首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Multiple microalterations detected at high frequency in oral cancer   总被引:4,自引:0,他引:4  
Baldwin C  Garnis C  Zhang L  Rosin MP  Lam WL 《Cancer research》2005,65(17):7561-7567
The development of array comparative genomic hybridization (array CGH) at tiling-path resolution has enabled the detection of gene-sized segmental DNA copy number gains and losses. Here, we present the first application of whole genome tiling-path array CGH to archival clinical specimens for the detailed analysis of oral squamous cell carcinomas (OSCC). We describe the genomes of 20 OSCCs as well as a selection of matched normal DNA in unprecedented detail. Examination of their whole genome profiles enabled the identification of alterations ranging in size from whole-arm, segmental, to gene size alterations. Tiling-path resolution enabled the detection of many more alterations within each tumor than previously reported, many of which include narrow alterations found to be frequent events among the 20 OSCCs. We report the presence of several novel frequent submegabase alterations, such as the 0.58 Mb gain at 5p15.2 containing triple functional domain (TRIO), detected in 45% of cases. We also report the first coamplification of two gene clusters, by fine-mapping the precise base pair boundaries of the high-level amplification at 11q22.2-22.3 containing both matrix metalloproteinase and baculoviral IAP repeat-containing protein 2 (BIRC) gene clusters. These results show the large improvement in detection sensitivity and resolution compared with genome interval marker arrays and the utility of tiling resolution array CGH for the detection of both submegabase and single copy gains and losses in cancer gene discovery.  相似文献   

2.
Array-based comparative genomic hybridization (array CGH) enables us to detect the genomic copy number alterations of cancers with high resolution. Our established array CGH platform consists of 2,304 BAC/PAC clones covering the whole genome at 1.3-mega base resolutions. Using this technique, we were thus able to reveal disease-specific genomic alterations and the candidate target genes in various lymphomas. We herein report the characteristic genomic alterations of malignant lymphomas including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and adult T cell lymphoma/leukemia (ATLL). The combined use of the array CGH data with gene expression profiling and specific gene rearrangement analyses further delineated the subtype-specific genomic alterations. For instance, we revealed that activated B-cell-like DLBCL is characterized by a gain of chromosome 3, 18q and loss of 9 p21, whereas the germinal center B-cell-like DLBCL is characterized by a gain of 2p15, 7q, and 12q. Among these genomic alterations,we found the 9 p21 loss (p16INK4a locus) to be the most aggressive type of DLBCL. Comparisons of the genome profiles of FL,both with and without BCL2 rearrangement, also revealed the existence of a unique subgroup: trisomy 3 FL. Comparison of genome profiles between acute type and lymphoma types of adult T cell lymphoma also demonstrated that acute and lymphoma types are genomically distinct subtypes, and thus may develop tumors via distinct genetic pathways. In addition to identifying disease-specific genomic alterations, we also discovered several target genes of the genomic gains and losses. Furthermore,we developed a computer algorithm to classify lymphoma diseases or subtypes on the basis of copy number gains and losses. We applied the algorithm to the classifications of DLBCL and MCL diseases and ABC and GCB subtypes. The method correctly classified the DLBCL and MCL diseases at 89%, and ABC and GCB subtypes at 83%. These results demonstrate that copy number gains and losses detected by array CGH could be used for classifying lymphomas into biologically and clinically distinct diseases or subtypes. The genomic copy number alterations detected by array CGH are therefore considered to have the potential to help diagnose or classify different disease entities and tumor subtypes.  相似文献   

3.
Garnis C  Baldwin C  Zhang L  Rosin MP  Lam WL 《Cancer research》2003,63(24):8582-8585
Loss of 3p has been associated with oral cancer progression and is common in many cancers. However, regions of alteration on 3p are poorly defined. We have constructed a high-resolution chromosomal array using a tiling set of 535 human bacterial artificial chromosomes that provides near complete coverage of 3p. Array comparative genomic hybridization analysis of 20 microdissected oral squamous cell carcinomas showed multiple and recurrent segments of copy number changes. These include a deletion containing the FHIT gene; novel segments of copy decrease at 3p22, 3p24, and 3p26; and an unexpected approximately 0.7 Mbp segmental increase at 3p21. These data strongly support the value of using chromosomal array comparative genomic hybridization for detailed profiling of oral squamous cell carcinomas.  相似文献   

