首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Beta-catenin signaling has been shown to be involved in triggering axis formation in several organisms, including Xenopus and zebrafish. Genetic analysis has demonstrated that the Wnt/beta-catenin signaling pathway is also involved in axis formation in the mouse, since a targeted deletion of beta-catenin results in embryos that have a block in anterior-posterior axis formation, fail to initiate gastrulation, and do not form mesoderm. However, because beta-catenin is ubiquitously expressed, the precise time and cell types in which this signaling pathway is active during early embryonic development remain unknown. Thus, to better understand the role of the Wnt/beta-catenin signaling pathway in axis formation and mesoderm specification, we have examined both the distribution and signaling activity of beta-catenin during early embryonic development in the mouse. We show that the N-terminally nonphosphorylated form of beta-catenin as well as beta-catenin signaling is first detectable in the extraembryonic visceral endoderm in day 5.5 embryos. Before the initiation of gastrulation at day 6.0, beta-catenin signaling is asymmetrically distributed within the epiblast and is localized to a small group of cells adjacent to the embryonic--extraembryonic junction. At day 6.5 and onward, beta-catenin signaling was detected in the primitive streak and mature node. Thus, beta-catenin signaling precedes primitive streak formation and is present in epiblast cells that will go on to form the primitive streak. These results support a critical role for the Wnt/beta-catenin pathway in specifying cells to form the primitive streak and node in the mammalian embryo as well as identify a novel domain of Wnt/beta-catenin signaling activity during early embryogenesis.  相似文献   

3.
Ikaros proteins are pleiotropic regulators of hematopoiesis and are critically required for the production of lymphocyte and dendritic cell (DC) lineages in mice. Here, we asked if Ikaros proteins could also play a role in the late stages of dendritic cell differentiation. Nuclear Ikaros proteins were up-regulated during the in vitro differentiation of human monocytes into mature DC, suggesting potential implications in this process. To address this question, a dominant negative mutant Ikaros isoform IK7 was over-expressed by retroviral gene transfer in human DC precursor cells, to interfere with the function of Ikaros family members during DC development. Expression of IK7 in CD34+ cells inhibited the production of IL-12-producing APCs. The resulting progeny of CD34+ cells and in particular, committed CD1a+ DC or CD14+ cell-derived DC, expressed low levels of MHC class II antigens and of the CD83 maturation marker on the cell surface. Such IK7-expressing DC induced na?ve allogeneic T cells to produce Th2 cytokines. Our results therefore delineate a new role for Ikaros family members, showing that normal levels of Ikaros proteins are essential in DC to regulate the terminal stages of maturation and the capacity to induce optimal Th1 T cell responses.  相似文献   

4.
Mature peripheral T cells closely regulate their intercellular interactions by modulating integrin adhesion functions. The ability of members of the integrin family to mediate intercellular adhesion is dependent on signals from within the cells (inside-out signaling) that increase the avidity of integrins for their ligands. These changes in avidity are independent of the quantitative changes on the number of receptors, and there is evidence to suggest that phosphorylation events play a predominant role in the regulation of the avidity state of the integrins. Whether such regulatory mechanisms are operative during T cell development had hitherto been an opened question. In the present work, we have used an in vitro adhesion assay between thymocytes and target cells expressing VLA-4 and LFA-1 counter ligands to determine how thymocytes can discriminate between integrin-specific signals during T cell development. Our findings are that VLA-4, but not LFA-1, is constitutively expressed in its high-avidity state during the early stages of T cell development, and that the high-avidity state of thymocytes for VCAM-1-expressing cells is closely regulated by signaling through protein kinase C and protein tyrosine kinase pathways. At later stages of development, mature thymocytes prior to leaving the thymus turn off both VLA-4 and LFA-1 adhesion functions. Our results show that the low-affinity state of integrins on peripheral mature T cells is established before mature thymocytes leave the thymus. Only when mature T cells recognize antigenic peptides in the context of major histocompatibility complex in the periphery will they turn on the adhesion function of VLA-4 and/or LFA-1 integrins.  相似文献   

5.
6.
7.
8.
RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of gammadelta T cells, whereas alphabeta T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4(+) T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates gammadelta T cell generation and migration, alphabeta T cell maturation, terminal differentiation of CD4(+) T cells into Th1/Th2 cells, and activation of T cells.  相似文献   

