首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cowdria ruminantium is the etiologic agent of heartwater, a disease causing major economic loss in ruminants in sub-Saharan Africa and the Caribbean. Development of a serodiagnostic test is essential for determining the carrier status of animals from regions where heartwater is endemic, but most available tests give false-positive reactions with sera against related Erhlichia species. Current approaches rely on molecular methods to define proteins and epitopes that may allow specific diagnosis. Two major antigenic proteins (MAPs), MAP1 and MAP2, have been examined for their use as antigens in the serodiagnosis of heartwater. The objectives of this study were (i) to determine if MAP2 is conserved among five geographically divergent strains of C. ruminantium and (ii) to determine if MAP2 homologs are present in Ehrlichia canis, the causative agent of canine ehrlichiosis, and Ehrlichia chaffeensis, the organism responsible for human monocytic ehrlichiosis. These two agents are closely related to C. ruminantium. The map2 gene from four strains of C. ruminantium was cloned, sequenced, and compared with the previously reported map2 gene from the Crystal Springs strain. Only 10 nucleic acid differences between the strains were identified, and they translate to only 3 amino acid changes, indicating that MAP2 is highly conserved. Genes encoding MAP2 homologs from E. canis and E. chaffeensis also were cloned and sequenced. Amino acid analysis of MAP2 homologs of E. chaffeensis and E. canis with MAP2 of C. ruminantium revealed 83.4 and 84.4% identities, respectively. Further analysis of MAP2 and its homologs revealed that the whole protein lacks specificity for heartwater diagnosis. The development of epitope-specific assays using this sequence information may produce diagnostic tests suitable for C. ruminantium and also other related rickettsiae.  相似文献   

2.
Canine monocytic ehrlichiosis, caused by Ehrlichia canis or Ehrlichia chaffeensis, can result in clinical disease in naturally infected animals. Coinfections with these agents may be common in certain areas of endemicity. Currently, a species-specific method for serological diagnosis of monocytic ehrlichiosis is not available. Previously, we developed two indirect enzyme-linked immunosorbent assays (ELISAs) using the major antigenic protein 2 (MAP2) of E. chaffeensis and E. canis. In this study, we further characterized the conservation of MAP2 among various geographic isolates of each organism and determined if the recombinant MAP2 (rMAP2) of E. chaffeensis would cross-react with E. canis-infected dog sera. Genomic Southern blot analysis using digoxigenin-labeled species-specific probes suggested that map2 is a single-copy gene in both Ehrlichia species. Sequences of the single map2 genes of seven geographically different isolates of E. chaffeensis and five isolates of E. canis are highly conserved among the various isolates of each respective ehrlichial species. ELISA and Western blot analysis confirmed that the E. chaffeensis rMAP2 failed to serologically differentiate between E. canis and E. chaffeensis infections.  相似文献   

3.
A gene encoding a 28-kDa protein of Ehrlichia canis was cloned, sequenced, and expressed, and a comparative molecular analysis with homologous genes of E. canis, Cowdria ruminantium, and Ehrlichia chaffeensis was performed. The complete gene has an 834-bp open reading frame encoding a protein of 278 amino acids with a predicted molecular mass of 30.5 kDa. An N-terminal signal sequence was identified, suggesting that the protein undergoes posttranslational modification to a mature 27.7-kDa protein (P28). The E. canis p28 gene has significant nucleic acid and amino acid sequence homologies with the E. chaffeensis outer membrane protein-1 (omp-1) gene family, with the Cowdria ruminantium map-1 gene, and with other E. canis 28-kDa-protein genes. Southern blotting revealed the presence of at least two additional homologous p28 gene copies in the E. canis genome, confirming that p28 is a member of a polymorphic multiple-gene family. Amino acid sequence analysis revealed that E. canis P28 has four variable regions, and it shares similar surface-exposed regions, antigenicity, and T-cell motifs with E. chaffeensis P28. The p28 genes from seven different E. canis isolates were identical, indicating that the gene for this major immunoreactive protein is highly conserved. In addition, reactivity of sera from clinical cases of canine ehrlichiosis with the recombinant P28 demonstrated that the recombinant protein may be a reliable serodiagnostic antigen.  相似文献   

