首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shell of the nucleus accumbens and central division of the extended amygdala are telencephalic structures that influence motor activity and lately have been regarded by some as components of a single functional-anatomic continuum. Each has a highly differentiated internal organization and output system and distinct pharmacologic responses however, and it is thus likely that each subserves distinct contributions to behavior. In this investigation, nucleus accumbens and extended amygdala outputs were compared by using retrograde tracing in adult and postnatal rats. Fluoro-Gold, when injected into the ventral tegmental area, produced substantial retrograde labeling in the adult nucleus accumbens shell, but only trivial amounts in the central division of the extended amygdala. Injection sites in the lateral mesopontine tegmentum produced robust labeling in the central extended amygdala but little in the nucleus accumbens. The projections of extended amygdala were substantially developed by postnatal day 1, whereas those of the caudomedial shell of the nucleus accumbens only reached the ventral tegmental area by approximately postnatal day 6. Few neurons projecting from the caudomedial shell of the accumbens to the ventral tegmental area were observed even at postnatal day 21. In consideration of the reported importance of the nucleus accumbens, particularly the caudomedial shell, in neural processing related to reward and motivation and the central nervous system response to antipsychotic drugs, it may be important to determine whether processes occurring during the protracted postnatal development of the caudomedial shell are vulnerable to destructive circumstances, such as drug intoxication, maternal separation, or social isolation.  相似文献   

2.
The lateral bed nucleus of the stria terminalis (BSTL) is involved in mediating anxiety‐related behaviors to sustained aversive stimuli. The BSTL forms part of the central extended amygdala, a continuum composed of the BSTL, the amygdala central nucleus, and cell columns running between the two. The central subdivision (BSTLcn) and the juxtacapsular subdivision (BSTLJ) are two BSTL regions that lie above the anterior commissure, near the ventral striatum. The amygdala, a heterogeneous structure that encodes emotional salience, projects to both the BSTL and ventral striatum. We placed small injections of retrograde tracers into the BSTL, focusing on the BSTLcn and BSTLJ, and analyzed the distribution of labeled cells in amygdala subregions. We compared this to the pattern of labeled cells following injections into the ventral striatum. All retrograde results were confirmed by anterograde studies. We found that the BSTLcn receives stronger amygdala inputs relative to the BSTLJ. Furthermore, the BSTLcn is defined by inputs from the corticoamygdaloid transition area and central nucleus, while the BSTLJ receives inputs mainly from the magnocellular accessory basal and basal nucleus. In the ventral striatum, the dorsomedial shell receives inputs that are similar, but not identical, to inputs to the BSTLcn. In contrast, amygdala projections to the ventral shell/core are similar to projections to the BSTLJ. These findings indicate that the BSTLcn and BSTLJ receive distinct amygdala afferent inputs and that the dorsomedial shell is a transition zone with the BSTLcn, while the ventral shell/core are transition zones with the BSTLJ. J. Comp. J. Comp. Neurol. 521:3191–3216, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The ventral tegmental area and its dopamine projections to the nucleus accumbens have been shown to be involved in goal-directed behavior. This study investigated the contribution of GABAergic input to the ventral tegmental area and dopaminergic input to the nucleus accumbens to the drinking and cardiovascular responses elicited by central administration of angiotensin II. Injections of 25 ng of angiotensin II into a lateral cerebral ventricle of the conscious rat elicited water intakes averaging 8 ml in 15 min with latencies usually less than 3 min. Pretreatment of the nucleus accumbens with spiperone, a dopamine antagonist, or the ventral tegmental area with gamma-amino butyric acid (GABA) produced dose-dependent reductions in water intake and number of laps taken while increasing the latency to drink. Injections of spiperone into the nucleus accumbens in anesthetized animals failed to alter the cardiovascular response elicited following the central administration of angiotensin II. However, administration of GABA into the ventral tegmental of urethane anaesthetized animals attenuated the pressor response normally elicited by central administration of angiotensin II. These findings suggest that GABA input to the ventral tegmental area is involved in both the cardiovascular and drinking responses elicited following central administration of angiotensin II. The dopamine projections to the nucleus accumbens appear only to be involved in the drinking response elicited by central injections of angiotensin II. Divergence of the signals separately accessing the skeletal motor behavioral component and the cardiovascular component elicited by central administration of angiotensin II must occur before the involvement of these dopamine pathways.  相似文献   

