首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
陈利  陈立新  黄劭敏  孙文  孙洪强  邓小武 《癌症》2010,29(2):234-239
背景与目的:保证放射治疗计划剂量计算的准确性是放射治疗质量保证的重要内容.本实验验证一种第三方计算软件和3D-TPS的MU计算精度,测试和探讨放射治疗计划独立验证的可行性和可靠性.方法:在TPS中使用均匀模体,根据IAEA第430号技术报告设计开野、挡块野、楔形野和MLC不规则野等测试计划.(1)对上述各计划以给定MU执行照射.用电离室在体模内测量执行剂量并将测量结果输入商业QA软件进行MU计算,验证独立计算的精度.(2)分别以指形电离室在直线加速器上直接测量和QA独立计算软件两种方法验证上述计划的执行结果,比较两种验证方法的结果差异.结果:(1)所有计划的独立验证软件计算结果与实际测量的偏差为(0.1±0.9)%,同时有挡块和楔形板的射野两者差异最大(为2.0%).(2)所有测试计划的TPS计算相对于独立验算软件计算的MU偏差为(0.6±1.0)%(-0.8%~2.8%);TPS计算与实际测量的相对剂量偏差为(-0.2+1.7)%(-3.9%~2.9%).结论:所测试的独立验证软件的计算误差在临床可接受范围.各测试计划的独立验算与实际测量验证的总体差异不大.该独立验算软件可作为TPS计划质量保证的一种有效工具.  相似文献   

2.
目的 开发基于蒙特卡罗(MC)的验证平台实现容积调强弧形治疗(VMAT)计划的独立剂量验证。方法 利用EGSnrc/BEAMnrc构建Varian TrueBeam医用直线加速器的机头和准直器模型,并基于机头模型和自编程序搭建患者VMAT计划的独立剂量验证平台,通过平台模拟不同射野大小百分深度剂量(PDD)曲线和离轴比、两个不规则野以及头颈部、胸部和盆腔各1例患者剂量分布。比较不同射野大小PDD曲线和离轴比与蓝水箱测量结果差异,不规则射野与ArcCHECK实测的差异,再通过γ分析法、剂量体积直方图对比分析患者MC模拟剂量、计划系统计算剂量、ArcCHECK实测剂量之间差异,验证平台是否可用于独立剂量验证。结果 对4cm×4cm~40cm×40cm的PDD曲线和离轴比,MC模拟结果和测量结果一致性较好。不规则射野MC模拟结果与ArcCHECK实测相比,在3%/2mm、3%/3mm下γ通过率都在98.1%、99.1%以上;3例不同部位VMAT患者MC模拟剂量和ArcCheck实测剂量在3%/2mm、3%/3mm下γ通过率均好于93.8%、95.9%。通过三维γ分析计划系统计算剂量和MC模拟剂量在3%/3mm下鼻咽癌、肺癌、直肠癌的γ通过率分别为95.2%、98.6%、98.9%;在3%/2mm下依次为90.3%、95.1%、96.7%。结论 基于MC开发的验证平台模拟结果与实际测量结果一致性较好,其模拟结果更接近于患者体内真实剂量分布,初步结果显示可用于VMAT计划的精准独立剂量验证。  相似文献   

3.
目的对加速器小野的剂量学特性进行研究,以指导调强放疗在临床上的应用。方法计算西门子primusM加速器小野条件下的总散射因子并比较相对剂量分布的测量和计算结果。结果在小野测试中,当治疗计划系统计算精度优于0.2 cm时,>2 cm×2 cm射野的总散射因子的计算值误差<3%,所有射野的计算与测量的相对剂量分布均较为吻合,但<2 cm×2 cm的射野在边缘低剂量区有一定的偏差。结论对于治疗计划系统计算的小射野剂量分布的误差在调强计划设计上应加以考虑,多叶准直器的到位精度对小射野剂量影响不容忽视。  相似文献   