4.
Ehrlichia chaffeensis, a new species associated with human ehrlichiosis.   总被引:24,自引:27,他引:24       下载免费PDF全文
The bacterial 16S rRNA genes from blood samples of two patients with human ehrlichiosis and from an isolate recovered from one of the patients were amplified by using the polymerase chain reaction. The amplimers were then cloned and sequenced. The 16S rRNA gene sequence was also determined for Ehrlichia canis (two strains), E. equi, E. phagocytophila (two strains), and E. sennetsu (two strains). These sequences, along with a previously published 16S rRNA gene sequence of E. risticii, were compared. The 16S rRNA gene sequences were identical for all three sources of the human ehrlichiosis agent. The sequence comparisons indicate that the human ehrlichiosis agent is a new species most closely related to E. canis (98.2%) and more distantly related to other Ehrlichia spp. We propose that this species be named Ehrlichia chaffeensis sp. nov., with the Arkansas strain as the type strain.  相似文献   

5.
The 120-kDa outer membrane protein (p120) is a potential adhesin of Ehrlichia chaffeensis, and recombinant p120 is very useful for serodiagnosis of human monocytotropic ehrlichiosis. The analogous gene of p120 in Ehrlichia canis was cloned, sequenced, and expressed. Like the E. chaffeensis p120, the E. canis p120 contains tandem repeat units. However, neither the repeat number nor the amino acid sequences in the repeats are identical in the two Ehrlichia species. The repeat units are hydrophilic and by probability analysis are predicted to be surface exposed in both species. The repeat regions of the p120s of the two species have common amino acid sequences that are predicted to be surface exposed. The overall amino acid sequence of the E. canis p120 is 30% homologous to that of E. chaffeensis p120. Protein immunoblotting demonstrated that the recombinant E. canis p120 reacted with convalescent sera from dogs with canine ehrlichiosis. These results indicate that the recombinant p120 is a potential antigen for the serodiagnosis of canine ehrlichiosis.  相似文献   

6.
DNA samples from dogs presenting with symptoms suggestive of canine ehrlichiosis, but with no morulae detected on blood smears, frequently failed to give a positive reaction with a North American Ehrlichia canis-specific PCR assay targeting the 16S rRNA gene. We suspected the presence of a pathogen genetically different from North American E. canis, and we performed experiments to test this hypothesis. DNA from one canine blood sample was subjected to PCR with primers designed to amplify Ehrlichia (Cowdria) ruminantium ruminantium 16S and map1 genes. Amplicon sequencing yielded 16S and map1 sequences which were more closely related to other E. ruminantium sequences than to those of any other Ehrlichia species. Fifty canine DNA samples were subjected to a PCR assay, previously found to be Cowdria-specific, which targets the pCS20 gene. Thirty-seven (74%) gave a positive signal, and 16 (32%) also gave visible amplicons after gel electrophoresis, suggesting that this E. ruminantium organism is common in the Pretoria-Johannesburg area. The organism has not been isolated in culture, so we cannot definitively state that it was responsible for the canine ehrlichiosis symptoms, although the occurrence of several similar cases suggests this to be so. Most importantly, we also do not yet know whether the organism is infective for, or causes heartwater in, ruminants.  相似文献   

7.
Although more than 320 cases of human ehrlichiosis have been diagnosed in 27 states since 1986, the reservoir host or hosts remain unknown. Since antibodies reactive to Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis, have been found in white-tailed deer (Odocoileus virginianus), we experimentally evaluated the susceptibilities of four white-tailed deer to infection with E. chaffeensis and Ehrlichia canis, a closely related species. A fifth deer served as a negative control. Isolation and nested PCR amplification results from peripheral blood indicated that E. chaffeensis circulated for at least 2 weeks. The deer developed antibodies to E. chaffeensis by day 10 after inoculation, but there was no indication of clinical disease. Immunohistochemical staining identified E. chaffeensis within macrophage-type cells in lymph nodes. The deer inoculated with E. canis did not become infected and did not seroconvert. These results indicate that white-tailed deer can support an E. chaffeensis infection with resulting rickettsemia of at least 2 weeks. The resistance to infection and the absence of seroconversion upon exposure to E. canis indicate that antibody responses previously detected among wild deer are not E. canis cross-reactions. The role of deer as competent reservoirs in the life cycle of E. chaffeensis remains to be explored with suspected tick vectors.  相似文献   