4.
Although thalamic projections to the dorsal striatum are well described in primates and other species, little is known about thalamic projections to the ventral or “limbic” striatum in the primate. This study explores the organization of the thalamic projections to the ventral striatum in the primate brain by means of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and Lucifer yellow (LY) retrograde tracer techniques. In addition, because functional and connective differences have been described for the core and shell components of the nucleus accumbens in the rat and are thought to be similar in the primate, this study also explores whether these regions of the nucleus accumbens can be distinguished by their thalamic input. Tracer injections are placed in different portions of the ventral striatum, including the medial and lateral regions of the ventral striatum; the central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens; and the shell region of the nucleus accumbens. Retrogradely labeled neurons are located mainly in the midline nuclear group (anterior and posterior paraventricular, paratenial, rhomboid, and reuniens thalamic nuclei) and in the parafascicular thalamic nucleus. Additional labeled cells are found in other portions of the intralaminar nuclear group as well as in other thalamic nuclei in the ventral, anterior, medial, lateral, and posterior thalamic nuclear groups. The distribution of labeled cells varies depending on the area of the ventral striatum injected. All regions of the ventral striatum receive strong projections from the midline thalamic nuclei and from the parafascicular nucleus. In addition, the medial region of the ventral striatum receives numerous projections from the central superior lateral nucleus, the magnocellular subdivision of the ventral anterior nucleus, and parts of the mediodorsal nucleus. After injection into the lateral region of the ventral striatum, few labeled neurons are seen scattered in nuclei of the intralaminar and ventral thalamic groups and occasional labeled cells in the mediodorsal nucleus. The central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens, receives a limited projection from the midline thqlamic, predominantly from the rhomboid nucleus. It receives much smaller projections from the central medial nucleus and the ventral, anterior, and medial thalamic groups. The shell of the nucleus accumbens receives the most limited projection from the thalamus and is innervated almost exclusively by the midline thalamic nuclei and the central medial and parafascicular nuclei. The shell is distinguished from the rest of the ventral striatum in that it receives the fewest projections from the ventral, anterior, medial, and lateral thalamic nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The efferent connections of the substantia innominata in the cat were studied with radioautographic methods. Injections of [3H]leucine were placed throughout the substantia innominata in 20 cats. The results indicate a complex organization to the efferent distribution of fibers from this region. The projections associated with more caudomedial regions of the substantia innominata resemble those of the adjacent preoptic-hypothalamic area and innervate the septal area, lateral habenular nucleus, and ventral tegmental area. Fibers arising from more caudolateral parts of the substantia innominata (ventral pallidum) appear to project in a crude topographic manner to the amygdala via two routes—the stria terminalis and a second group of caudolaterally directed axons. The fiber distribution from the region of the nucleus basalis is widespread to a variety of cortical sites, such as the olfactory bulb, prefrontal cortex, anterior cingulate gyrus, pyriform, and posterior sylvian cortices. Fibers arising from the rostral aspect of the substantia innominata adjacent to the nucleus accumbens are distributed exclusively to the ventral tegmental area and adjoining substantia nigra. All parts of the substantia innominata supply the ventral tegmental area.  相似文献   