9.
10.
Notch signaling in lymphocyte development and function   总被引:6,自引:0,他引:6  
Over the past few years, the crucial role of Notch signaling in multiple stages of T-cell development has become apparent. Recent studies have helped to define more precisely the functions and components of the Notch signaling pathway in T-cell development, including during the T versus B fate decision and in early CD4(-)CD8(-)double-negative thymocytes. In addition, new evidence points to a requirement for Notch2 in the development of marginal zone B cells. Finally, recent studies have provided our first glimpse into the complex and paradoxical roles of Notch signaling in the activation and differentiation of mature T cells.  相似文献   

11.
12.
13.
Mutation or ablation of T cell factor 1 and lymphocyte enhancer factor 1 indicated involvement of the Wnt pathway in thymocyte development. The central effector of the Wnt pathway is beta-catenin, which undergoes stabilization upon binding of Wnt ligands to frizzled receptors. We report here that conditional stabilization of beta-catenin in immature thymocytes resulted in the generation of single positive T cells that lacked the alpha beta TCR and developed in the absence of pre-TCR signaling and TCR selection. Although active beta-catenin induced differentiation in the absence of TCRs, its action was associated with reduced proliferation and survival when compared to developmental changes induced by the pre-TCR or the alpha beta TCR.  相似文献   

14.
15.
初始T细胞分化为效应T和记忆T细胞受到多种因素调节.最近在Notch信号途径的研究进展显示它也参于T细胞的活化与分化.大量研究已经表明Notch信号途径可以影响T细胞在中枢免疫器官的发育,现在关于它调节外周T细胞的分化状态也积累不少证据,Notch信号活化之后能够改变CD4+和CD8+T细胞分泌细胞因子的特点.以下着重介绍Notch信号参于调节外周T细胞的活化、增殖和分化的最新资料,尽管不同的研究者所得实验结果有冲突之处,但已经提示Notch信号在T细胞外周发育中的重要意义,特别重要的是抗原递呈细胞(APC)可以通过Notch信号途径调节T细胞的分化.  相似文献   

16.
In the vertebrate embryo, development of the neural crest is accompanied by sequential changes in cellular adhesiveness, allowing cells to delaminate from the neural epithelium, to undergo migration through extracellular matrix material, and to coalesce into ganglia of the peripheral nervous system. Because of its dual role in cell adhesion, as a link between cadherins and the actin cytoskeleton, and in cell signaling, as a key mediator of the Wnt-signaling pathway, beta-catenin is a good candidate to play a central role in the control of neural crest cell development. In the present study, we analyzed, by using an in vitro culture system, whether the cellular localization and the signaling activity of beta-catenin are regulated in conjunction with cell migration during ontogeny of trunk neural crest cells in the avian embryo. beta-Catenin molecules were found primarily in association with N-cadherin in the regions of intercellular contacts in most migrating neural crest cells, and only early-migrating cells situated in proximity with the dorsal side of the neural tube showed detectable beta-catenin in their nuclei. This finding indicates that beta-catenin may be recruited for signaling in neural crest cells only transiently at the onset of migration and that sustained beta-catenin signals are not necessary for the progression of migration. The nuclear distribution of beta-catenin within crest cells was not affected upon modification of the N-cadherin-mediated cell-cell contacts, revealing that recruitment of beta-catenin for signaling is not driven by changes in intercellular cohesion during migration. Overstimulation of beta-catenin signals in neural crest cells at the time of their migration, using LiCl treatment or coculture with Wnt-1-producing cells, induced nuclear translocation of beta-catenin and Lef-1 up-regulation in neural crest cells and provoked a marked inhibition of cell delamination and migration. The effect of LiCl and exogenous Wnt-1 on neural crest cells could be essentially attributed to a dramatic decrease in integrin-mediated cell-matrix adhesion as well as a massive reduction of cell proliferation. In addition, although it apparently did not affect expression of neural crest markers, Wnt-1 exposure dramatically affected signaling events involving Notch-Delta, presumably also accounting for the strong reduction in cell delamination. In conclusion, our data indicate that beta-catenin functions primarily in cell adhesion events during migration and may be recruited transiently for signaling during delamination possibly to regulate the balance between cell proliferation and cell differentiation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号