8.
Currently available serological tests for cowdriosis (Cowdria ruminantium infection) in domestic ruminants are hampered by their low specificities because of cross-reactivity with Ehrlichia spp. The use of recombinant major antigenic protein (MAP1) of C. ruminantium for serodiagnosis was investigated. Overlapping fragments of the MAP1 protein were expressed in Escherichia coli and were reacted with sera from sheep infected with either C. ruminantium or Ehrlichia ovina. Two immunogenic regions on the MAP1 protein, designated MAP1-A and MAP1-B, were identified. MAP1-A was reactive with C. ruminantium antisera, E. ovina antisera, and three MAP1-specific monoclonal antibodies, whereas MAP1-B reacted only with C. ruminantium antisera. An indirect enzyme-linked immunosorbent assay (ELISA) based on MAP1-B was further developed and validated with sera from animals experimentally infected with C. ruminantium or several Ehrlichia spp. Antibodies raised in sheep, cattle, and goats against nine isolates of C. ruminantium reacted with MAP1-B. Cross-reactivity with MAP1-B was limited to Ehrlichia canis and Ehrlichia chaffeensis, two rickettsias which do not infect ruminants. Antibodies to Ehrlichia spp. which do infect ruminants (E. bovis, E. ovina, and E. phagocytophila) did not react with MAP1-B. Antibody titers to C. ruminantium in sera from experimentally infected cattle, goats, and sheep were detectable for 50 to 200 days postinfection. Further validation of the recombinant MAP1-B-based ELISA was done with sera obtained from sheep raised in heartwater-free areas in Zimbabwe and from several Caribbean islands. A total of 159 of 169 samples which were considered to be false positive by immunoblotting or indirect ELISA did not react with MAP1-B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Degenerate PCR primers derived from conserved regions of the eubacterial groESL heat shock operon were used to amplify groESL sequences of Ehrlichia equi, Ehrlichia phagocytophila, the agent of human granulocytic ehrlichiosis (HGE), Ehrlichia canis, Bartonella henselae, and Rickettsia rickettsii. The groESL nucleotide sequences were less conserved than the previously determined 16S rRNA gene sequences of these bacteria. A phylogenetic tree derived from deduced GroEL amino acid sequences was similar to trees based on 16S rRNA gene sequences. Nucleotide sequences obtained from clinical samples containing E. equi, E. phagocytophila, or the HGE agent were very similar (99.9 to 99.0% identity), and the deduced amino acid sequences were identical. Some divergence was evident between nucleotide sequences amplified from samples originating from the United States (E. equi and the HGE agent) and sequences from the European species, E. phagocytophila. A single pair of PCR primers derived from these sequences was used to detect E. chaffeensis and HGE agent DNA in blood samples from human patients with ehrlichiosis.  相似文献   

10.
Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris, respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis, the Anan strain, and E. canis, respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup.  相似文献   

11.
Ehrlichia chaffeensis, E. canis, and E. ewingii are genetically closely related, as determined by 16S rRNA gene base sequence comparison, but they exhibit biologic differences. E. chaffeensis is the etiologic agent of human ehrlichiosis. E. canis and E. ewingii cause two distinctly different forms of canine ehrlichiosis and infect different types of leukocytes, monocytes and granulocytes, respectively. E. chaffeensis can also infect dogs. In the study, Western immunoblot analysis of sera from dogs inoculated with E. chaffeensis, E. canis, or E. ewingii was performed to determine antigenic specificity and the intensities of the reactions to purified E. chaffeensis and E. canis antigens. At 2 to 3 weeks postexposure, antisera from four dogs inoculated with E. chaffeensis reacted with 64-, 47-, 31-, and 29-kDa proteins of E. chaffeensis but reacted poorly with E. canis antigen. In contrast, at 2 to 3 weeks postexposure, antisera from four E. canis-inoculated dogs reacted strongly with the 30-kDa major antigen of E. canis but reacted poorly with proteins from E. chaffeensis. At 4 weeks postexposure, the sera from three E. ewingii-inoculated dogs showed weak binding to 64- and 47-kDa proteins of both E. chaffeensis and E. canis. Convalescent-phase sera from human ehrlichiosis patients and sera from dogs chronically infected with E. ewingii strongly reacted with similar sets of proteins of E. chaffeensis and E. canis with similar intensities. However, sera from dogs chronically infected with E. canis reacted more strongly with a greater number of E. canis proteins than with E. chaffeensis proteins. The protein specificity described in the report suggests that dogs with E. canis infections can be distinguished from E. chaffeensis-infected animals by Western immunoblot analysis with both E. canis and E. chaffeensis antigens.  相似文献   

