating units [RU]; PHSC numbers did not. In Group B, an insignificant decrease in repopulating ability and RU numbers was observed after a second injection on days 1 and 3, suggesting different etiologies for losses in the 2 groups, or correction of drug-induced defects within 1 month of cyclophosphamide administration. Total RU increased in single, day 1, 7 and 15 treatment groups. A significant number of marrow cells entered the S phase after cyclophosphamide dosing on day 3, and it is possible that a relationship exists between cell cycling and replicative damage. DNA damage was also increased 1 and 3 d after cyclophosphamide administration, although the significance of differences from controls was not definitive. CONCLUSION: Low-dose cyclophosphamide can spare stem cells, depending upon the timing of subsequent doses.  相似文献   

5.
Hematopoietic stem cells express Tie-2 receptor in the murine fetal liver   总被引:5,自引:5,他引:5  
Hsu HC  Ema H  Osawa M  Nakamura Y  Suda T  Nakauchi H 《Blood》2000,96(12):3757-3762
Tie-2 receptor tyrosine kinase expressed in endothelial and hematopoietic cells is believed to play a role in both angiogenesis and hematopoiesis during development of the mouse embryo. This article addressed whether Tie-2 is expressed on fetal liver hematopoietic stem cells (HSCs) at day 14 of gestation. With the use of anti-Tie-2 monoclonal antibody, its expression was detected in approximately 7% of an HSC population of Kit-positive, Sca-1-positive, lineage-negative or -low, and AA4.1-positive (KSLA) cells. These Tie-2-positive KSLA (T(+) KSLA) cells represent 0.01% to 0.02% of fetal liver cells. In vitro colony and in vivo competitive repopulation assays were performed for T(+) KSLA cells and Tie-2-negative KSLA (T(-) KSLA) cells. In the presence of stem cell factor, interleukin-3, and erythropoietin, 80% of T(+) KSLA cells formed colonies in vitro, compared with 40% of T(-) KSLA cells. Long-term multilineage repopulating cells were detected in T(+) KSLA cells, but not in T(-) KSLA cells. An in vivo limiting dilution analysis revealed that at least 1 of 8 T(+) KSLA cells were such repopulating cells. The successful secondary transplantation initiated with a limited number of T(+) KSLA cells suggests that these cells have self-renewal potential. In addition, engraftment of T(+) KSLA cells in conditioned newborn mice indicates that these HSCs can be adapted equally by the adult and newborn hematopoietic environments. The data suggest that T(+) KSLA cells represent HSCs in the murine fetal liver. (Blood. 2000;96:3757-3762)  相似文献   

6.
Marrow cells from male mice pretreated with 5-fluorouracil were infected with helper-free neomycin-resistant (neor) recombinant retrovirus and then used to initiate long-term cultures (LTC) on irradiated adherent marrow feeder layers. Four weeks later LTC cells were harvested and injected into lethally irradiated female recipients either alone or together with 2 x 10(5) female marrow cells with selectively compromised long-term repopulating potential to assay for totipotent and competitive repopulating units (CRU), respectively. A total of 46 unique clones were detected in recipients 5 wk to 7 mo after transplant. Half of these clones (22 of 46) included both lymphoid and myeloid progeny. Eight of the 22 lympho-myeloid clones were represented in multiple recipients, in some cases after injection of limiting numbers of CRU, thus indicating repopulation from sibling totipotent stem cells generated during the initial 4-wk period in LTC. Serial analysis of cells released into the nonadherent fraction of LTC for up to 7 wk provided additional evidence of the continuing proliferation in LTC of totipotent stem cells with long-term repopulating potential. The frequency of CRU determined from limiting-dilution analyses of LTC-derived cells was the same for recipients analyzed at 5 wk or 7 mo after transplantation and was also the same whether marrow or thymus repopulation was assessed. These assays showed that concurrent with the expansion of some totipotent cells revealed by retroviral marking, there was a slow but net 6.5-fold decrease in total CRU numbers after 4 wk in LTC. These results show the capacity of some totipotent hematopoietic stem cells to be maintained and amplified over extensive time periods in vitro without diminution of their long-term in vivo repopulating potential. These results also set the stage for analogous studies of human stem cell selection and expansion in vitro, which may be important for future gene therapy protocols.  相似文献   

