首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary factors promote obesity and obesity-related disorders, such as fatty liver disease. Natural killer T (NKT) cells are components of the innate immune system that regulate proinflammatory (Th-1) and anti-inflammatory (Th-2) immune responses. Previously, we noted that NKT cells are selectively reduced in the fatty livers of obese, leptin-deficient ob/ob mice and demonstrated that this promotes proinflammatory polarization of hepatic cytokine production, exacerbating lipopolysaccharide (LPS) liver injury in these animals. In the current study, we show that hepatic NKT cells are also depleted by diets that induce obesity and fatty livers in wild-type mice, promoting Th-1 polarization of hepatic cytokine production and sensitization to LPS liver injury despite persistent leptin. Adult male C57BL6 mice fed diets containing high amounts of either fat or sucrose, or combined high-fat, high-sucrose, develop increased hepatic NKT cell apoptosis and reduced liver NKT cells. The hepatic lymphocytes are more Th-1 polarized with increased intracellular interferon gamma and tumor necrosis factor alpha. Mice fed high-fat diets also exhibit more liver injury, reflected by 2-fold greater serum alanine aminotransferase (ALT) than control animals after receiving LPS. In conclusion, when otherwise normal mice are fed with high-fat or sucrose diet, they become obese, develop fatty livers, and acquire hepatic innate immune system abnormalities, including increased NKT cell apoptosis. The latter reduces liver NKT cell populations and promotes excessive hepatic production of Th-1 cytokines that promote hepatic inflammation. These diet-induced alterations in the hepatic innate immune system may contribute to obesity-related liver disease.  相似文献   

2.
Although obesity-related fatty livers are vulnerable to damage from endotoxin, the mechanisms involved remain obscure. The purpose of this study was to determine if immunologic priming might be involved by determining if fatty livers resemble normal livers that have been sensitized to endotoxin damage by Propionibacterium acnes infection. The latter induces interleukin (IL)-12 and -18, causing a selective reduction of CD4+NK T cells, diminished IL-4 production, deficient production of T-helper type 2 (Th-2) cytokines (e.g., IL-10), and excessive production of Th-1 cytokines (e.g., interferon gamma [IFN-gamma]). Liver and spleen lymphocyte populations and hepatic cytokine production were compared in genetically obese, ob/ob mice (a model for obesity-related fatty liver) and lean mice. Obese mice have a selective reduction of hepatic CD4+NK T cells. Serum IL-18 is also increased basally, and the hepatic mRNA levels of IL-18 and -12 are greater after endotoxin challenge. Thus, up-regulation of IL-18 and IL-12 in fatty livers may reduce hepatic CD4+NK T cells. In addition, mononuclear cells from fatty livers have decreased expression of the adhesion molecule, leukocyte factor antigen-1 (LFA-1), which is necessary for the hepatic accumulation of CD4+NK T cells. Consistent with reduced numbers of hepatic CD4+NK T cells, mononuclear cells from fatty livers produce less IL-4. Furthermore, after endotoxin treatment, hepatic induction of IL-10 is inhibited, while that of IFN-gamma is enhanced. Thus, fatty livers have inherent immunologic alterations that may predispose them to damage from endotoxin and other insults that induce a proinflammatory cytokine response.  相似文献   

3.
Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin   总被引:10,自引:0,他引:10  
Concanavalin A-induced hepatotoxicity was compared in lipodystrophic aP2-nSREBP-1c transgenic mice (LD mice) lacking adipose tissue, obese leptin-deficient ob/ob mice, and lean wild-type (WT) mice. Serum leptin and adiponectin were low in LD mice, whereas ob/ob mice had undetectable leptin, but high adiponectin. Protection from hepatotoxicity was observed in ob/ob, but not in LD mice, despite low cytokine levels and reduced T cell activation and hepatic natural killer T cells in both groups. Administration of adiponectin protected LD mice from hepatotoxicity without altering cytokine levels. In contrast, administration of leptin heightened disease susceptibility by restoring cytokine production. Neutralization of TNF alpha protected LD mice from liver damage. Increased in vivo susceptibility to the hepatotoxic effect of TNF alpha was observed in LD mice. In vitro, adiponectin protected primary hepatocytes from TNF alpha-induced death, whereas leptin had no protective effect. In conclusion, although leptin increases susceptibility to hepatotoxicity by regulating cytokine production and T cell activation, adiponectin protects hepatocytes from TNF alpha-induced death.  相似文献   