12.
PCR was used to amplify a 537-bp region of an Ehrlichia ewingii gene encoding a homologue of the 28-kDa major antigenic protein (P28) of Ehrlichia chaffeensis. The E. ewingii p28 gene homologue was amplified from DNA extracted from whole blood obtained from four humans and one canine with confirmed cases of infection. Sequencing of the PCR products (505 bp) revealed a partial gene with homology to outer membrane protein genes from Ehrlichia and Cowdria spp.: p30 of Ehrlichia canis (< or =71.3%), p28 of E. chaffeensis (< or =68.3%), and map1 of Cowdria ruminantium (67.3%). The peptide sequence of the E. ewingii partial gene product was deduced (168 amino acids) and the antigenicity profile was analyzed, revealing a hydrophilic protein with < or =69.1% identity to P28 of E. chaffeensis, < or =67.3% identity to P30 of E. canis, and < or =63.1% identity to MAP1 of C. ruminantium. Primers were selected from the E. ewingii p28 sequence and used to develop a species-specific PCR diagnostic assay. The p28 PCR assay amplified the expected 215-bp product from DNA that was extracted from EDTA-treated blood from each of the confirmed E. ewingii infections that were available. The assay did not produce PCR products with DNA extracted from E. chaffeensis-, E. canis-, or E. phagocytophila-infected samples, confirming the specificity of the p28 assay for E. ewingii. The sensitivity of the E. ewingii-specific PCR assay was evaluated and determined to detect as few as 38 copies of the p28 gene.  相似文献   

13.
Ehrlichiae are strict intracellular bacterial pathogens that parasitize leukocytes or other blood cells. Only six agents of the tribe Ehrlichieae, namely, Cowdria ruminantium, Neorickettsia helminthoeca, Ehrlichia risticii, Ehrlichia sennetsu, Ehrlichia canis, and Ehrlichia chaffeensis, have been adapted to growth in continuous cell lines. E. chaffeensis, the agent of human ehrlichiosis, has been cultured only in a cell line of canine origin. We adapted purified cell-free E. chaffeensis for growth in human embryonic lung (HEL) fibroblasts (HEL 299), green monkey kidney cells (Vero), and a human cervical epithelioid carcinoma (HeLa) cell line. We observed a cytopathic effect with both Vero cells and HEL cells and plaque formation with cellular lysis when infected Vero cells were cultured in agar. Human fibroblasts are already commonly used for the isolation of viruses, coexiellae, and rickettsiae. Furthermore, the capability of these cells to support the growth of ehrlichiae suggests that they may be useful for primary isolation of ehrlichiae as well. The cytopathic effect produced in Vero or HEL cells offers a very helpful indicator of the infection. Plaque formation in Vero cells is a new phenomenon not yet reported for ehrlichiae and will allow the titration of inocula and clonal purification of this bacterium.  相似文献   

14.
Cowdria ruminatium, the causative agent of heartwater disease, expresses an immunodominant and conserved 32-kilodalton protein (MAP1; formerly called Cr32), which is currently in use for serodiagnosis of the disease. The gene encoding this protein, designated map1, was detected, cloned, and characterized. The gene is conserved between four different stocks of C. ruminantium originating from Senegal, Sudan, South Africa, and Zimbabwe. Homology searches revealed MAP1 to be homologous to the Anaplasma marginale surface protein MSP4, a potential protective antigen. The MAP1 protein, expressed in Escherichia coli fused with glutathione S-transferase, is specifically recognized by sera from animals infected with seven different stocks of C. ruminantium.  相似文献   