7.
Although hematopoiesis is known to originate in a population of very primitive cells with both lymphopoietic and myelopoietic potential, a procedure for enumerating such cells has to date not been available. We now describe a quantitative assay for long-term repopulating stem cells with the potential for reconstituting all hematopoietic lineages. This assay has two key features. The first is the use of competitive repopulation conditions that ensure not only the detection of a very primitive class of hematopoietic stem cells but also the survival of lethally irradiated mice transplanted with very low numbers of such cells. The second is the use of a limiting-dilution experimental design to allow stem cell quantitation. The assay involves transplanting limiting numbers of male "test" cells into lethally irradiated syngeneic female recipients together with 1-2 x 10(5) syngeneic female marrow cells whose long-term repopulating ability has been compromised by two previous cycles of marrow transplantation. The proportion of assay recipients whose regenerated hematopoietic tissues are determined to contain greater than or equal to 5% cells of test cell origin (male) greater than or equal to 5 weeks later is then used to calculate the frequency of competitive repopulating units (CRU) in the original male test cell suspension (based on Poisson statistics). Investigation of this assay system has shown that all three potential sources of stem cells (test cells, compromised cells, and the host) can under appropriate circumstances contribute to long-term hematopoietic regeneration, thus establishing both the competitive pressure of hematopoietic stem cells in the cotransplanted compromised population and in the host, and the need to use genetic markers to track the specific contribution of the injected test cells. Analysis of the frequency of CRU in test marrow suspensions that varied widely in their CRU content gave similar values when endpoints of either 5 or 10 weeks posttransplantation were used and when either recipient marrow or thymus was used to identify progeny populations. In addition, repopulation of marrow and thymus was found to be associated in most mice injected with limiting numbers of test cells. These findings are consistent with the conclusion that the assay is highly selective for a very primitive, totipotent, reconstituting hematopoietic stem cell and should therefore be particularly useful in future gene therapy-oriented research as well as for more basic studies of hematopoietic stem cell regulation and differentiation.  相似文献   

8.
OBJECTIVE: Primitive hematopoietic stem cell function was assessed after cyclophosphamide with granulocyte-macrophage colony-stimulating factor (GM-CSF), with or without preadministration of interleukin-1, using competitive repopulation. METHODS: C57B6/J mice injected with one or four biweekly intravenous injections of cyclophosphamide, 200 mg/kg, received granulocyte-macrophage colony-stimulating factor, 1 microg, subcutaneously for 5 days, beginning 24 hours after cyclophosphamide. Alternatively, mice were injected with interleukin-1, 1 microg, 20 hours before administration of drug or drug and cytokine. Marrow obtained from mice sacrificed 4 weeks after the last dose of drug or drug and cytokine was used in competitive repopulation. RESULTS: Significant reductions in marrow repopulating ability occurred after a single dose of cyclophosphamide or multiple injections. Repopulating units (RU) were calculated, and both binomial and Poisson models for estimation of primitive hematopoietic stem cell (PHSC) numbers were used. RU were significantly diminished for all treatment groups when compared to controls. PHSC numbers were not significantly affected by either regimen of cyclophosphamide given alone. Addition of GM-CSF to cyclophosphamide, whether the latter was given in single or multiple doses, led to further, although insignificant, declines in repopulating ability, as well as PHSC and RU numbers. Interleukin-1 usage exacerbated the observed repopulating defect. There was evidence of replicative failure in individual cells, indicating a qualitative defect also. SUMMARY: Additive stem cell depletion and qualitative replicative defect occur after chemotherapy-cytokine usage. However, the replicative defect of PHSC seen after addition of GM-CSF is not significantly worse than that seen with cytotoxic drug use alone.  相似文献   