4.
目的: 比较蒙特卡罗算法与筒串卷积算法在宫颈癌术后调强放射治疗中的剂量学差异。方法: 随机选择25例宫颈癌术后行调强放疗患者,对同一治疗计划分别用两种算法进行剂量计算,通过剂量体积直方图的剂量体积参数比较两者靶区和危及器官的剂量学差异。结果: 靶区D98、D2、D50、HI蒙特卡罗算法结果低于筒串卷积算法(P﹤0.05);CI结果高于筒串卷积法(P﹤0.05)。膀胱V30、V40,直肠V40、D50,股骨头、盆骨V30、V40、D50,脊髓D2、D50蒙特卡罗算法结果低于筒串卷积算法;靶区CI、结肠V30、V40、D50 蒙特卡罗算法结果高于筒串卷积算法,以上结果差异均具有统计学意义(P﹤0.05)。结论: 宫颈癌术后调强放射治疗,优先选择蒙特卡罗算法进行计划设计,同时应适当充盈膀胱,减少小肠、结肠卷入射野的体积;如果只能选用筒串卷积算法,应适当增大最小子野面积,减少子野数量。  相似文献   

5.
目的:采用直线加速器日志文件进行容积调强三维剂量验证的研究,分析射野参数误差对临床剂量的影响。方法:对佛山市第一人民医院2013-01—2013-12收治的10例直肠癌患者设计容积调强计划。利用自编程序从日志文件中读取实际治疗时的机架角度、多叶准直器(multileaf collimator,MLC)叶片位置以及机器跳数(monitorunit,MU),比较射野参数的误差。使用实际射野参数替代原治疗计划的射野参数,在cT图像上重新进行三维剂量重建。比较重建计划与治疗计划,分析射野参数误差对靶区和危及器官三维剂量分布的影响。结果:实际治疗与治疗计划的机架角偏差〈1。,最大机器跳数的偏差〈0.2MU,叶片位置最大误差〈2mm,大部分误差为0.05~1mm。叶片位置误差对计划靶区(planning target volume,PTV)处方剂量所包含的靶区(V100)影响较大,差异有统计学意义,P=0.006;机架角偏差和机器跳数偏差对PTV(V1。)影响较小,差异无统计学意义,P〉0.05;各个射野参数对小肠V40(40Gy剂量所包含的体积)、膀胱V40和股骨头V30(30Gy剂量所包含的体积)的影响较小,差异无统计学意义,P〉0.05。结论:利用加速器日志文件可以进行容积调强三维剂量验证方面的研究,叶片位置误差对计划靶区的剂量影响较大,机架角和机器跳数误差对计划靶区剂量的影响较小,各个射野参数对危及器官剂量的影响不大。  相似文献   

6.
目的:研究临床放疗蒙特卡洛剂量计算方法中虚拟源模型的可行性。方法通过蒙特卡洛方法模拟得到记录医用直线加速器机头出射粒子物理特性的相空间文件,分析提取相空间文件中粒子的种类、能谱及位置分布,建立半经验虚拟双光子源抽样模型。结合并行剂量计算引擎GMC,得到3 cm×3 cm、5 cm×5 cm、10 cm×10 cm、20 cm×20 cm和30 cm×30 cm射野及2例临床调强计划的三维水模剂量分布的蒙特卡洛模拟结果,将其与水箱测量结果或医科达Monaco计划系统结果比较,以验证基于虚拟源的蒙特卡洛剂量计算的准确性。结果对5个射野下的水箱中心轴的百分深度剂量曲线以及不同深度的离轴剂量曲线,蒙特卡洛模拟结果与测量结果相差在1%以内。对2例临床调强计划, Monaco计算结果与蒙特卡洛模拟结果的三维通过率分别为98.9%和99.4%(3%/3 mm),95.1%和95.4%(2%/2 mm)。结论基于虚拟源模型的蒙特卡洛模拟能得到准确的放疗剂量计算结果。  相似文献   

7.
目的建立一种反向投影算法(模型),由射野影像和患者的CT图像,计算体内的三维剂量分布,进行剂量验证.方法该模型计算体内剂量分布步骤如下:(a)使用电子射野影像系统获取射野影像,将射野影像转换为射出剂量;(b)从射出剂量分布重建入射原射线注量分布;(c)由患者的三维信息(CT图像),计算得到体内的原射线剂量分布;(d)体内散射核叠加,求出体内散射线剂量分布,与原射线剂量相加,即得到体内的剂量分布.使用C语言编程实现算法.通过设置规则、不规则及调强射野,对均匀和不均匀、规则和不规则5种模体进行剂量验证实验,并将计算结果与测量结果进行比较.结果所有实验在射野内、剂量梯度小的区域计算的剂量和测量的剂量的偏差<5%.在射野边界附近低密度肺组织内的计算剂量和测量的剂量的偏差>5%.结论所建立的反向投影模型用于剂量验证,其准确性可满足临床要求.但模型还需进一步完善,以准确计算电子失平衡区的剂量.  相似文献   