4.
Li B  Sun R  Wei H  Gao B  Tian Z 《Hepatology (Baltimore, Md.)》2006,43(6):1211-1219
Administration of concanavalin A (Con A) induces a rapid and severe liver injury in mice. Natural killer T (NKT) cells are recognized to be the key effector cells, and a variety of cytokines [e.g., interleukin 4 (IL-4), IL-5, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] have been shown to play vital roles in Con A-induced liver injury, whereas the role of IL-15, a critical cytokine in the development and homeostasis of NKT cells, remains obscure. In this study, pretreatment with IL-15 prevented mice from Con A-induced mortality, elevation of serum transaminase, liver necrosis, and hepatocyte apoptosis. Depletion of NKT cells abolished Con A-induced liver injury, which could be restored by adoptive transfer of purified NKT cells but not by that of in vivo or in vitro IL-15-treated hepatic NKT cells. Furthermore, transfer of wild-type NKT cells to CD1d-/- mice restored liver injury, whereas transfer of IL-15-treated NKT cells did not. IL-15 pretreatment decreased the NKT-derived IL-4, IL-5, and TNF-alpha production, thereby resulting in less infiltration of eosinophils, which play a critical role in Con A-induced liver injury. In conclusion, IL-15 protects against Con A-induced liver injury via an NKT cell-dependent mechanism by reducing their production of IL-4, IL-5, and infiltration of eosinophils. These findings suggest that IL-15 may be of therapeutic relevance in human autoimmune-related hepatitis.  相似文献   

5.
BACKGROUND/AIMS: Bacillus Calmette Guerin (BCG) infection causes hepatic injury following granuloma formation and secretion of cytokines which render mice highly sensitive to endotoxin-mediated hepatotoxicity. This work investigates the role of inducible nitric oxide synthase (iNOS) in liver damage induced by BCG and endotoxins in BCG-infected mice. METHODS: Liver injury and cytokine activation induced by BCG and by LPS upon BCG infection (BCG/LPS) were compared in wild-type and iNOS-/- mice. RESULTS: iNOS-/- mice infected with living BCG are protected from hepatic injury when compared to wild-type mice which express iNOS protein in macrophages forming hepatic granulomas. In addition, iNOS-/- mice show a decrease in BCG-induced IFN-gamma serum levels. LPS challenge in BCG-infected mice strongly activates iNOS in the liver and spleen of wild-type mice which show important liver damage associated with a dramatic increase in TNF and IL-6 and also Th1 type cytokines. In contrast, iNOS-/- mice are protected from liver injury after BCG/LPS challenge and their TNF, IL-6 and Th1 type cytokine serum levels raise moderately. CONCLUSIONS: These results demonstrate that nitric oxide (NO) from iNOS is involved in hepatotoxicity induced by both mycobacterial infection and endotoxin effects upon BCG infection and that inhibition of NO from iNOS protects from liver injuries.  相似文献   