9.
The purpose of this study was to develop a simple assay for quantitating transplantable human lymphomyeloid stem cells (competitive repopulating units [CRU]) to enable comparison among the numbers and types of progeny generated in NOD/ SCID mice by such cells from different ontologic sources. Sub-lethally irradiated NOD/SCID mice were transplanted with varying numbers of CD34+ cell-enriched suspensions of human fetal liver, cord blood, or adult marrow cells. The types and numbers of human cells present in the marrow of the mice were measured 6 to 8 weeks later using flow cytometry, in vitro progenitor assays, and secondary transplant endpoints. Frequencies of human CRU obtained by limiting dilution analysis of mice repopulated 6 to 8 weeks posttransplant were the same when the lymphoid and myeloid progeny of CRU were both detected by specific immunophenotypic endpoints as when in vitro myeloid progenitor assays were used to detect CRU myelopoietic activity. The average output per injected CRU of very primitive cells (CD34(+)CD38(-) cells, LTC-IC, and secondary CRU) was found to be highest for fetal liver CRU and progressively decreased (up to >100-fold) for ontologically older CRU. In contrast, the average output of mature cells was highest for cord blood CRU and lowest for fetal liver CRU, despite equivalent production of intermediate progenitors. Differences in the relative numbers of mature lymphoid, myeloid, and erythroid progeny produced by CRU from different ontologic sources were also seen. Finally, evidence of a transplantable human lymphoid-restricted cell present throughout ontogeny was obtained. A simpler and easier assay for enumerating transplantable human stem cells with lymphomyeloid reconstituting activity has been described, and its specificity and sensitivity validated. The use of this assay has revealed ontogeny-associated differences in a variety of functional attributes of human stem cells proliferating and differentiating in an in vivo, but xenogeneic, setting.  相似文献   

10.
The stem cell leukemia (SCL) gene is essential for the development of hematopoietic stem cells in the embryo. Here, we used a conditional gene targeting approach to examine the function of SCL in adult hematopoietic stem cells (HSCs). Flow cytometry of bone marrow from SCL-deleted mice demonstrated a 4-fold increase in number of Lin(neg) c-kit(+) Sca-1(+) cells. Despite this increase in the number of phenotypic HSCs, competitive repopulation assays demonstrated a severe multilineage defect in repopulation capacity by SCL-deleted bone marrow cells. SCL-heterozygous cells also showed a mild repopulation defect, thus suggesting haploinsufficiency of SCL. The transplantation defect of SCL-deleted cells was observed within 4 weeks of transplantation, indicating a defect in a multipotent progenitor or short-term repopulating HSCs. Although the defect persisted in secondary transplants, it remained relatively stable, suggesting that SCL was not required for self-renewal of the HSCs. Generation of SCL-deleted cells within SCL-wild-type mice rescued the early repopulating defect. Together, our results suggest that SCL is required for the normal function of short-term repopulating HSCs.  相似文献   