6.
Ascending projections from the dorsal raphe nucleus (DR) were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). The majority of labeled fibers from the DR ascended through the forebrain within the medial forebrain bundle. DR fibers were found to terminate heavily in several subcortical as well as cortical sites. The following subcortical nuclei receive dense projections from the DR: ventral regions of the midbrain central gray including the 'supraoculomotor central gray' region, the ventral tegmental area, the substantia nigra-pars compacta, midline and intralaminar nuclei of the thalamus including the posterior paraventricular, the parafascicular, reuniens, rhomboid, intermediodorsal/mediodorsal, and central medial thalamic nuclei, the central, lateral and basolateral nuclei of the amygdala, posteromedial regions of the striatum, the bed nucleus of the stria terminalis, the lateral septal nucleus, the lateral preoptic area, the substantia innominata, the magnocellular preoptic nucleus, the endopiriform nucleus, and the ventral pallidum. The following subcortical nuclei receive moderately dense projections from the DR: the median raphe nucleus, the midbrain reticular formation, the cuneiform/pedunculopontine tegmental area, the retrorubral nucleus, the supramammillary nucleus, the lateral hypothalamus, the paracentral and central lateral intralaminar nuclei of the thalamus, the globus pallidus, the medial preoptic area, the vertical and horizontal limbs of the diagonal band nuclei, the claustrum, the nucleus accumbens, and the olfactory tubercle. The piriform, insular and frontal cortices receive dense projections from the DR; the occipital, entorhinal, perirhinal, frontal orbital, anterior cingulate, and infralimbic cortices, as well as the hippocampal formation, receive moderately dense projections from the DR. Some notable differences were observed in projections from the caudal DR and the rostral DR. For example, the hippocampal formation receives moderately dense projections from the caudal DR and essentially none from the rostral DR. On the other hand, virtually all neocortical regions receive significantly denser projections from the rostral than from the caudal DR. The present results demonstrate that dorsal raphe fibers project significantly throughout widespread regions of the midbrain and forebrain.  相似文献   

7.
The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. Specifically, in the forebrain, the central nucleus projects heavily to the bed nucleus of the stria terminalis, the basal nucleus of Meynert, the nucleus of the horizontal limb of the diagonal band, and more lightly to the substantia innominata and the preoptic area. In the hypothalamus, label is found over the dorsomedial nucleus, the perifornical region, the lateral hypothalamus, the supramammillary area, and most heavily in the paramammillary nucleus. In the thalamus, all components of the nucleus centralis medialis and the nucleus reuniens receive fibers from the central nucleus and there is a light projection to the medial pulvinar nucleus. In the mesencephalon, there is heavy labeling dorsal to the substantia nigra ad over the peripeduncular nucleus and lighter labeling within the substantia nigra pars compacta and the ventral tegmental area; the midbrain central gray is also labeled. More caudally, fibers from the central nucleus travel in the lateral tegmental reticular fields and contribute collaterals to the raphe nuclei, the cuneiform nucleus, and the central gray substance. Perhaps one of the heaviest terminal zones is the parabrachial region of the pons, both the lateral and the medial nuclei of which receive a prominent central nucleus projection. Only the ventral aspect of the adjacent locus coeruleus appears to receive a substantial input, but there is labeling also over the area of the nucleus subcoeruleus. Finally, there is heavy labeling around the dorsal motor nucleus of the vagus and over the parvocellular component of the nucleus of the solitary tract. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function.  相似文献   

8.
The ventral striatum mediates goal-directed behavior through limbic afferents. One well-established afferent to the ventral striatum is the amygdaloid complex, which projects throughout the shell and core of the nucleus accumbens, the rostral ventromedial caudate nucleus, and rostral ventromedial putamen. However, striatal regions caudal to the anterior commissure also receive inputs from the amygdala. These caudal areas contain histochemical and cytoarchitectural features that resemble the shell and core, based on our recent studies. Specifically, there is a calcium binding protein (CaBP)-poor region in the lateral amygdalostriatal area that resembles the "shell." To examine the idea that the caudal ventral striatum is part of the "classic" ventral striatum, we placed small injections of retrograde tracers throughout the caudal ventral striatum/amygdalostriatal area and charted the distribution of specific amygdaloid inputs. Amygdaloid inputs to the CaBP-poor zone in the lateral amygdalostriatal area arise from the basal nucleus, the magnocellular subdivision of the accessory basal nucleus, the periamygdaloid cortex, and the medial subdivision of the central nucleus, resembling that of the shell of the ventral striatum found in our previous studies. There are also amygdaloid inputs to CaBP-positive areas outside the shell, which originate mainly in the basal nucleus. Taken together, the "limbic-related" striatum forms a continuum from the rostral ventral striatum through the caudal ventral striatum/lateral amygdalostriatal area based on histochemical and cellular similarities, as well as inputs from the amygdala.  相似文献   

9.
Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; and (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization.  相似文献   