6.
7.
Li Z  Lin H  Yang S  Diehl AM 《Gastroenterology》2002,123(4):1304-1310
BACKGROUND & AIMS: ob/ob mice are used to study the mechanisms that regulate the progression from steatosis to nonalcoholic steatohepatitis. The livers of ob/ob mice are depleted of CD4-positive natural killer cells, components of the innate immune system that induce anti-inflammatory cytokines. Although this may explain the sensitivity of fatty livers to lipopolysaccharide, why such hepatic CD4-positive natural killer cell depletion occurs is uncertain. Because leptin regulates macrophages, our hypothesis is that leptin deficiency alters Kupffer cell production of cytokines that inhibit (e.g., interleukin [IL]-12) or enhance (e.g., IL-15) hepatic CD4-positive natural killer cell viability. METHODS: Kupffer cell cytokine production and the hepatic content of CD4-positive natural killer cells were compared in ob/ob and lean mice. ob/ob mice were then treated with IL-15 or leptin to determine whether either factor improved their immunologic abnormalities. RESULTS: Compared with control Kupffer cells, ob/ob Kupffer cells produced less IL-15 basally and more IL-12 after lipopolysaccharide stimulation. Treatment of ob/ob mice with IL-15 for 1 week normalizes their hepatic CD4-positive natural killer cell content. Leptin increases the hepatic expression of IL-15 in ob/ob mice and partially replenishes their hepatic CD4-positive natural killer cells. CONCLUSIONS: Leptin deficiency increases hepatic IL-12 and reduces hepatic IL-15 expression. The abnormal production of these Kupffer cell factors promotes hepatic CD4-positive natural killer cell depletion in ob/ob livers.  相似文献   

8.
Natural killer T cells (NKT) are an important subset of T lymphocytes. They are unique in their ability to produce both T helper 1 and T helper 2 associated cytokines, thus being capable of steering the immune system into either inflammation or tolerance. Disruption of NKT cell numbers or function results in severe deficits in immune surveillance against pathogens and tumor cells. Growing experimental evidence suggests that hepatosteatosis may reduce resident hepatic as well as peripheral NKT cells. Those models of hepatosteatosis and the change in NKT cell numbers are associated with a disruption of cytokine homeostasis, resulting in a more pronounced release of proinflammatory cytokines which renders the steatotic liver highly susceptible to secondary insults. In this letter to the editor, we focus on recently published data in the World Journal of Gastroenterology by Xu and colleagues demonstrating reduced peripheral NKT cells in patients with non-alcoholic fatty liver disease, compare those findings with ours and others in different animal models of hepatosteatosis, and hypothesize about the potential underlying mechanism.  相似文献   

9.
Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Conclusion: Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.  相似文献   

10.
BACKGROUND & AIMS: Inflammatory mediators released by nonparenchymal inflammatory cells in the liver have been implicated in the progression of acetaminophen (APAP) hepatotoxicity. Among hepatic nonparenchymal inflammatory cells, we examined the role of the abundant natural killer (NK) cells and NK cells with T-cell receptors (NKT cells) in APAP-induced liver injury. METHODS: C57BL/6 mice were administered a toxic dose of APAP intraperitoneally to cause liver injury with or without depletion of NK and NKT cells by anti-NK1.1 monoclonal antibody (MAb). Serum alanine transaminase (ALT) levels, liver histology, hepatic leukocyte accumulation, and cytokine/chemokine expression were assessed. RESULTS: Compared with APAP-treated control mice, depletion of both NK and NKT cells by anti-NK1.1 significantly protected mice from APAP-induced liver injury, as evidenced by decreased serum ALT level, improved survival of mice, decreased hepatic necrosis, inhibition of messenger RNA (mRNA) expression for interferon-gamma (IFN-gamma), Fas ligand (FasL), and chemokines including KC (Keratinocyte-derived chemokine); MIP-1 alpha (macrophage inflammatory protein-1 alpha); MCP-1 (monocyte chemoattractant protein-1); IP-10 (interferon-inducible protein); Mig (monokine induced by IFN-gamma) and decreased neutrophil accumulation in the liver. Hepatic NK and NKT cells were identified as the major source of IFN-gamma by intracellular cytokine staining. APAP induced much less liver injury in Fas-deficient (lpr) and FasL-deficient (gld) mice compared with that in wild-type mice. CONCLUSIONS: NK and NKT cells play a critical role in the progression of APAP-induced liver injury by secreting IFN-gamma, modulating chemokine production and accumulation of neutrophils, and up-regulating FasL expression in the liver, all of which may promote the inflammatory response of liver innate immune system, thus contributing to the severity and progression of liver injury downstream of the metabolism of APAP and depletion of reduced glutathione (GSH) in hepatocytes.  相似文献   