11.
The ability of an infusion of ex vivo expanded hematopoietic cells to ameliorate cytopenia following transplantation of hematopoietic stem cells (HSCs) is controversial. To address this issue, we measured the recovery of circulating leukocytes, erythrocytes, and platelets in lethally irradiated mice transplanted with 10(3) enriched HSCs, with or without their expanded equivalent (EE) generated after 7 days of culture in interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor and Steel Factor. Two HSC populations differing in their content of short-term repopulating progenitors were evaluated. Thy-1loLIN-Sca- 1+ (TLS) bone marrow (BM) is enriched in colony-forming cells (CFCs), day 8 and day 12 spleen colony-forming units (CFU-S) (435 +/- 19, 170 +/- 30, and 740 +/- 70 per 10(3) cells, respectively), and stem cells with competitive long-term repopulating potential (> or = 1 per 43 cells). Thy-1loSca-1+H-2Khl cells (TSHFU) isolated from BM 1 day after treatment of donor mice with 5-fluorouracil (5-FU) are also highly enriched in competitive repopulating units (CRU, > or = 1 per 55 cells), but are depleted of CFCs, day 8 and day 12 CFU-S (171 +/- 8, 0 and 15 +/- 4 per 10(3) cells, respectively). Recipients of 10(3) TLS cells transiently recovered leukocytes to > or = 2,000/microL in 12 days, but sustained engraftment required 25 days. Platelets recovered to > or = 200,000/microL in 15 days, and erythrocytes never decreased below 50% of normal. Mice transplanted with 10(3) TSHFU cells recovered leukocytes in 15 days, and platelets and erythrocytes in 18 days. Recipients of unseparated normal or 5-FU-treated BM cells (containing 10(3) TLS or TSHFU cells) recovered safe levels of blood cells in 9 to 12 days, suggesting that unseparated marrow contains early engrafting cells that were depleted by sorting. Upon ex vivo expansion, total cells, CFCs and day 12 CFU-S were amplified 2,062-,83- and 13-fold, respectively, from TLS cells; and 1,279-, 259- and 708-fold, respectively, from TSHFU cells. Expanded cells could regenerate the majority of lymphocytes and granulocytes in primary (17 weeks) and secondary (26 weeks) hosts and were only moderately impaired compared to fresh HSCs. The EE of TSHFU cells was more potent than that of TLS cells, suggesting that more highly enriched HSCs are more desirable starting populations for this application. When mice were transplanted with 10(3) TSHFU cells and their EE, the duration of thrombocytopenia was shortened from 18 to 12 days, and anemia was abolished. Leukocytes were also elevated on days 9 to 12, although sustained recovery was not accelerated. Anemia was also abrogated in recipients of 10(3) TLS cells and their EE. Early platelet counts were slightly higher than with TLS cells alone, but leukocyte recovery was not improved. These data confirm that TLS cells contribute to early and sustained hematopoiesis, and demonstrate a benefit of ex vivo expanded cells in accelerating engraftment of more primitive TSHFU stem cells depleted of progenitors.  相似文献   

12.
Attempts to maintain or expand primitive hematopoietic stem cells in vitro without the concomitant loss of their differentiative and proliferative potential in vivo have largely been unsuccessful. To investigate this problem, we compared the ability of three cloned bone marrow (BM) stromal cell lines to support the growth of primitive Thy- 1lo Sca-1+H-2Khi cells isolated by fluorescence-activated cell sorting from the BM of Ly-5.2 mice treated 1 day previously with 5-fluo- rouracil. Sorted cells were highly enriched in cobblestone area-forming cells (CAFC), but their frequency was dependent on the stromal cell lines used in this assay (1 per 45 cells on SyS-1; 1 per 97 cells on PA6). In the presence of recombinant leukemia inhibitory factor (LIF), CAFC cloning efficiency was increased to 1 per 8 cells on SyS-1 and 1 per 11 cells on PA6, thus showing the high clonogenicity of this primitive stem cell population. More primitive stem cells with competitive repopulating potential were measured by injecting the sorted cells into lethally irradiated Ly-5.1 mice together with 10(5) radioprotective Ly-5.1 BM cells whose long-term repopulating ability has been "compromised" by two previous cycles of marrow transplantation and regeneration. Donor-derived lymphocytes and granulocytes were detected in 66% of animals injected with 50 sorted cells. To quantitate the maintenance of competitive repopulating units (CRU) by stromal cells, sorted cells were transplanted at limiting dilution before and after being cultured for 2 weeks on adherent layers of SyS-1, PA6, or S17 cells. CRU represented 1 per 55 freshly sorted cells. CRU could be recovered from cocultures supported by all three stromal cell lines, but their numbers were approximately-sevenfold less than on day 0. In contrast, the addition of LIF to stromal cultures improved CRU survival by 2.5-fold on S17 and PA6 cells (approximately two-fold to threefold decline), and enabled their maintenance on SyS-1. LIF appeared to act indirectly, because alone it did not support the proliferation of Thy- 1lo Sca-1+H-2Khi cells in stroma-free cultures. Polymerase chain reaction (RT-PCR) analysis revealed that Interleukin-1beta (IL-1 beta) IL-2, IL-6, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, transforming growth factors, LIF, and Steel Factor (SLF) mRNAs were upregulated in SyS-1 within 1 to 6 hours of LIF-stimulation. To determine if increased expression of SLF by LIF-stimulated SyS-1 cells could account for their capacity to support stem cells, sorted calls were cocultured on simian CV-E cells that were transfected with an expression vector encoding membrane-bound SLF, or supplemented with soluble SLF. In both cases, SLF synergized with IL-6 produced endogenously by CV-E cells enabling CAFC growth equivalent to that on LIF-stimulated SyS-1. CAFC development on LIF- stimulated SyS-1 could also be completely abrogated by an anti-SLF antibody. These data provide evidence for a role of LIF in the support of long-term repopulating stem cells by indirectly promoting cytokine expression by BM stroma. Furthermore, we have used quantitative assays to show a maintenance of CRU numbers, with retention of in vivo function following ex vivo culture.  相似文献   