4.
Cervical cancer is the second most common malignancy in women worldwide, with high risk subtypes of human papillomavirus (HPV) constituting the major etiological agent. However, only a small percentage of women infected by the virus develop disease, suggesting that additional host genetic alterations are necessary for disease progression. In this study we examined the genomes of a panel of commonly used model cervical cancer cell lines using a recently developed whole genome tiling path array for CGH analysis. Detailed analysis of genomic profiles enabled the detection of many novel aberrations, which may have been missed by conventional cytogenetic methods. In total, 27 minimal regions of recurrent copy number alteration were identified that are potentially involved in tumorigenesis. Interestingly, fine mapping of the 3q gain, which is associated with the progression of precursor lesions to invasive cervical cancer, identified a minimal region of alteration harboring genes distinct from previous candidates. Novel regions of gene amplification, including the coamplification of both the Birc and MMP gene clusters on 11q22, were also evident. Lastly, characterization of genomic structure at sites of HPV integration identified the copy number gain of host cellular sequences between the viral-host genomic boundaries in both SiHa and SW756, suggesting a direct role for HPV integration in the development of genetic abnormalities that initiate cervical cancer. This work represents the highest resolution look at a cervical cancer genome to date and offers definitive characterization of the alteration status of these cancer cell lines.  相似文献   

5.
PURPOSE: The prognosis of patients with esophageal carcinoma is poor. To identify genomic alterations associated with poor patient prognosis, we analyzed whole DNA copy number profiles of esophageal squamous carcinomas (ESCs) using array-based comparative genomic hybridization (aCGH). MATERIALS AND METHODS: Twenty-one operated and two biopsied cases of esophageal squamous cancer were examined for study. Each sample was laser microdissected to obtain pure cancer cell populations. The extracted DNA was analyzed using aCGH. RESULTS: One of the most representative alterations was a previously reported amplification at 11q13.3. In addition, some novel alterations, such as deletion of 16p13.3, were identified. Of the 19 patients who were reassessed more than 5 years after the operation, nine were still living and 10 had died from disease recurrence. When aCGH profiles from the surviving group and the deceased group were compared, significant differences were recognized in 68 of 4,030 bacterial artificial chromosome (BAC) clones. Almost half of these clones were present at nine limiting regions in 4q, 13q, 20q, and Xq. For 22 of these 68 BAC clones, there also was a significant difference in the Kaplan-Meier survival curve, using the log-rank test, when comparing patients who had an alteration in a particular clone with those who did not. CONCLUSIONS: aCGH study of esophageal squamous cancer clearly identified BAC clones that are related to the prognosis of patients. These clones give us the opportunity to determine specific genes that are associated with cancer progression.  相似文献   

6.

Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characterization of their genomes to identify regions of segmental DNA loss (potential tumor-suppressor-containing loci) and gain (potential oncogenic loci) would greatly facilitate the interpretation of biological data derived from such cells. In this study we characterized the genomes of seven of the most commonly used breast cancer model cell lines at unprecedented resolution using a newly developed whole-genome tiling path genomic DNA array.

Methods

Breast cancer model cell lines MCF-7, BT-474, MDA-MB-231, T47D, SK-BR-3, UACC-893 and ZR-75-30 were investigated for genomic alterations with the submegabase-resolution tiling array (SMRT) array comparative genomic hybridization (CGH) platform. SMRT array CGH provides tiling coverage of the human genome permitting break-point detection at about 80 kilobases resolution. Two novel discrete alterations identified by array CGH were verified by fluorescence in situ hybridization.

Results

Whole-genome tiling path array CGH analysis identified novel high-level alterations and fine-mapped previously reported regions yielding candidate genes. In brief, 75 high-level gains and 48 losses were observed and their respective boundaries were documented. Complex alterations involving multiple levels of change were observed on chromosome arms 1p, 8q, 9p, 11q, 15q, 17q and 20q. Furthermore, alignment of whole-genome profiles enabled simultaneous assessment of copy number status of multiple components of the same biological pathway. Investigation of about 60 loci containing genes associated with the epidermal growth factor family (epidermal growth factor receptor, HER2, HER3 and HER4) revealed that all seven cell lines harbor copy number changes to multiple genes in these pathways.