11.
Concanavalin A (Con A)-induced injury is an established natural killer T (NKT) cell-mediated model of inflammation that has been used in studies of immune liver disease. Extracellular nucleotides, such as adenosine triphosphate, are released by Con A-stimulated cells and bind to specific purinergic type 2 receptors to modulate immune activation responses. Levels of extracellular nucleotides are in turn closely regulated by ectonucleotidases, such as CD39/NTPDase1. Effects of extracellular nucleotides and CD39 on NKT cell activation and upon hepatic inflammation have been largely unexplored to date. Here, we show that NKT cells express both CD39 and CD73/ecto-5'-nucleotidase and can therefore generate adenosine from extracellular nucleotides, whereas natural killer cells do not express CD73. In vivo, mice null for CD39 are protected from Con A-induced liver injury and show substantively lower serum levels of interleukin-4 and interferon-gamma when compared with matched wild-type mice. Numbers of hepatic NKT cells are significantly decreased in CD39 null mice after Con A administration. Hepatic NKT cells express most P2X and P2Y receptors; exceptions include P2X3 and P2Y11. Heightened levels of apoptosis of CD39 null NKT cells in vivo and in vitro appear to be driven by unimpeded activation of the P2X7 receptor. CONCLUSION: CD39 and CD73 are novel phenotypic markers of NKT cells. In turn, CD39 expression [corrected] modulates nucleotide-mediated cytokine production by, and limits apoptosis of, hepatic NKT cells. Deletion of CD39 is protective in [corrected] Con A-induced hepatitis. This study illustrates a [corrected] role for purinergic signaling in NKT-mediated mechanisms that result in liver immune injury.  相似文献   

12.
BACKGROUND: Proinflammatory cytokines play an important role in alcohol-induced liver injury. The role of anti-inflammatory cytokines in the initiation and progression of alcoholic liver disease has received little attention. This study tested the hypothesis that an imbalance exists between pro- and anti-inflammatory cytokines in the liver during chronic exposure to alcohol. Alcohol exposure results in predominantly proinflammatory cytokine secretion and liver injury. METHODS: IL-10 knock-out and their C57BL/6J counterpart wild-type mice were fed alcohol in drinking water for 7 weeks. At the end of alcohol feeding, Gram-negative bacterial lipopolysaccharide (LPS) was administered, and the animals were killed after 3 and 8 hr. Liver histology, plasma alanine aminotransferase and aspartate aminotransferase activity, tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-10 levels, and liver cytokine messenger RNA levels were measured. RESULTS: Alcohol feeding and LPS treatment did not change plasma enzyme activity levels in wild-type mice. In the IL-10 knock-out mice, LPS alone increased aspartate aminotransferase and alanine aminotransferase enzyme activity, and this was potentiated by alcohol. Alcohol induced liver steatosis in both wild-type and knock-out mice. LPS markedly enhanced the histological effects further, especially in the knock-out mice, with the emergence of focal necrosis, polymorphonuclear infiltration, and microabscesses in the liver. Plasma tumor necrosis factor-alpha and IL-1beta levels were not affected by alcohol alone. Proinflammatory cytokine levels were increased by LPS and further enhanced by alcohol treatment, particularly in the IL-10 knock-out mice. IL-10 plasma levels in the wild-type animals were down-regulated by alcohol. Changes in liver cytokine messenger RNA paralleled those seen in plasma cytokine levels. CONCLUSIONS: Alcohol-induced liver sensitization to LPS in wild-type mice may involve down-regulation of IL-10. This anti-inflammatory cytokine, known for its hepatoprotective effects, is secreted simultaneously with proinflammatory cytokines. IL-10 may also limit alcohol-induced liver damage by counteracting the effects of proinflammatory cytokines.  相似文献   