10.
The ventral tegmental area (VTA) is involved in reward-related behaviours and the actions of psychostimulant drugs. It is influenced by afferents expressing a variety of neurotransmitters and neuromodulators; the innervation containing neurotensin is among the densest of these. Intra-VTA neurotensin activates dopaminergic neurons and plays an important role in the development of behavioural sensitization to psychostimulant drugs and possibly in schizophrenia. Using gold-coupled wheatgerm agglutinin as retrograde tracer in combination with nonisotopic in situ hybridization for neurotensin mRNA or neurotensin antibodies after colchicine treatment, the present study was undertaken to demonstrate the neurotensinergic neurons projecting to the VTA and determine whether (and in which subpopulations) neurotensin expression is regulated in VTA-projecting neurons after administrations of the psychostimulant drug methamphetamine or the antipsychotic haloperidol. This study reveals the lateral preoptico-rostral lateral hypothalamic continuum and the medial preoptic area as main sources for the neurotensin afferents of the VTA. Fewer neurotensinergic, VTA-projecting neurons are situated in the dorsal raphe, pedunculopontine and laterodorsal tegmental nuclei, lateral hypothalamic area, ventral endopiriform area, lateral septum, accumbens shell, parabrachial nucleus and different parts of the extended amygdala. The number of neurotensinergic VTA-projecting neurons increased significantly only after methamphetamine administration and exclusively in the accumbens shell. It is concluded that the widespread neurotensinergic VTA-projecting neurons, situated in areas involved in different reward-related behaviours, are well suited to convey distinct reward information to the VTA. The up-regulation of neurotensin expression selectively in VTA-projecting neurons in the accumbens shell following methamphetamine administration may be an important factor in the development of behavioural sensitization.  相似文献   

11.
The origin of the dopaminergic innervation of the central extended amygdala (EAc; i.e., the lateral bed nucleus of the stria terminalis [BSTl]-central amygdaloid nucleus [Ce] continuum) and accumbens shell (AcSh) was studied in the rat by combining retrograde transport of Fluoro-Gold (FG) with tyrosine hydroxylase (TH) immunofluorescence. Perikaryal profiles (PP) immunoreactive to FG and to both FG and TH were counted in A8-A14 dopaminergic districts. Our results suggest that dopaminergic inputs to the EAc and AcSh arise from the ventral tegmental area-A10, substantia nigra, pars compacta-A9, and retrorubral nucleus-A8 groups as well as from the dorsal raphe nucleus and periaqueductal gray substance, housing the dorsocaudal part of A10 group (A10dc). Quantitative estimates reveal that the A10dc group contains approximately half of the total number of FG/TH double-labeled PP projecting to Ce and BSTl. By using an anti-dopamine serum, DR/PAG projections to Ce were confirmed to be in part dopaminergic. In contrast, modest numbers of FG/TH double-labeled PP were seen in the A10dc group after injections in the sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure or AcSh. Ventral mesencephalic projections to the EAc display a crude mediolateral topographic organization, whereas those to the AcSh are topographically organized along a mediolateral and an inverted dorsoventral dimension. The diencephalic dopaminergic groups do not innervate the EAc or AcSh, except for the periventricular gray-A11 which sends light dopaminergic projections to Ce and BSTl. Overall, the present results provide additional details on the organization of the mesolimbic dopaminergic system that critically controls behavioral responsiveness to salient environmental stimuli.  相似文献   