Conclusion

The intrinsic genetic differences between these cell lines will influence their biologic and pharmacologic response as an experimental model. Knowledge of segmental changes in these genomes deduced from our study will facilitate the interpretation of biological data derived from such cells.  相似文献   

7.
To identify genetic changes involved in the progression of breast carcinoma, we did cDNA array comparative genomic hybridization (CGH) on a panel of breast tumors, including 10 ductal carcinoma in situ (DCIS), 18 invasive breast carcinomas, and two lymph node metastases. We identified 49 minimal commonly amplified regions (MCRs) that included known (1q, 8q24, 11q13, 17q21-q23, and 20q13) and several uncharacterized (12p13 and 16p13) regional copy number gains. With the exception of the 17q21 (ERBB2) amplicon, the overall frequency of copy number alterations was higher in invasive tumors than that in DCIS, with several of them present only in invasive cancer. Amplification of candidate loci was confirmed by quantitative PCR in breast carcinomas and cell lines. To identify putative targets of amplicons, we developed a method combining array CGH and serial analysis of gene expression (SAGE) data to correlate copy number and expression levels for each gene within MCRs. Using this approach, we were able to distinguish a few candidate targets from a set of coamplified genes. Analysis of the 12p13-p12 amplicon identified four putative targets: TEL/ETV6, H2AFJ, EPS8, and KRAS2. The amplification of all four candidates was confirmed by quantitative PCR and fluorescence in situ hybridization, but only H2AFJ and EPS8 were overexpressed in breast tumors with 12p13 amplification compared with a panel of normal mammary epithelial cells. These results show the power of combined array CGH and SAGE analysis for the identification of candidate amplicon targets and identify H2AFJ and EPS8 as novel putative oncogenes in breast cancer.  相似文献   

8.
Genome-wide copy number profiles were characterized in 41 primary bladder tumors using array-based comparative genomic hybridization (array CGH). In addition to previously identified alterations in large chromosomal regions, alterations were identified in many small genomic regions, some with high-level amplifications or homozygous deletions. High-level amplifications were detected for 192 genomic clones, most frequently at 6p22.3 (E2F3), 8p12 (FGFR1), 8q22.2 (CMYC), 11q13 (CCND1, EMS1, INT2), and 19q13.1 (CCNE). Homozygous deletions were detected in 51 genomic clones, with four showing deletions in more than one case: two clones mapping to 9p21.3 (CDKN2A/p16, in nine cases), one at 8p23.1 (three cases), and one at 11p13 (two cases). Significant correlations were observed between copy number gain of clones containing CCNE1 and gain of ERBB2, and between gain of CCND1 and deletion of TP53. In addition, there was a significant complementary association between gain of CCND1 and gain of E2F3. Although there was no significant relationship between copy number changes and tumor stage or grade, the linked behavior among genomic loci suggests that array CGH will be increasingly important in understanding pathways critical to bladder tumor biology.  相似文献   

9.
Array-based comparative genomic hybridization (CGH) allows for the simultaneous examination of thousands of genomic loci at 1-2 Mb resolution. Copy number alterations detected by array-based CGH can aid in the identification and localization of cancer causing genes. Here we report the results of array-based CGH in a set of 125 primary colorectal tumors hybridized onto an array consisting of 2463 bacterial artificial chromosome clones. On average, 17.3% of the entire genome was altered in our samples (8.5 +/- 6.7% gained and 8.8 +/- 7.3% lost). Losses involving 8p, 17p, 18p or 18q occurred in 37, 46, 49 and 60% of cases, respectively. Gains involving 8q or 20q were observed 42 and 65% of the time, respectively. A transition from loss to gain occurred on chromosome 8 between 41 and 48 Mb, with 25% of cases demonstrating a gain of 8p11 (45-53 Mb). Chromosome 8 also contained four distinct loci demonstrating high-level amplifications, centering at 44.9, 60, 92.7 and 144.7 Mb. On 20q multiple high-level amplifications were observed, centering at 32.3, 37.8, 45.4, 54.7, 59.4 and 65 Mb. Few differences in DNA copy number alterations were associated with tumor stage, location, age and sex of the patient. Microsatellite stable and unstable (MSI-H) tumors differed significantly with respect to the frequency of alterations (20 versus 5%, respectively, P < 0.01). Interestingly, MSI-H tumors were also observed to have DNA copy number alterations, most commonly involving 8q. This high-resolution analysis of DNA copy number alterations in colorectal cancer by array-based CGH allowed for the identification of many small, previously uncharacterized, genomic regions, such as on chromosomes 8 and 20. Array-based CGH was also able to identify DNA copy number changes in MSI-H tumors.  相似文献   