13.
Lessons from animal models of NASH.   总被引:3,自引:0,他引:3  
Studies of animals with obesity-related liver disease have taught us much about the mechanisms that mediate this pathology. Our work with genetically obese, insulin-resistant ob/ob mice demonstrates that hepatocytes become steatotic and die at increased rates. Thus, ob/ob mice develop non-alcoholic steatohepatitis (NASH) spontaneously. NASH is intimately related to the insulin resistance (i.e., metabolic) syndrome, a constellation of disorders that result from abnormal production of hormones and cytokines that regulate inflammatory responses. Like humans with the metabolic syndrome, ob/ob mice exhibit increased tumor necrosis factor (TNF) but relatively low levels of adiponectin. Because TNF and adiponectin typically antagonize each other, the combination of increased TNF and decreased adiponectin promotes a state of high TNF activity. Consequently, hepatocytes generate excessive reactive oxygen species (ROS), have altered viability, accumulate lipid and are resistant to insulin. Treatments that inhibit TNF activity or that increase adiponectin improve NASH in ob/ob mice, other mice and humans with NASH. Hence, there is no doubt that cytokine and hormonal imbalances play a key role in the pathogenesis of NASH. However, the fundamental cellular events involved are still poorly understood. Even within very small areas of livers with NASH, most hepatocytes are merely steatotic, while others are ballooned (pre-necrotic), and still others have succumbed to apoptosis. This observation suggests cell-to-cell variability in the response to chronic inflammatory stress. In NASH, most steatotic hepatocytes survive by inducing adaptive, cytoprotective factors. However, such cells respond to super-imposed toxic and mitogenic stimuli differently than (3)na?ve(2) (un-adapted) hepatocytes. Fatty hepatocytes tend to be more vulnerable to ATP depletion and less proliferative, perpetuating chronic liver injury while encouraging the expansion of liver progenitor populations that may become neoplastic. Finally, like other causes of chronic injury, NASH increases the risk for cirrhosis. Studies of ob/ob mice demonstrate that progression to cirrhosis is potentiated by leptin. Leptin probably acts at multiple levels to promote hepatic fibrosis, including direct activation of stellate cells via leptin receptors, regulation of pro- and anti-fibrogenic cytokine production by innate immune cells, and modulation of other neuronal factors that regulate stellate cell activation. The latter two mechanisms seem to dominate because stellate cell activation, fibrogenic cytokine production, collagen gene expression and fibrosis can all be induced by manipulating cytokines and neuronal factors in ob/ob mice (that are genetically deficient in leptin). Thus, studies in mice have uncovered several basic mechanisms that explain the dysfunction that occurs in different types of liver cells during the metabolic syndrome. This has important therapeutic implications for human NASH.  相似文献   

14.
BACKGROUND: Whereas the role of proinflammatory cytokines in the pathogenesis of alcoholic liver disease has been at the forefront of investigation, a possible role for anti-inflammatory cytokines in this disease has received little attention. This study investigated (1) the hepatic protective effect of an anti-inflammatory cytokine, epidermal growth factor (EGF), against deleterious effects of alcohol and sensitization to bacterial lipopolysaccharide (LPS), and (2) the possible mechanisms that underlie such protection. METHODS: Male C57BL/6 mice were fed a Lieber-DeCarli liquid diet that contained alcohol or an isocaloric replacement for 6 weeks. The animals then were treated daily with human EGF for 7 days (5 microg/mouse), after which they were injected with either LPS (1 mg/kg of body weight) or vehicle and killed 8 hr later. Blood and liver were analyzed for plasma aminotransferase activity, liver histology, liver apoptotic nuclei, mRNA of several cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, IL-6, and IL-10), apoptotic ligands (TRAIL), cytokine receptors (TNFRp55), pro- and antiapoptotic regulators/adaptors (Fas receptor, FasL, FADD, TRADD, RIP, Bak, Bax, Bcl-X, Bcl-2 and Bcl-w), and caspase-8. RESULTS: Alcohol increased plasma aminotransferase activity and sensitized the liver to the effects of LPS, such as polymorphonuclear infiltration, occurrence of necrotic foci and microabscesses, and increased apoptosis. These changes were associated with elevated mRNA expression of proapoptotic regulators/adaptors. EGF either counteracted or markedly blunted most of these effects. EGF did not affect liver mRNA expression of TNF-alpha, IL-1beta, IL-6, and IL-10, which suggested that these cytokines were not involved in EGF protective effect. EGF protection was mediated by down-regulation of apoptosis through suppression of proapoptotic gene expression. CONCLUSIONS: EGF protects the liver against both alcohol-induced liver damage and liver sensitization to bacterial LPS through down-regulation of apoptosis.  相似文献   