8.
目的 对美国CMS公司生产的肿瘤治疗计划系统 (TPS)计算结果值与实际测量值进行比较。方法 按照测量条件下的带有Farmer型电离室的固体水模在螺旋CT下进行扫描 ,图像通过网络数字传输系统传入TPS中 ,分别进行 10cm× 10cm规则野与不规则野、均匀组织与不均匀组织(分别含骨和肺 )、源轴距 10 0cm中心轴上深度 6和 10cm、野内任意点、机架角 30°、楔形板、MLC、铅挡、源皮距 90和 12 0cm条件下 6和 15MVX线计划设计并采用卷积和叠加两种算法计算 ,再与加速器治疗机上实际测量结果进行比较。结果 对于均匀组织和含骨的不均匀组织卷积和叠加算法的计算结果值具有良好的一致性 ,两种计算方法的结果偏差在 0 .5 %以内。多数实测值与计算值偏差在2 .5 %以内 ,个别计算与实测结果偏差在 3%以内 ,含肺的不均匀组织做不均匀组织校准后卷积算法与实测偏差较大 ,6MVX线为 7.8% ,15MVX线为 4 .5 % ,而叠加算法与实测偏差在 1.5 %以内。结论 除了卷积算法不能用于含肺组织或含气空腔剂量计算以外 ,卷积和叠加算法均可用于剂量计算 ,且偏差符合临床要求。  相似文献   

9.
目的 基于电子射野影像装置(EPID)建立二维剂量精确重建模型并验证容积调强弧形治疗(VIMAT)剂量,与其他测量工具进行比较与分析。方法 采用EPID进行VIMAT的二维剂量验证,基于卷积、反卷积以及修正函数建立二维剂量重建模型。通过电离室测量的离轴比剂量曲线并用最小二乘法确定计算模型参数。对 12例不同部位肿瘤患者的VIMAT计划用电离室测量中心点剂量,采用其他平面剂量测量工具测量相应平面剂量分布。所有工具测量深度均设置为10 cm,并采用γ分析法比较测量结果。结果 对中心点绝对剂量,EPID与电离室测量结果偏差<1.5%。对平面剂量,2%2 mm标准下EPID与Seven29、Matrixx的平均γ通过率分别为98.9%、99.8%,3%3 mm标准下EPID与治疗计划系统计算结果的平均γ通过率为99.9%。结论 基于EPID建立的二维剂量重建模型能很好地用于调强放疗二维剂量验证工作,今后将考虑将该模型拓展到均匀模体的三维剂量验证中。  相似文献   

10.
目的验证使用医科达"快速验收流程"(AGL)标准流程验收多台加速器的可行性。方法通过PTW Beamscan三维水箱对3台加速器束流进行调试, 使束流达到AGL标准。对达到AGL标准的3台加速器进行剂量验证。使用中国医学科学院肿瘤医院简单野测试例, 比较MapCheck 3面剂量测量结果与同一加速器模型计算得到的面剂量。随机选取头颈、食管、乳腺、肺、直肠等部位肿瘤的10例临床患者影像, 分别采用容积弧形调强放疗(VMAT)和调强放疗(IMRT)技术进行计划设计, 比较ArcCheck测量剂量与同一加速器模型计算得到的计划剂量。使用单因素方差分析对二维剂量和三维剂量的验证通过率进行统计学分析。结果 3台加速器6 MV X射线在水下10 cm处的百分深度剂量(PDD10)分别为67.45%、67.36%、67.47%, 且3台加速器之间最大偏差为0.11%。6 MV 非均整模式(FFF)X射线的PDD10分别为67.33%、67.20%、67.20%, 且3台加速器之间最大偏差为0.13%。3台加速器X射线各能量30 cm×30 cm Profile主轴上所有要求的离散点剂量与标准数据偏差...  相似文献   