15.
Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis.   总被引:5,自引:0,他引:5  
BACKGROUND: Human ehrlichiosis is a recently recognized tick-borne infection. Four species infect humans: Ehrlichia chaffeensis, E. sennetsu, E. canis, and the agent of human granulocytic ehrlichiosis. METHODS: We tested peripheral-blood leukocytes from 413 patients with possible ehrlichiosis by broad-range and species-specific polymerase-chain-reaction (PCR) assays for ehrlichia. The species present were identified by species-specific PCR assays and nucleotide sequencing of the gene encoding ehrlichia 16S ribosomal RNA. Western blot analysis was used to study serologic responses. RESULTS: In four patients, ehrlichia DNA was detected in leukocytes by a broad-range PCR assay, but not by assays specific for E. chaffeensis or the agent of human granulocytic ehrlichiosis. The nucleotide sequences of these PCR products matched that of E. ewingii, an agent previously reported as a cause of granulocytic ehrlichiosis in dogs. These four patients, all from Missouri, presented between May and August 1996, 1997, or 1998 with fever, headache, and thrombocytopenia, with or without leukopenia. All had been exposed to ticks, and three were receiving immunosuppressive therapy. Serum samples obtained from three of these patients during convalescence contained antibodies that reacted with E. chaffeensis and E. canis antigens in a pattern different from that of humans with E. chaffeensis infection but similar to that of a dog experimentally infected with E. ewingii. Morulae were identified in neutrophils from two patients. All four patients were successfully treated with doxycycline. CONCLUSIONS: These findings provide evidence of E. ewingii infection in humans. The associated disease may be clinically indistinguishable from infection caused by E. chaffeensis or the agent of human granulocytic ehrlichiosis.  相似文献   

16.
Predominance of Ehrlichia ewingii in Missouri dogs   总被引:3,自引:0,他引:3       下载免费PDF全文
To investigate the species distribution of Ehrlichia present in Missouri dogs, we tested 78 dogs suspected of having acute ehrlichiosis and 10 healthy dogs. Blood from each dog was screened with a broad-range 16S rRNA gene PCR assay that detects known pathogenic species of Ehrlichia and ANAPLASMA: The species was determined by using species-specific PCR assays and nucleotide sequencing. Ehrlichia antibody testing was performed by using an indirect immunofluorescence assay with Ehrlichia chaffeensis as the antigenic substrate. The broad-range assay detected Ehrlichia or Anaplasma DNA in 20 (26%) of the symptomatic dogs and 2 (20%) of the asymptomatic dogs. E. ewingii accounted for 20 (91%), and E. chaffeensis accounted for 1 (5%) of the positives. Anaplasma phagocytophilum DNA was detected in one dog, and the sequences of regions of the 16S rRNA gene and the groESL operon amplified from the blood of this dog matched the published sequences of this organism. Antibodies reactive with E. chaffeensis were detected in 14 (67%) of the 21 PCR-positive dogs and in 12 (19%) of the 64 PCR-negative dogs. Combining the results of PCR and serology indicated that 33 (39%) of 85 evaluable dogs had evidence of past or current Ehrlichia infection. We conclude that E. ewingii is the predominant etiologic agent of canine ehrlichiosis in the areas of Missouri included in this survey. E. canis, a widely recognized agent of canine ehrlichiosis, was not detected in any animal. The finding of E. ewingii in asymptomatic dogs suggests that dogs could be a reservoir for this Ehrlichia species.  相似文献   

17.
Seventeen Minnesota and Wisconsin dogs with granulocytic ehrlichosis were studied. The diagnoses were made by finding ehrlichia morulae in peripheral blood neutrophils. Eight dogs were studied retrospectively, and nine dogs were studied prospectively. The medical records of all dogs were reviewed. Eighty-eight percent of the dogs were purebred and 76% were spayed females. The median age was 8 years. Sixty-five percent of the cases were diagnosed in October and November. Fever and lethargy were the most common clinical signs. The most frequent laboratory findings were lymphopenia, thrombocytopenia, elevated activities of serum alkaline phosphatase and amylase, and hypoalbuminemia. No dogs seroreacted to Ehrlichia canis or Ehrlichia chaffeensis antigens, which are cross-reactive. Seventy-five percent of the dogs tested during the acute phase of disease and 100% of the dogs tested during convalescence were seropositive for E. equi antigens. Granulocytic ehrlichial 16S rRNA gene DNAs from six dogs were amplified by PCR. Sequence analysis of a 919-bp sequence of the ehrlichial 16S rRNA gene amplified by PCR from the blood of two dogs revealed the agent to be identical to the agent of human granulocytic ehrlichiosis in Minnesota and Wisconsin and to be very similar to E. equi and Ehrlichia phagocytophila and less similar to E. canis, Ehrlichia ewingii, and E. chaffeensis. The geographic, clinical, serologic, and molecular evidence indicates that granulocytic ehrlichiosis in Minnesota and Wisconsin dogs is not caused by E. ewingii, but suggests that it is a zoonotic disease caused by an agent closely related to E. equi and that dogs likely contribute to the enzootic cycle and human infection.  相似文献   