10.
The completion of the human genome sequence and the development of high throughput technology present exciting opportunities for the study of cancer cells. High-resolution analysis of chromosomal aberrations provides a global framework for understanding complex patterns in cancer cells, allowing us to ask hypothesis-driven questions. Genome-wide analysis of amplification and deletion of genomic regions is a critical step to resolving the mechanisms of neuroblastoma tumorigenesis. We used a high-resolution aCGH system that has over 4000 human BAC clones, resulting in an average coverage of 1Mb across the genome, to define whole genome copy number aberrations (CNAs) in a panel of human neuroblastoma-derived cell lines. By combining the aCGH data with meticulous regional validation studies, we showed that array CGH could reliably detect known aberrations including single copy gain or loss, that data correlate well with standard techniques used for the detection of these genetic changes, and that this technique can be used to identify novel regions of genomic imbalance.  相似文献   

11.
In neuroblastoma, tumor biopsies are used for prognostic evaluation and risk assessment by molecular genetic analyses such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array CGH). Analysis of primary tumors by array CGH can be hampered by the lack of sufficient tumor cells due to small biopsy size or availability of invaded bone marrow only. Given the importance of accurate assessment of genetic alterations in the diagnostic work-up of patients with neuroblastoma, we evaluated the possibility to analyze bone marrow metastases in patients with disseminated disease. Disseminated neuroblastoma cells were isolated from bone marrow aspirates by using either laser capture microdissection (LCM) or magnetic activated cell sorting (MACS). The array CGH profiles of these isolated metastases were compared to array CGH profiles and/or FISH data of the corresponding primary tumor. Here, we show that the major recurrent DNA copy number alterations detected in primary neuroblastoma tumors (i.e., 1p, 3p and 11q deletion, 17q gain and MYCN amplification) can be detected, with high sensitivity and specificity, in the disseminated neuroblastoma cells isolated from the bone marrow aspirates, using an array platform with high coverage for these regions. Moreover, we demonstrate that for archived material, for example, for retrospective studies, LCM is the method of choice, while for fresh bone marrow aspirates, acquired at the time of diagnosis, MACS is superior.  相似文献   

12.
Genomic alterations have been identified in lung cancer tissues and reported in numerous studies. To analyze genomic aberrations in lung cancer patients, we used array comparative genomic hybridization (array CGH) in 14 squamous cell lung carcinoma (SqC) tissues. Copy number gain and loss in chromosomal regions were detected, and the corresponding genes were confirmed by real time PCR. Several frequently altered loci, including gain of 3q (36% of samples), were found. The most frequently identified losses were found at 14q32.33 (21% of samples). The relative degree of chromosomal change was analyzed using log2 ratios. High-level DNA amplifications (>0.8 log2 ratio) were detected at 20 regions in 1p, 2q, 3q, 4q, 6q, 7p, 8q, 9p, 10q, 12q, 14q and 19p. We found that the fold change levels were highest at EVI1 (3q26.2), LPP (3q27-28) and FHF-1 (3q28) gene loci. Our results show that array CGH is a useful tool for identification of gene alteration in lung cancer, and that the above-mentioned genes might represent potential candidate genes for pathogenesis and diagnosis of lung cancer.  相似文献   

13.
Comparative genomic hybridization (CGH) studies have provided a wealth of information on common copy number aberrations in pancreatic cancer, but the genes affected by these aberrations are largely unknown. To identify putative amplification target genes in pancreatic cancer, we performed a parallel copy number and expression survey in 13 pancreatic cancer cell lines using a 12,232-clone cDNA microarray, providing an average resolution of 300 kb throughout the human genome. CGH on cDNA microarray allowed highly accurate mapping of copy number increases and resulted in identification of 24 independent amplicons, ranging in size from 130 kb to 11 Mb. Statistical evaluation of gene copy number and expression data across all 13 cell lines revealed a set of 105 genes whose elevated expression levels were directly attributable to increased copy number. These included genes previously reported to be amplified in cancer as well as several novel targets for copy number alterations, such as p21-activated kinase 4 (PAK4), which was previously shown to be involved in cell migration, cell adhesion, and anchorage-independent growth. In conclusion, our results implicate a set of 105 genes that is likely to be actively involved in the development and progression of pancreatic cancer.  相似文献   