11.
背景与目的:“RapidPlan”利用适形调强放射治疗(intensity-modulated radiotherapy,IMRT)中的患者解剖和剂量信息,以剂量体积直方图(dose-volume histogram,DVH)预测模型的方式来预测新计划的剂量分布。针对每种治疗计划系统(treatment planning system,TPS)和治疗机器模型分别建立知识库模型需耗费大量精力且选择繁琐,因此本研究评估基于特定TPS和加速器模型建立的知识库计划模型能否适用于其他TPS和加速器模型。方法:选取2015—2016年于复旦大学附属肿瘤医院采用IMRT技术治疗的50例临床治疗的宫颈癌患者的放疗资料,使用RapidPlan建立基于知识库的计划预测模型。训练数据均基于Pinnacle计划系统,机器模型采用Synergy加速器6 MV光子射线。使用该预测模型对15例宫颈癌病例进行预测,提取目标函数数值后,分别在3组不同的优化环境中重新优化以评估加速器模型和TPS对知识库计划模型的影响:① 与模型构建一致的TPS和加速器模型,即Pinnacle与Synergy;② TPS一致但加速器模型不一致,即Pinnacle与Truebeam;③ TPS和加速器模型都不一致,即Eclipse和Truebeam。评估方法为基于知识库模型生成的计划与相应环境下人工计划进行剂量学比较。结果:组2和组3中,知识库计划与人工计划得到相似质量的计划靶区(planning target volume,PTV)剂量覆盖,而在组1中知识库计划改善了PTV的D 2 %(0.95 Gy,P<0.01)和剂量均一性指数(homogeneity index,HI)(0.02,P<0.01)。知识库计划降低了所有3组计划的膀胱V 30 、V 45 和平均剂量,同时知识库计划还降低了肠道的平均剂量。结论:基于知识库的计划模型对加速器和TPS的依赖并不显著。  相似文献   

12.
目的 探讨使用独立验算软件IMsure进行调强放疗质量保证的准确性和可行性.方法 以直线加速器瓦里安600C/D为例,选取25例Eclipse治疗计划系统(TPS)计算的调强放疗(IMRT)计划,采用IMsure进行剂量计算验证,同时用Matrixx平面探测矩阵进行实际测量.对TPS、IMsure计算结果和Matrixx测量结果进行相互比较.结果 选取中心探头点作为参考点,IMsure计算结果和Matrixx测量结果与TPS计算结果偏差分别为(-0.11 ±1.24)%(t=0.20,P=0.840)和(-0.18 +1.45)%(t=0.86,P=0.400).3mm/3%和2mm/2%标准下IMsure对TPS计算结果的验证γ通过率分别为(98.7±2.8)%和(94.9±7.2)%,Matrixx对TPS计算结果的验证γ通过率分别为(99.0±2.0)%和(93.2±6.9)%,3 mm/3%标准下IMsure与Matrixx对TPS计算结果的验证γ通过率没有统计学差异(t =1.54,P=0.126).结论 IMsure可较好用于TPS初期的验收和临床测试.在常规临床放疗中通过IMsure对IMRT计划进行“预验证”,在充分常规放疗质量保证措施下可部分代替IMRT的实际测量验证,从而减轻日常的测量工作.  相似文献   

13.
目的 探索Compass 三维QC系统在食管癌调强放疗剂量验证中的应用。方法 选取 12例食管癌病例在Eclipse 8.6治疗计划系统中进行优化设计,将计划分别传入Compass 系统和瓦里安Trilogy加速器。Compass 在患者解剖影像上重建三维剂量分布,将重建剂量与治疗计划系统计算剂量比较,验证PTV及各OAR体积γ通过率、Dmean偏差等参数。同时使用MatriXX对治疗计划做二维剂量验证,使用平面γ通过率(3%/3 mm)评估剂量验证结果。结果 二维剂量验证实际角度γ通过率普遍低于角度归零的γ通过率(P=0.018~0.001)。三维剂量验证PTV体积γ通过率>93%,D95%、D50%、D2%偏离<3%;肺和心脏体积γ通过率>95%,Dmean偏离>3%;脊髓和气管体积γ通过率>98%。独立计算与TPS计算剂量有更好符合度,测量重建与TPS计算剂量偏差出现在射野边缘区域。结论 三维剂量验证可提供更多的信息全面来评价计划,对指导治疗更有意义。  相似文献   