13.
Bodine  DM; Seidel  NE; Orlic  D 《Blood》1996,88(1):89-97
We have examined the repopulating ability of bone marrow and peripheral blood cells collected immediately and at intervals after treatment of donor mice with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF). Using a competitive repopulation assay we showed that the repopulating ability of peripheral blood cells was highest immediately after cytokine treatment and declined to normal levels within 6 weeks of the termination of treatment with G-CSF and SCF. In contrast the repopulating ability of bone marrow cells was low immediately after cytokine treatment and increased to levels that were 10-fold or more greater than marrow from untreated mice by 14 days after termination of treatment with G-CSF and SCF. This high level of repopulating activity declined to normal levels by 6 weeks after termination of treatment with G-CSF and SCF. The high level of repopulating ability was confirmed by injecting cells from G- CSF- and SCF-treated donors into unconditioned recipients. Peripheral blood cells collected immediately after treatment with G-CSF and SCF engrafted into unconditioned mice sevenfold better than an equivalent number of bone marrow cells from untreated mice. Likewise, bone marrow cells collected 14 days after treatment of the donor animal with G-CSF and SCF engrafted at 10-fold higher levels than an equivalent number of bone marrow cells from untreated mice. We conclude that the treatment of donor mice with G-CSF and SCF causes a transient increase in the repopulating ability of peripheral blood and later of bone marrow. These observations may have applications to clinical hematopoietic stem cell transplantation.  相似文献   

14.
OBJECTIVE: Progenipoietin-1 is an agonist of both the granulocyte colony-stimulating factor and fetal liver tyrosine kinase-3 receptors capable of inducing the proliferation of multiple hematopoietic cell lineages. The potential of progenipoietin-1 to mobilize transplantable hematopoietic stem cells into the peripheral blood was evaluated. METHODS: Cohorts of donor mice were treated with either progenipoietin-1, fetal liver tyrosine kinase-3 ligand, granulocyte colony-stimulating factor, or a vehicle control. Hematopoietic progenitor/stem-cell activity in donor blood was assayed by radioprotection, multilineage reconstitution, secondary transplantation, and competitive repopulation. RESULTS: Only 1 microL of peripheral blood from progenipoietin-1-treated donors was required to protect 80% of lethally irradiated mice, while in contrast 1 microL of peripheral blood from granulocyte colony-stimulating factor-treated donors failed to protect any recipients. The radioprotected recipients of progenipoietin-1-treated donor cells showed donor-derived (Ly5.2) multilineage hematopoietic reconstitution for up to 6 months. Serial transplantation studies using bone marrow from radioprotected, chimeric recipients demonstrated long-term donor-derived hematopoiesis, indicating the successful transplantation of multipotent hematopoietic stem cells. The engraftment potential of progenipoietin-1 donor-derived cells was directly compared with donors treated with granulocyte colony-stimulating factor or fetal liver tyrosine kinase-3 ligand alone or in combination. Both spleen colony-forming activity and competitive repopulating activity was highest in the blood from progenipoietin-1-treated donors. CONCLUSIONS: These studies demonstrate that progenipoietin-1 is a potent mobilizer of transplantable hematopoietic stem cells and indicate that this dual-receptor agonist has greater biologic activity than its constituent molecules.  相似文献   