18.
A mouse monoclonal antibody (MAb 1A9) was produced and used in detection of Ehrlichia chaffeensis in human tissues including kidney, liver, and lung by using an indirect immunohistologic stain. MAb 1A9 was specific to E. chaffeensis and did not react with other bacteria, including Ehrlichia canis, which is the organism most closely related to E. chaffeensis. It reacted with an epitope present in two surface proteins of E. chaffeensis with molecular masses of 29 and 27 kDa. E. chaffeensis was easily detected in human tissue by immunohistology with MAb 1A9. This study demonstrates that our MAb can provide a specific and simple method for detection of E. chaffeensis in clinical specimens for establishing an etiologic diagnosis of human ehrlichiosis; it may also provide a tool for the investigation of immunopathologic characteristics in infected patients.  相似文献   

19.
The sequence of the citrate synthase gene (gltA) of 13 ehrlichial species (Ehrlichia chaffeensis, Ehrlichia canis, Ehrlichia muris, an Ehrlichia species recently detected from Ixodes ovatus, Cowdria ruminantium, Ehrlichia phagocytophila, Ehrlichia equi, the human granulocytic ehrlichiosis [HGE] agent, Anaplasma marginale, Anaplasma centrale, Ehrlichia sennetsu, Ehrlichia risticii, and Neorickettsia helminthoeca) have been determined by degenerate PCR and the Genome Walker method. The ehrlichial gltA genes are 1,197 bp (E. sennetsu and E. risticii) to 1,254 bp (A. marginale and A. centrale) long, and GC contents of the gene vary from 30.5% (Ehrlichia sp. detected from I. ovatus) to 51.0% (A. centrale). The percent identities of the gltA nucleotide sequences among ehrlichial species were 49.7% (E. risticii versus A. centrale) to 99.8% (HGE agent versus E. equi). The percent identities of deduced amino acid sequences were 44.4% (E. sennetsu versus E. muris) to 99.5% (HGE agent versus E. equi), whereas the homology range of 16S rRNA genes was 83.5% (E. risticii versus the Ehrlichia sp. detected from I. ovatus) to 99.9% (HGE agent, E. equi, and E. phagocytophila). The architecture of the phylogenetic trees constructed by gltA nucleotide sequences or amino acid sequences was similar to that derived from the 16S rRNA gene sequences but showed more-significant bootstrap values. Based upon the alignment analysis of the ehrlichial gltA sequences, two sets of primers were designed to amplify tick-borne Ehrlichia and Neorickettsia genogroup Ehrlichia (N. helminthoeca, E. sennetsu, and E. risticii), respectively. Tick-borne Ehrlichia species were specifically identified by restriction fragment length polymorphism (RFLP) patterns of AcsI and XhoI with the exception of E. muris and the very closely related ehrlichia derived from I. ovatus for which sequence analysis of the PCR product is needed. Similarly, Neorickettsia genogroup Ehrlichia species were specifically identified by RFLP patterns of RcaI digestion. If confirmed this technique will be useful in rapidly identifying Ehrlichia spp.  相似文献   

20.
A gene that is homologous to the Ehrlichia chaffeensis groEL operon was recovered and characterized by broad-range PCR amplification of whole blood from patients with human granulocytic ehrlichiosis (HGE) and from infected HL60 cell cultures. Sequence analysis of an 820-bp DNA fragment recovered directly from human blood showed 76.5 and 76.3% identity with cognate sequences from E. chaffeensis and Cowdria ruminantium, respectively. Analysis of a 1.6-kb DNA fragment derived from an HGE agent-infected HL60 cell culture indicated a near-complete open reading frame that contained 75.6 and 75.2% sequence identity with the E. chaffeensis and C. ruminantium groEL sequences, respectively. Phylogenetic analysis of this fragment showed that the HGE agent-derived sequence was related to, but distinct from, the sequences of E. chaffeensis and C. ruminantium. Polyvalent antibody responses to a recombinant fusion protein based on the HGE agent groEL homolog were detected in three of three BALB/c mice that were infected by syringe inoculation with a Wisconsin strain of the HGE agent (WI-1) and nine of nine mice infected by Ixodes scapularis (Ixodes dammini) tick inoculation of an isolate from Nantucket Island, Mass. (NCH-1). No response was detected in mice infected with Borrelia burgdorferi or in control BALB/c mice. Further characterization of the sensitivity and specificity of immune responses to this protein will be facilitated by the use of recombinant fusion proteins or peptides based on the HGE agent-specific groEL homolog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号