14.
Impact of DNA amplification on gene expression patterns in breast cancer   总被引:9,自引:0,他引:9  
Genetic changes underlie tumor progression and may lead to cancer-specific expression of critical genes. Over 1100 publications have described the use of comparative genomic hybridization (CGH) to analyze the pattern of copy number alterations in cancer, but very few of the genes affected are known. Here, we performed high-resolution CGH analysis on cDNA microarrays in breast cancer and directly compared copy number and mRNA expression levels of 13,824 genes to quantitate the impact of genomic changes on gene expression. We identified and mapped the boundaries of 24 independent amplicons, ranging in size from 0.2 to 12 Mb. Throughout the genome, both high- and low-level copy number changes had a substantial impact on gene expression, with 44% of the highly amplified genes showing overexpression and 10.5% of the highly overexpressed genes being amplified. Statistical analysis with random permutation tests identified 270 genes whose expression levels across 14 samples were systematically attributable to gene amplification. These included most previously described amplified genes in breast cancer and many novel targets for genomic alterations, including the HOXB7 gene, the presence of which in a novel amplicon at 17q21.3 was validated in 10.2% of primary breast cancers and associated with poor patient prognosis. In conclusion, CGH on cDNA microarrays revealed hundreds of novel genes whose overexpression is attributable to gene amplification. These genes may provide insights to the clonal evolution and progression of breast cancer and highlight promising therapeutic targets.  相似文献   

15.
Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide. We have previously characterized global gene expression patterns in HCC using microarrays. Here, we report the analysis of genomic DNA copy number among 49 HCC samples using BAC array-based comparative genomic hybridization (CGH). We observed recurrent and characteristic chromosomal aberrations, including frequent DNA copy number gains of 1q, 6p, 8q and 20q, and losses of 4q, 8p, 13q, 16q and 17p. We correlated gene expression with array CGH data, and identified a set of genes whose expression levels correlated with common chromosomal aberrations in HCC. Especially, we noticed that high expression of Jab1 in HCC significantly correlated with DNA copy number gain at 8q. Quantitative microsatellite analysis further confirmed DNA copy number gain at the Jab1 locus. Overexpression of Jab1 in HCC was also validated using real-time RT-PCR, and Jab1 protein levels were studied by immunohistochemistry on tissue microarrays. Functional analysis in HCC cell lines demonstrated that Jab1 may regulate HCC cell proliferation, thereby having a potential role in HCC development. In conclusion, this study shows that array-based CGH provides high resolution mapping of chromosomal aberrations in HCC, and demonstrates the feasibility of correlating array CGH data with gene expression data to identify novel oncogenes and tumor suppressor genes.  相似文献   

16.

Introduction

Genomic aberrations in the form of subchromosomal DNA copy number changes are a hallmark of epithelial cancers, including breast cancer. The goal of the present study was to analyze such aberrations in breast cancer at high resolution.

Methods

We employed high-resolution array comparative genomic hybridization with 4,134 bacterial artificial chromosomes that cover the genome at 0.9 megabase resolution to analyze 47 primary breast tumors and 18 breast cancer cell lines.

Results

Common amplicons included 8q24.3 (amplified in 79% of tumors, with 5/47 exhibiting high level amplification), 1q32.1 and 16p13.3 (amplified in 66% and 57% of tumors, respectively). Moreover, we found several positive correlations between specific amplicons from different chromosomes, suggesting the existence of cooperating genetic loci. Queried by gene, the most frequently amplified kinase was PTK2 (79% of tumors), whereas the most frequently lost kinase was PTK2B (hemizygous loss in 34% of tumors). Amplification of ERBB2 as measured by comparative genomic hybridization (CGH) correlated closely with ERBB2 DNA and RNA levels measured by quantitative PCR as well as with ERBB2 protein levels. The overall frequency of recurrent losses was lower, with no region lost in more than 50% of tumors; the most frequently lost tumor suppressor gene was RB1 (hemizygous loss in 26% of tumors). Finally, we find that specific copy number changes in cell lines closely mimicked those in primary tumors, with an overall Pearson correlation coefficient of 0.843 for gains and 0.734 for losses.