15.
Rebel  VI; Miller  CL; Eaves  CJ; Lansdorp  PM 《Blood》1996,87(8):3500-3507
Varying, limiting numbers of unseparated or purified cells (Ly-5.1), either from 14.5-day-old fetal liver (FL) or from adult bone marrow (BM) were coinjected with 10(5) unseparated BM cells (Ly-5.2) into lethally irradiated adult C57B1/6 recipients (Ly-5.2). The kinetics of donor cell repopulation of the lymphoid and myeloid compartments by Ly- 5.1+ donor hematopoietic stem cells (ie, competitive repopulation units [CRU]) were monitored at various time points after the transplantation by Ly-5 analysis of the peripheral white blood cells (WBC). Recipients that had received on average less than 2 adult BM or FL CRU did not show a significant difference in the level of donor-reconstitution when analyzed 4 weeks after the transplantation, However, at 8 and 16 weeks, the FL recipients showed a significantly higher percentage of donor- derived nucleated peripheral blood cells than did the recipients of adult BM cells. Analysis of individual mice showed that approximately 80% of the recipients of FL CRU showed an increase in mature WBC output between 4 and 8 weeks after transplantation, whereas this occurred in less than 40% in the recipients of adult BM cells. In addition to this effect on mature cell output, the cellularity of the reconstituted BM was significantly higher in recipients of FL CRU than in recipients of adult BM CRU, even at 7 to 9 months after transplantation, which is consistent with an increased clonal expansion of FL CRU. When marrow cells from primary recipients of FL CRU were injected into secondary recipients, a significantly higher percentage of these mice showed donor-reconstitution of their lymphoid and myeloid compartments (P < .01) and to a greater extent (P < .008) as compared with mice that had received marrow cells from primary recipients of similar numbers of adult BM CRU. Taken together, these results show that individual FL CRU exhibit a greater proliferative activity in vivo than similar cells from adult BM that is accompanied by a greater production of daughter CRU.  相似文献   

16.
OBJECTIVE: During aging, hematopoietic stem cell (HSC) exhaustion is more severe in BALB/cByJ (BALB) mice than in C57BL/6J (B6) mice. Our objective is to determine whether HSC exhaustion during development from fetus to adult also is more severe for BALB than for B6 mice. MATERIALS AND METHODS: Hematopoietic stem cells from fetal liver cells (FLCs) and from young adult bone marrow cells (BMCs) were compared using the competitive repopulation assay to measure long-term repopulating ability (LTRA) and HSC expansion after serial transplantation. LTRAs were measured in repopulating units (RU), as the ability to produce donor-type erythrocytes and lymphocytes in lethally irradiated recipients relative to the congenic fresh marrow competitor. To test expansion, FLCs or BMCs were serially transplanted into lethally irradiated carriers whose marrow cells were compared using fluorescence-activated cell staining (FACS), and subsequently tested for LTRA. RESULTS: BALB and B6 FLCs, respectively, repopulated 2.6 and 13.5 times as well as BMCs. LTRAs correlated with HSC expansion for BALB, but not B6. Per million donor cells, CD34(-) HSC-enriched fractions (HEFs) and total RU values were 6.8 and 4.6 times higher for FLCs than for BMCs in BALB carriers, while these ratios were only 1.2 and 0.97 higher in B6 carriers. CONCLUSION: In B6 HSC development, LTRA is dissociated from expansion. Although 1 x 10(6) BMCs have much lower LTRA, they expand HSCs as well as 1 x 10(6) FLCs. HSC expansion is partly exhausted in BALB, but not B6, during development.  相似文献   