12.
The purpose of the present study was to analyze the distribution of cholecystokininlike-immunoreactive (CCK-I) neurons within the rat ventral mesencephalon which project to several forebrain areas. The peroxidase-antiperoxidase immunocytochemical technique was used to examine the anatomical localization of CCK-I within the ventral midbrain and in the following forebrain regions: caudate-putamen, nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, septum, amygdala, and prefrontal, anterior cingulate, and piriform cortices. CCK-I perikarya were distributed throughout the substantia nigra, ventral tegmental area, and several midline raphe nuclei to a greater extent than previously reported, particularly in the substantia nigra pars compacta. Terminallike immunoreactivity for CCK was observed in all of the above forebrain sites. In addition, infrequent CCK-I cell bodies were localized in the caudate-putamen, nucleus accumbens, olfactory tubercle, septum, and bed nucleus of the stria terminalis. To analyze forebrain projections of the ventral midbrain CCK-I neurons, indirect immunofluorescence was combined with fluorescence retrograde tracing. CCK-I neurons of the substantia nigra and/or ventral tegmental area were found to project, to varying extents, to all of the above CCK-I forebrain terminal fields. The nucleus accumbens, olfactory tubercle, and septal and prefrontal cortical projections arose primarily from CCK-I perikarya in the ventral tegmental area whereas the projections to the caudate-putamen and anterior cingulate cortex arose predominantly from immunoreactive neurons in the substantia nigra pars compacta. The amygdala received innervation mainly from CCK-I cell bodies located in the substantia nigra pars lateralis. CCK-I afferents to the bed nucleus of the stria terminalis and piriform cortex originated from perikarya distributed approximately equally across the ventral tegmental area and substantia nigra pars compacta. The general topography of CCK-I forebrain innervation observed in this study is similar to that previously reported for the ascending dopaminergic projections from ventral mesencephalic neurons. CCK-I neurons of the midline raphe nuclei were found to provide relatively minor afferents to the caudate-putamen, bed nucleus of the stria terminalis, septum, and prefrontal cortex and more substantial projections to the amygdala. The results of this study demonstrate that CCK-I neurons of the ventral midbrain supply a much broader innervation of forebrain regions than previously appreciated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Following cocaine self-administration and extinction training, activity in the infralimbic cortex (IL) suppresses cocaine-seeking behavior. IL inactivation induces cocaine-seeking whereas activation suppresses cocaine-reinstated drug-seeking. We asked how the suppression of cocaine-seeking induced by IL activation integrates with the circuitry promoting reinstated cocaine-seeking. Following cocaine self-administration and extinction training, rats underwent cue-induced reinstatement. In order to activate IL projections, microinjections of PEPA, a positive allosteric modulator of AMPA receptors, were made into the IL in combination with microinjections into a variety of nuclei known to regulate cocaine-seeking. Intra-IL PEPA administration suppressed cue-induced reinstatement without affecting locomotor activity. The suppression of cocaine-seeking was reversed by activating dopamine neurons in the ventral tegmental area with microinjections of the μ-opioid receptor agonist DAMGO, and was partially reversed by dopamine microinjections into the prelimbic cortex or basolateral amygdala. Previous evidence suggests that the nucleus accumbens shell both promotes and suppresses cocaine-seeking. The suppression of cue-induced cocaine seeking by PEPA in the IL was reversed by intra-shell microinjections of either dopamine or the AMPA receptor antagonist CNQX, suggesting that the accumbens shell bidirectionally regulates cocaine-seeking depending on whether dopamine input is mimicked or glutamate input is inhibited. Together, these findings indicate that the IL acts 'upstream' from structures promoting cocaine-seeking, including from the mesolimbic dopamine projections to the prelimbic cortex and basolateral amygdala, and that the accumbens shell may be a crucial point of integration between the circuits that promote (ventral tegmental area) and inhibit (IL) reinstated cocaine-seeking.  相似文献   

14.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

15.
The efferent, afferent and intrinsic connections of the septal region have been analyzed in the rat with the autoradiographic method. The lateral septal nucleus, which can be divided into dorsal, intermediate and ventral parts, receives its major input from the hippocampal formation and projects to the medial septal-diagonal band complex. The ventral part of the nucleus also sends fibers through the medial forebrain bundle to the medial preoptic and anterior hypothalamic areas, to the lateral hypothalamic area and the dorsomedial nucleus, to the mammillary body (including the supramammillary region), and to the ventral tegmental area. The medial septal nucleus/diagonal band complex projects back to the hippocampal formation by way of the dorsal fornix, fimbria, and possibly the cingulum. Both nuclei also project through the medial forebrain bundle to the medial and lateral preoptic areas, to the lateral hypothalamic area, and to the mammillary complex. The medial septal nucleus also sends fibers to the midbrain (the ventral tegmental area and raphe nuclei) and to the parataenial nucleus of the thalamus, while the nucleus of the diagonal band has an additional projection to the anterior limbic area. Ascending inputs to the medial septal nucleus/diagonal band complex arise in several hypothalamic nuclei and in the brainstem aminergic cell groups. The posterior septal nuclei (the septofimbrial and triangular nuclei) receive their major input from the hippocampal formation, and project in a topographically ordered manner upon the habenular nuclei and the interpeduncular nuclear complex. The bed nucleus of the stria terminalis receives its major input from the amygdala (Krettek and Price, '78); but other afferents arise from the ventral subiculum, the ventromedial nucleus, and the brainstem aminergic cell groups. The principal output of the bed nucleus is through the medial forebrain bundle to the substantia innominata, the nucleus accumbens, most parts of the hypothalamus and the preoptic area, the central tegmental fields of the midbrain, the ventral tegmental area, the dorsal and median nuclei of the raphe, and the locus coeruleus. The bed nucleus also projects to the anterior nuclei of the thalamus, the parataenial and paraventricular nuclei, and the medial habenular nucleus, and through the stria terminalis to the medial and central nuclei of the amygdala, and to the amygdalo-hippocampal transition area.  相似文献   