14.
PURPOSE: In view of the need for dose-validation procedures on each individual intensity-modulated radiation therapy (IMRT) plan, dose-verification measurements by film, by ionization chamber, and by polymer gel-MRI dosimetry were performed for a prostate-treatment plan configuration. Treatment planning system (TPS) calculations were evaluated against dose measurements. METHODS AND MATERIALS: Intensity-modulated radiation therapy (IMRT) treatments were planned on a commercial TPS. Kodak EDR-2 films were used for the verification of two-dimensional (2D) dose distributions at 1 coronal and 5 axial planes in a water-equivalent phantom. Full three-dimensional (3D) dose distributions were measured by use of a novel polymer gel formulation and a 3D magnetic resonance imaging (MRI) readout technique. Calculations were compared against measurements by means of isocontour maps, gamma-index maps (3% dose difference, 3-mm distance to agreement) and dose-volume histograms. RESULTS: A good agreement was found between film measurements and TPS predictions for points within the 60% isocontour, for all the examined plans (gamma-index <1 for 96% of pixels). Three-dimensional dose distributions obtained with the polymer gel-MRI method were adequately matched with corresponding TPS calculations, for measurements in a gel phantom covering the planning-target volume (PTV). CONCLUSIONS: Measured 2D and 3D dose distributions suggest that, for the investigated prostate IMRT plan configuration, TPS calculations provide clinically acceptable accuracy.  相似文献   

15.
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry.25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms.Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3 mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations.The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase.  相似文献   

16.
PURPOSE: The present study explored the impact of intensity-modulated radiotherapy (IMRT) on stereotactic body RT (SBRT) of liver and lung lesions. Additionally, because target dose conformity can be affected by the leaf width of a multileaf collimator (MLC), especially for small targets and stereotactic applications, the use of a micro-MLC on "uniform intensity" conformal and intensity-modulated SBRT was evaluated. METHODS AND MATERIALS: The present study included 10 patients treated previously with SBRT in our institution (seven lung and three liver lesions). All patients were treated with 3 x 12 Gy prescribed to the 65% isodose level. The actual MLC-based conformal treatment plan served as the standard for additional comparison. In total, seven alternative treatment plans were made for each patient: a standard (actual) plan and an IMRT plan, both calculated with Helax TMS (Nucletron) using a pencil beam model; and a recalculated standard and a recalculated IMRT plan on Helax TMS using a point dose kernel approach. These four treatment plans were based on a standard MLC with 1-cm leaf width. Additionally, the following micro-MLC (central leaf width 3 mm)-based treatment plans were calculated with the BrainSCAN (BrainLAB) system: standard, IMRT, and dynamic arc treatments. For each treatment plan, various target parameters (conformity, coverage, mean, maximal, and minimal target dose, equivalent uniform doses, and dose-volume histogram), as well as organs at risk parameters (3 Gy and 6 Gy volume, mean dose, dose-volume histogram) were evaluated. Finally, treatment efficiency was estimated from monitor units and the number of segments for IMRT solutions. RESULTS: For both treatment planning systems, no significant difference could be observed in terms of target conformity between the standard and IMRT dose distributions. All dose distributions obtained with the micro-MLC showed significantly better conformity values compared with the standard and IMRT plans using a regular MLC. Dynamic arc plans were characterized by the steepest dose gradient and thus the smallest V(6 Gy) values, which were on average 7% smaller than the standard plans and 20% lower than the IMRT plans. Although the Helax TMS IMRT plans show about 18% more monitor units than the standard plan, BrainSCAN IMRT plans require approximately twice the number of monitor units relative to the standard plan. All treatment plans optimized with a pencil beam model but recalculated with a superposition method showed significant qualitative, as well as quantitative, differences, especially with respect to conformity and the dose to organs at risk. CONCLUSION: Standard conformal treatment techniques for SBRT could not be improved with inversely planned IMRT approaches. Dose calculation algorithms applied in optimization modules for IMRT applications in the thoracic region need to be based on the most accurate dose calculation algorithms, especially when using higher energy photon beams.  相似文献   