17.
18.
Helgason CD  Antonchuk J  Bodner C  Humphries RK 《Blood》2003,102(10):3541-3547
SH2-containing inositol 5-phosphatase (SHIP) is an important negative regulator of cytokine and immune receptor signaling. SHIP-deficient mice have a number of hematopoietic perturbations, including enhanced cytokine responsiveness. Because cytokines play an important role in the maintenance/expansion of the primitive hematopoietic cell pool, we investigated the possibility that SHIP also regulates the properties of cells in these compartments. Primitive hematopoietic cells were evaluated in SHIP-deficient mice and wild-type littermate controls using the colony-forming unit-spleen (CFU-S) and competitive repopulating unit (CRU) assays for multipotent progenitors and long-term lympho-myeloid repopulating cells, respectively. Absence of SHIP was found to affect homeostasis of CFU-S and CRU compartments. Numbers of primitive cells were increased in extramedullary sites such as the spleen of SHIP-deficient mice, although total body numbers were not significantly changed. In vivo cell cycle status of the CRU compartment was further evaluated using 5-fluorouracil (5-FU). SHIP-deficient CRUs were more sensitive to 5-FU killing, indicating a higher proliferative cell fraction. More strikingly, SHIP was found to regulate the ability of primitive cells to regenerate in vivo, as CRU recovery was approximately 30-fold lower in mice that received transplants of SHIP-deficient cells compared with controls. These results support a major role for SHIP in modulating pathways important in homeostasis and regeneration of hematopoietic stem cells, and emphasize the importance of negative cytokine regulation at the earliest stages of hematopoiesis.  相似文献   

19.
OBJECTIVE: Somatic stem cells, which are poorly defined in postnatal mammalian tissues, are attractive candidates for examination of stem cell plasticity. Our goal was to determine the identity of neonatal muscle-derived cells that contain hematopoietic potential and to explore the status of CD45 expression on these cells. MATERIALS AND METHODS: Skeletal muscle from thighs of 4- to 7-day-old mice was harvested, enzymatically digested, and flow cytometrically sorted to yield CD45(-)Sca-1(+)c-kit(-) cells. These cells were examined in hematopoietic colony-forming assays and competitive repopulation assays, and were expanded ex vivo. Additionally, CD45, c-kit, PU.1, and beta globin major expression was tracked over time in cultured cells to assess the possibility of manipulating stem cell differentiation in vitro. RESULTS: Freshly isolated CD45(-)Sca-1(+)c-kit(-) cells were devoid of hematopoietic lineage markers and contained no colony-forming activity but displayed superior long-term competitive repopulating ability when compared to freshly isolated muscle-derived CD45(+)Sca-1(+)c-kit(+) cells. CD45(-)Sca-1(+)c-kit(-) cells expanded ex vivo in 5 ng/mL murine stem cell factor, mFlt-3L, and megakaryocyte growth and development factor (MGDF) for 9 days increased their in vivo hematopoietic repopulating potential 5.3-fold relative to fresh cells. Although fresh cells did not transcribe mRNA of several hematopoietic genes, a small fraction of cells cultured for 9 days acquired cell surface c-kit, and only these cells expressed c-kit and PU.1 mRNA and maintained competitive repopulating ability, suggesting at least myeloid and perhaps lymphoid developmental potential. CONCLUSION: Neonatal murine muscle-derived cells expressing the phenotype CD45(-)Sca-1(+) c-kit(-) are putative adult somatic stem cells with in vitro and in vivo hematopoietic differentiation potential.  相似文献   

20.
Gallacher L  Murdoch B  Wu D  Karanu F  Fellows F  Bhatia M 《Blood》2000,96(5):1740-1747
Using murine models, primitive hematopoietic cells capable of repopulation have been shown to reside in various anatomic locations, including the aortic gonad mesonephros, fetal liver, and bone marrow. These sites are thought to be seeded by stem cells migrating through fetal circulation and would serve as ideal targets for in utero cellular therapy. In humans, however, it is unknown whether similar stem cells exist. Here, we identify circulating hematopoeitic cells present during human in utero development that are capable of multilineage repopulation in immunodeficient NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Using limiting dilution analysis, the frequency of these fetal stem cells was found to be 1 in 3.2 x 10(5), illustrating a 3- and 22-fold enrichment compared with full-term human cord blood and circulating adult mobilized-peripheral blood, respectively. Comparison of in vivo differentiation and proliferative capacity demonstrated that circulating fetal stem cells are intrinsically distinct from hematopoietic stem cells found later in human development and those derived from the fetal liver or fetal bone marrow compartment at equivalent gestation. Taken together, these studies demonstrate the existence of unique circulating stem cells in early human embryonic development that provide a novel and previously unexplored source of pluripotent stem cell targets for cellular and gene-based fetal therapies. (Blood. 2000;96:1740-1747)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号