16.
Intracellular recording and biocytin labeling were carried out in the fire-bellied toad Bombina orientalis to study the morphology and axonal projections of thalamic (TH) neurons and their responses to electrical optic nerve stimulation. Labeled neurons (n = 142) were divided into the following groups: TH1 neurons projecting to the dorsal striatum; TH2 neurons projecting to the amygdala, nucleus accumbens, and septal nuclei; TH3 neurons projecting to the medial or dorsal pallium; TH4 neurons with projections ascending to the dorsal striatum or ventral striatum/amygdala and descending to the optic tectum, tegmentum, and rostral medulla oblongata; TH5 neurons with projections to the tegmentum, rostral medulla oblongata, prectectum, or tectum; and TH6 neurons projecting to the hypothalamus. TH1 neurons are found in the central, TH2 neurons in the anterior and central, TH3 neurons in the anterior dorsal nucleus, and TH4 and TH5 neurons in the posterior dorsal or ventral nucleus. Neurons with descending projections arborize in restricted parts of retinal afferents; neurons with ascending projections do not substantially arborize within retinal afferents. At electrical optic nerve stimulation, neurons in the ventral thalamus respond with excitation at latencies of 10.8 msec; one-third of them follow repetitive stimulation and possibly are monosynaptically driven. Neurons in the dorsal thalamus respond mostly with inhibition at latencies of 42.3 msec and are polysynaptically driven. This corroborates the view that neurons in the dorsal thalamus projecting to the telencephalon receive no substantial direct retinal input and that the thalamopallial pathway of amphibians is not homologous to the mammalian retinogeniculocortical pathway.  相似文献   

17.
A double-label immunohistochemical study was carried out to investigate overlap between dopamine-beta-hydroxylase (DbetaH) -immunopositive projections and the projections of hypothalamic neurons containing the arousal- and feeding-related peptide, orexin/hypocretin (HCRT), in rat brain. Numerous intermingled HCRT-immunopositive and DbetaH-immunopositive fibers were seen in a ventrally situated corridor extending from the hypothalamus to deep layers of the infralimbic cortex. Both fiber types avoided the nucleus accumbens core, caudate putamen, and the globus pallidus. In the diencephalon, overlap was observed in several hypothalamic areas, including the perifornical, dorsomedial, and paraventricular nuclei, as well as in the paraventricular thalamic nucleus. Intermingled HCRT-containing and DbetaH-containing fibers extended from the hypothalamus into areas within the medial and central amygdala, terminating at the medial border of the lateral subdivision of the central nucleus of the amygdala. Dense overlap between the two fiber types was also observed in the periaqueductal gray, particularly in the vicinity of the dorsal raphe, as well as (to a lesser extent) in the ventral tegmental area, the retrorubral field, and the pedunculopontine tegmental nucleus. Hypocretin-containing cell bodies, located in the perifornical and lateral hypothalamus, were embedded within a dense plexus of DbetaH-immunopositive fibers and boutons, with numerous cases of apparent contacts of DbetaH-containing boutons onto HCRT-immunopositive soma and dendrites. HCRT-containing fibers were observed amid the noradrenergic cells of the locus coeruleus, and in the vicinity of the A1, A2, and A5 cell groups. Hence, the projections of these two arousal-related systems, originating in distinctly different parts of the brain, jointly target several forebrain regions and brainstem monoaminergic nuclei involved in regulating core motivational processes.  相似文献   