Conclusion

High resolution CGH analysis of breast cancer reveals several regions where DNA copy number is commonly gained or lost, that non-random correlations between specific amplicons exist, and that specific genetic alterations are maintained in breast cancer cell lines despite repeat passage in tissue culture. These observations suggest that genes within these regions are critical to the malignant phenotype and may thus serve as future therapeutic targets.  相似文献   

17.
Garnis C  Coe BP  Zhang L  Rosin MP  Lam WL 《Oncogene》2004,23(14):2582-2586
Chromosome 8q amplification is a common event observed in cancer. In this study, we used high-resolution array comparative genomic hybridization to resolve two neighboring regions on 8q that are both amplified in oral cancer. One region (at 8q24) contains the MYC oncogene, which is frequently overexpressed in many cancers, while the other region (at 8q22) represents a novel amplicon. The alignment of array comparative genomic hybridization profiles of 20 microdissected oral squamous cell carcinomas (OSCCs) revealed a approximately 5 Mbp region of frequent copy number alteration. This region harbors 16 known genes. Gene expression analysis comparing 15 microdissected OSCC with 16 normal epithelium samples revealed overexpression specific to LRP12 but not the neighboring genes, dihydropyrimidinase and FOG2, suggesting that LRP12 may function as an oncogene in oral tumors.  相似文献   

18.
The goals of this study were to evaluate the potential of detecting cryptic amplification and deletion of cancer-related genes using array-based comparative genomic hybridization (CGH), and to identify candidate cancer genes by combined parallel analyses of copy number and gene expression profiles in nasopharyngeal carcinoma (NPC) cell lines. We established global DNA copy number and mRNA expression profiles on human NPC cell lines using a high-density cDNA microarray. The DNA copy number alterations detected by array CGH were compared to the DNA copy number variations identified by metaphase CGH. A cryptic amplification at 3q26 was detected by array CGH, which was not found by metaphase CGH. By amplicon mapping and parallel analyses of DNA copy number and mRNA expression levels, we identified several candidates which could be important mediators in tumor formation or progression. Taken together, the combination of copy number and gene expression profiling using cDNA microarrays provides an improved strategy for gene discovery in human cancer.  相似文献   

19.
Alterations in genomic content and changes in gene expression levels are central characteristics of tumors and pivotal to the tumorigenic process. We analyzed 23 non-small cell lung cancer (NSCLC) tumors by array comparative genomic hybridization (array CGH). Aberrant regions identified included well-characterized chromosomal aberrations such as amplifications of 3q and 8q and deletions of 3p21.31. Less frequently identified aberrations such as amplifications of 7q22.3-31.31 and 12p11.23-13.2, and previously unidentified aberrations such as deletion of 11q12.3-13.3 were also detected. To enhance our ability to identify key acting genes residing in these regions, we combined array CGH results with gene expression profiling performed on the same tumor samples. We identified a set of genes with concordant changes in DNA copy number and expression levels, i.e. overexpressed genes located in amplified regions and underexpressed genes located in deleted regions. This set included members of the Wnt/beta-catenin pathway, genes involved in DNA replication, and matrix metalloproteases (MMPs). Functional enrichment analysis of the genes both overexpressed and amplified revealed a significant enrichment for DNA replication and repair, and extracellular matrix component gene ontology annotations. We verified the changes in expressions of MCM2, MCM6, RUVBL1, MMP1, MMP12 by real-time quantitative PCR. Our results provide a high resolution map of copy number changes in non-small cell lung cancer. The joint analysis of array CGH and gene expression analysis highlights genes with concordant changes in expression and copy number that may be critical to lung cancer development and progression.  相似文献   

20.
Array-based comparative genomic hybridization (CGH) uses multiple genomic clones arrayed on a slide to detect relative copy number of tumor DNA sequences. Application of array CGH to tumor specimens makes genetic diagnosis of cancers possible and may help to differentiate relevant subsets of tumors, biologically and clinically, which would allow better prognostic and therapeutic decision making. In this study, we have used array-based CGH to detect DNA copy number alterations in distinct types of renal cell carcinomas for diagnostic purposes. We were able to correctly diagnose 33 of 34 malignant tumors by automated computational means and to group together eight benign neoplasms and normal kidney samples. These results indicate that array-based CGH is capable of diagnosing the vast majority of renal cell carcinomas based on their genetic profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号