17.
目的:探究编辑多叶光栅(multi-leaf collimator,MLC)缩小剂量热点方法在乳腺癌根治术后放疗中应用的可行性。方法:选取10例接受放疗的乳腺癌根治术后患者的CT图像,勾画胸壁、腋窝与锁骨上下相关预防照射区域和危及器官,基于医科达Precise医用直线加速器和CMS XiO 4.80计划系统,以5 000 cGy/25 f处方剂量分别对每例患者设计采用编辑MLC缩小剂量热点方法前、后2种放疗计划(plan1和plan2),采用SPSS 20.0统计学软件评估2种计划靶区和危及器官剂量学参数及治疗参数的差异。结果:2种计划靶区剂量分布和危及器官受照剂量均满足临床要求,plan2相对于plan1,PTV的D1 cc降低1.87%(t=37.467,P=0.000)、D98%降低0.38%(t=2.664,P=0.000)、V107%降低7.30%(t=2.595,P=0.029)、V110%降低23.58%(t=6.684,P=0.000),PTV的其它剂量学参数差异无统计学意义(P>0.05);危及器官剂量学参数和治疗参数差异无统计学意义(P>0.05)。结论:编辑MLC缩小剂量热点方法有利于缩小PTV的剂量热点,对其它参数的影响甚微,建议设计乳腺癌根治术后放疗计划时采用该方法。  相似文献   

18.
19.
PURPOSE: The aim of this study was the clinical evaluation of an independent dose and monitor unit verification (MUV) software which is based on sophisticated semi-analytical modelling. The software was developed within the framework of an ESTRO project. Finally, consistent handling of dose calculation deviations applying individual action levels is discussed. MATERIALS AND METHODS: A Matlab-based software ("MUV") was distributed to five well-established treatment centres in Europe (Vienna, Graz, Basel, Copenhagen, and Ume?) and evaluated as a quality assurance (QA) tool in clinical routine. Results were acquired for 226 individual treatment plans including a total of 815 radiation fields. About 150 beam verification measurements were performed for a portion of the individual treatment plans, mainly with time variable fluence patterns. The deviations between dose calculations performed with a treatment planning system (TPS) and the MUV software were scored with respect to treatment area, treatment technique, geometrical depth, radiological depth, etc. RESULTS: In general good agreement was found between calculations performed with the different TPSs and MUV, with a mean deviation per field of 0.2+/-3.5% (1 SD) and mean deviations of 0.2+/-2.2% for composite treatment plans. For pelvic treatments less than 10% of all fields showed deviations larger than 3%. In general, when using the radiological depth for verification calculations the results and the spread in the results improved significantly, especially for head-and-neck and for thorax treatments. For IMRT head-and-neck beams, mean deviations between MUV and the local TPS were -1.0+/-7.3% for dynamic, and -1.3+/-3.2% for step-and-shoot IMRT delivery. For dynamic IMRT beams in the pelvis good agreement was obtained between MUV and the local TPS (mean: -1.6+/-1.5%). Treatment site and treatment technique dependent action levels between +/-3% and +/-5% seem to be clinically realistic if a radiological depth correction is performed, even for dynamic wedges and IMRT. CONCLUSION: The software MUV is well suited for patient specific treatment plan QA applications and can handle all currently available treatment techniques that can be applied with standard linear accelerators. The highly sophisticated dose calculation model implemented in MUV allows investigation of systematic TPS deviations by performing calculations in homogeneous conditions.  相似文献   

20.
《Cancer radiothérapie》2023,27(5):355-361
PurposeAdaptive radiotherapy with the Ethos® therapy Varian system has been recently implemented at the Montpellier Cancer Institute, France. This article details the commissioning performed before the implementation of this new treatment planning system (TPS).Material and methodsTo validate the golden beam data of the machine (Halcyon linear accelerator), percentage depth doses (PDD) and profiles were measured for several field sizes and at different depths with a microdiamond chamber. The final doses calculated for different plan types with the Ethos Acuros XB algorithm and the Halcyon Eclipse Analytic Anisotropic Algorithm were compared using the gamma index method. Lastly, for the patient quality assurance (QA) process, the patient treatment plan results obtained with the Mobius3D QA platform (Varian) were compared with the portal dosimetry results obtained with Epiqa (Epidos).ResultsMinor differences were observed for the PDD and profile curves (mean difference of 0.2% and 2%, respectively). The χ index pass rate was above 98% for all measures using the 1%/1 mm and 2%/2 mm criteria for PDD and profile evaluations. The Ethos AXB algorithm was validated for every configuration (fixed fields, standard IMRT and VMAT fields, and clinical plans) with 2D/3D gamma index values > 99%. Seventy-three 3-arcs-VMAT QA plans and 27 9-fields-IMRT QA plans were evaluated. Both showed excellent agreement with the TPS calculations (mean gamma pass rate higher than 99%). No difference was observed between IMRT and VMAT.ConclusionThe beam delivery, the Ethos AXB algorithm, and the patient QA were comprehensively validated using independent tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号