18.
The induction of the early gene c-fos was evaluated through Fos immunohistochemistry in areas belonging to the extended amygdala after acute administration of two antidepressants, citalopram and imipramine. Both citalopram and imipramine at the dose of 5 and 20 mg/kg, respectively, induced Fos-like immunoreactivity (FLI) in the central amygdaloid nucleus, lateral division of the bed nucleus of the stria terminalis (BSTL), and interstitial nucleus of the posterior limb of the anterior commissure (IPAC). The shell of the nucleus accumbens, which forms a continuum with the central extended amygdala, showed a decrease of FLI after administration of either citalopram or imipramine. The mechanism of action and the brain areas affected by antidepressants are still a matter of debate. By showing that the central extended amygdala is a common site of action for two different antidepressant types, these results provide new insight into the mechanism of action of antidepressants.  相似文献   

19.
The amygdaloid complex and hippocampal formation mediate functions involving emotion and memory. To investigate the connections that regulate the interactions between these regions, we injected the anterograde tracer Phaseolus vulgaris-leucoagglutinin into various divisions of the lateral, basal, and accessory basal nuclei of the rat amygdala. The heaviest projection to the entorhinal cortex originates in the medial division of the lateral nucleus which innervates layer III of the ventral intermediate and dorsal intermediate subfields. In the basal nucleus, the heaviest projection arises in the parvicellular division and terminates in layer III of the amygdalo-entorhinal transitional subfield. In the accessory basal nucleus, the parvicellular division heavily innervates layer V of the ventral intermediate subfield. The most substantial projection to the hippocampus originates in the basal nucleus. The caudomedial portion of the parvicellular division projects heavily to the stratum oriens and stratum radiatum of CA3 and CA1. The accessory basal nucleus projects to the stratum lacunosum-moleculare of CA1. The subiculum receives a substantial input from the caudomedial parvicellular division. The parasubiculum receives dense projections from the caudal portion of the medial division of the lateral nucleus, the caudomedial parvicellular division of the basal nucleus, and the parvicellular division of the accessory basal nucleus. Our data show that select nuclear divisions of the amygdala project to the entorhinal cortex, hippocampus, subiculum, and parasubiculum in segregated rather than overlapping terminal fields. These data suggest that the amygdaloid complex is in a position to modulate different stages of information processing within the hippocampal formation. J. Comp. Neurol. 403:229–260, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
The present study examined the distribution, morphology, and connections of gamma-aminobutyric acid-immunoreactive (GABA-IR) neuros in the three principal components of the central extended amygdala: the central amygdaloid nucleus, the bed nucleus of the stria terminalis (BNST) and the sublenticular substantia innominata. In the central nucleus, large numbers of GABA-IR neurons were identified in the lateral, lateral capsular, and ventral subdivisions, though in the medial subdivision, GABA-IR neurons were only present at very caudal levels. Combined immunocytochemistry-Golgi impregnation revealed that GABA-IR neurons in the lateral central nucleus were medium-sized spiny neurons that were morphologically similar to GABAergic neurons in the striatum. Injections of horseradish peroxidase into the bed nucleus of the stria terminalis labeled a major proportion of the GABA-IR neurons in the central nucleus. In the bed nucleus, the majority of GABA-IR neurons were located in the anterolateral subdivision, ventral part of the posterolateral subdivision and the parastrial subdivision. GABA-IR neurons in the anterolateral bed nucleus were of the typical mediumsized spiny type. Injections of horseradish peroxidase into the central nucleus labeled a few GABA-IR neurons in the posterior part of the anterolateral bed nucleus. GABA-IR neurons were identified in the sublenticular substantia innominata and medial shell of the nucleus accumbens and contributed to the continuum of GABA-IR extending from the central nucleus to the bed nucleus. Injections of horseradish peroxidase (HRP) into the central nucleus, but not the BNST, labeled a few GABA-IR neurons in the substantia innominata. The data point to GABA-IR neurons being a characteristic feature of the central extended amygdala and that GABA-IR neurons participate in the long intrinsic connections linking the major components of this structure. Since lesions of the stria terminalis and basolateral amygdaloid nucleus failed to deplete GABA-IR terminals in the central nucleus, the role of GABA in local and short intrinsic connections in the central extended amygdala is discussed. Further, physiological findings implicating the intrinsic GABAergic system of the central extended amygdala in the tonic inhibition of brainstem efferents are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号