15.
AIM: To examine the effect of farnesoid X receptor (FXR) activation by GW4064 on endotoxin-induced hepatic inflammation in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanism.METHODS: Six-week-old male C57BL/6 mice were fed a normal diet or a high-fat (HF) diet for 8 wk. HF diet-fed mice were intraperitoneally injected with GW4064 (30 mg/kg) or DMSO (vehicle) once daily for a week and then sacrificed after lipopolysaccharide (LPS, 50 μg/mouse) administration. Hepatic inflammation, levels of the macrophage marker F4/80, and apoptosis were measured at the end of the study. Additionally, the expression of proinflammatory genes involved in NAFLD (interleukin-6, interleukin-1β, interferon-γ, MCP-1) were analyzed by real-time PCR in the murine macrophage cell line RAW 264.7 cultured with or without GW4064 (2 μmol/L) before treatment with LPS.RESULTS: In patients with NAFLD, the expression of FXR was detected by immunohistochemical staining and the relation between FXR expression and NAFLD activity score (NAS) was analyzed. Activation of FXR by GW4064 alleviated hepatic inflammation induced by endotoxin in a murine NAFLD model fed an HF diet as reflected by reduced serum levels of aspartate aminotransferase and alanine aminotransferase. Apoptosis and proinflammatory cytokine levels in liver tissues were also reduced by GW4064, and GW4064 could reduce induction of proinflammatory cytokines by LPS in vitro. FXR levels were reduced in patients with non-alcoholic steatohepatitis compared with healthy controls and were negatively correlated with NAS.CONCLUSION: FXR activation attenuates LPS-induced hepatic inflammation in murine NAFLD by reducing expression of proinflammatory cytokines in macrophages.  相似文献   

16.
BACKGROUNDS: Toll-like receptor (TLR)-9 plays a critical role in the recognition of the CpG motifs, which is frequently observed in bacterial DNA. To date, there have not been any reports regarding the role of bacterial DNA in the systemic circulation on the development of sepsis. METHODS: We examined the expression of TLR-9 in the liver and spleen in a murine peritonitis model (CLP mice). We also measured the cytokine response of mononuclear cells (MNCs) from normal and CLP mice to CpG oligodeoxynucleotides (ODN) in vitro and in vivo. RESULTS: TLR-9 expression on F4/80(+) and NK1.1(+)CD3epsilon(+) cells in the liver of CLP mice was elevated compared to sham-operated mice. With regard to cytokine production, we found that CpG ODN markedly stimulated the production of inflammatory cytokines by murine macrophages and liver MNCs. The intravenous injection of CpG ODN in mice that underwent CLP 12h earlier led to their increased cytokine production and their increased mortality. In addition, the depletion of NK/NKT cells contributed to improve their survival rate. CONCLUSIONS: Our results suggest that, in patients with overwhelming bacterial infection, bacterial DNA may induce liver toxicity that is mediated by liver NKT cells and macrophages that express high levels of TLR-9.  相似文献   

17.
Background: Submandibular salivary glands (SMGs) synthesize, accumulate and secrete a large amount of epidermal growth factor (EGF) in mice. It is known that surgical removal of SMG (sialoadenectomy) alters cell turnover in the liver and exacerbates liver injury induced by lipopolysaccharide/galactosamine (LPS/GalN). Results: Here we show that such increased hepatotoxicity is not the consequence of the lack of EGF production from SMG. On the contrary, it appears to be the consequence of an inadequate cytokine production by the liver of sialoadenectomized mice. Thus, we found that the increase of plasma tumour necrosis factor‐α and interleukin‐6 was slower in sialoadenectomized than in sham‐operated mice. This is because of a decreased rate of production of both cytokines by the liver. We found that the increase of plasma corticosterone (CS) concentration is lower in sialoadenectomized than that in sham‐operated mice. Adrenalectomy exacerbated liver injury induced by LPS/GalN. In these animals, sialoadenectomy did not further increase the effect of LPS/GalN. Conclusions: Our results suggest that the effect of sialoadenectomy on LPS/GalN‐induced liver toxicity may be the consequence of an altered cytokine production by the liver and a reduced CS release from adrenal glands.  相似文献   

18.
Aim: Interleukin (IL)-12, produced primarily by macrophage/monocytes, modulates mature T and natural killer (NK) cell functions, including cytotoxicity and cytokine production. Methods: To determine the role of IL-12 in Propionibacterium acnes (P. acnes)-primed, lipopolysaccharide (LPS)-induced liver injury, mice were injected with an anti-IL-12 monoclonal antibody (mAb) 1 and 2 days before P. acnes injection (day 0) or 5 and 6 days before LPS challenge (day 7). The survival rates, plasma cytokine levels, and liver mononuclear cell phenotypes were evaluated for the mice treated with and without anti-IL-12 mAb. Results: The observed mortality with P. acnes-primed, LPS-induced liver injury in C57BL/6 (B6) mice was 100%, but was reduced to 0% in interferon (IFN)-gamma receptor-deficient mice and B6 mice treated with anti-IL-12 mAb on 1 and 2 days before P. acnes exposure (day 0). The plasma IFN-gamma levels weresignificantly lower (P < 0.05), and significantly less ( approximately 90% reduction) hepatic infiltrating mononuclear and NK1.1 cells were also found in the IL-12 mAb-treated, P. acnes-primed mice. The plasma cytokine levels after LPS challenge and in vitro cytokine release by liver mononuclear cells were significantly lower (P < 0.05) in the mice treated with anti-IL-12 mAb prior to P. acnes exposure. The in vivo administration of anti-NK1.1 mAb also improved survival in this liver injury model. Conclusion: IL-12-regulated IFN-gamma production is crucial during the priming phase by P. acnes, but not at the time of the subsequent LPS challenge. NK1.1(+)CD3(-)CD4(-) NK or NK1.1(+)CD3(+)CD4(-) NKT cells are important in this model of liver injury.  相似文献   

19.
Alcoholic liver disease (ALD) features increased hepatic exposure to bacterial lipopolysaccharide (LPS). Toll-like receptor-4 (TLR4) recognizes LPS and activates signaling pathways depending on MyD88 or TRIF adaptors. We previously showed that MyD88 is dispensable in ALD. TLR4 induces Type I interferons (IFNs) in an MyD88-independent manner that involves interferon regulatory factor-3 (IRF3). We fed alcohol or control diets to wild-type (WT) and IRF3 knock-out (KO) mice, and to mice with selective IRF3 deficiency in liver parenchymal and bone marrow-derived cells. Whole-body IRF3-KO mice were protected from alcohol-induced liver injury, steatosis, and inflammation. In contrast to WT or bone marrow-specific IRF3-KO mice, deficiency of IRF3 only in parenchymal cells aggravated alcohol-induced liver injury, associated with increased proinflammatory cytokines, lower antiinflammatory cytokine interleukin 10 (IL-10), and lower Type I IFNs compared to WT mice. Coculture of WT primary murine hepatocytes with liver mononuclear cells (LMNC) resulted in higher LPS-induced IL-10 and IFN-β, and lower tumor necrosis factor alpha (TNF-α) levels compared to LMNC alone. Type I IFN was important because cocultures of hepatocytes with LMNC from Type I IFN receptor KO mice showed attenuated IL-10 levels compared to control cocultures from WT mice. We further identified that Type I IFNs potentiated LPS-induced IL-10 and inhibited inflammatory cytokine production in both murine macrophages and human leukocytes, indicating preserved cross-species effects. These findings suggest that liver parenchymal cells are the dominant source of Type I IFN in a TLR4/IRF3-dependent manner. Further, parenchymal cell-derived Type I IFNs increase antiinflammatory and suppress proinflammatory cytokines production by LMNC in paracrine manner. CONCLUSION: Our results indicate that IRF3 activation in parenchymal cells and resulting type I IFNs have protective effects in ALD by way of modulation of inflammatory functions in macrophages. These results suggest potential therapeutic targets in ALD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号