首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tubulin has been shown to be an effective target for the development of cytotoxic agents against prostate cancer. Previously, we reported that Lx2-32c is an anti-tubulin agent with high binding affinity to tubulin. In this study, we investigated the potential of Lx2-32c to act as an effective cytotoxic agent in the treatment of prostate cancer. MTT assays showed that Lx2-32c was cytotoxic to all tested prostate cancer cell lines. The Lx2-32c-treated cells typically exhibited a rounded morphology associated with the onset of apoptosis, as evidenced by immunocytochemical staining. Human prostate cancer cell lines treated with Lx2-32c arrest in the G2/M phase of the cell cycle and the treatment is associated with an increased ratio of cells in the sub-G0/G1 phase as determined by flow cytometry. Furthermore, expression of the cleaved form of poly (ADP-ribose) polymerase in prostate cancer cell lines treated with Lx2-32c was shown by Western blotting assay. Xenograft implants of LNCaP and PC3-derived tumors in nude mice showed that Lx2-32c treatment significant inhibited tumor growth with effects equivalent to those of docetaxel. These findings demonstrate the potential of Lx2-32c as a candidate antitumor agent for the treatment of prostate cancer.  相似文献   

2.
We previously demonstrated that the crude acetone extract of Bupleurum scorzonerifolium (BS-AE) 60 microg/ml has anti-proliferation activity and apoptotic effects on A549 non-small cell lung cancer (NSCLC). A novel lignan, isochaihulactone (4-benzo[1,3]dioxol-5-ylmethyl-3(3,4,5-trimethoxyl-benzylidene)-dihydro-furan-2-one), was isolated from BS-AE and identified from spectral evidence ((1)H NMR, (13)C NMR, IR, and MS) and by comparison with authentic synthetic standards. Isochaihulactone was cytotoxic (IC(50)=10-50 microM) in a variety of human tumor cell lines. In in vitro and in vivo microtubule assembly assays, it inhibited tubulin polymerization in a concentration-dependent manner. As determined by flow cytometry, isochaihulactone caused G2/M phase arrest and apoptosis in a time- and concentration-dependent manner. G2/M arrest was correlated with increased p21/WAF1 levels, downregulation of the checkpoint proteins cyclin B1/cdc2 and mobility shift of cdc25C. Moreover, isochaihulactone (30 and 50 mg/kg) inhibited the growth of non-small cell lung carcinoma A549 xenograft in nude mice. These findings indicate isochaihulactone is a promising new antimitotic anticancer compound with potential for clinical application in the future.  相似文献   

3.
Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.), a genus of Eriocaulon in the Eriocaulaceae family, is an edible and medicinal plant used in traditional Chinese medicine. It was processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood fat. Also, it has been used with other herbs as Traditional Chinese herbal compound to treat cancer as adjuvants in tumor therapy in China. However, the active fractions and precise cellular mechanisms of E. sieboldianum extract remain to be illustrated. The goal of this study was to investigate the effects of the active fraction of E. sieboldianum on the growth of K562 cells and understand the possible mechanisms of its action. Our findings suggested that the fraction E3 of E. sieboldianum could effectively inhibit the activity of Aurora kinase and induce apoptosis via blocking cell cycle, up-regulating the expression of proapoptotic proteins including p53 and Bax and reducing the expression of Bcl-2. The levels of Cytochrome C, cleaved caspase-9, cleaved caspase-3 and cleaved PARP were also found to be increased after treatment with fraction E3 of E. sieboldianum.This study could improve the development of E. sieboldianum and raise its application value in cancer adjuvant therapy. Considering it is both a dietary supplement and a traditional Chinese herbal medicine which exhibits anticancer activities, it can be developed into functional food.  相似文献   

4.
Curcumin (CUR), as a yellow pigment in the spice turmeric (Curcuma longa), possessed a pleiotropic application containing cancer therapy. Due to its poor oral bioavailability, the objective of this study was to investigate the use of curcumin-cyclodextrin complexes (CD15) as an approach to cancer chemoprevention. In this study, CUR encapsulation into the β-cyclodextrin (CD) cavity was achieved by the saturated aqueous solution method. CD15 was characterized by Fourier transform infrared (FTIR) and UV spectra analyses. An optimized CD15 was evaluated by cellular uptake and anti-cancer activity. As a result, CD15 enhanced curcumin delivery and improved its therapeutic efficacy compared with free curcumin in vivo and in vitro. Therefore, through regulation of MAPK/NF-κB pathway, CD15 up-regulated p53/p21 pathway, down-regulated CyclinE-CDK2 combination and increased Bax/caspase 3 expression to induce cellar apoptosis and G1-phase arrest. In conclusion, these results suggested that CD15 formulation should be used as a system for improving curcumin delivery and its therapeutic efficacy in lung cancer.  相似文献   

5.
A review of the recent literature on the new anticancer drug Ukrain is provided herein. We review Ukrain, a thiophosphate derivative of alkaloids from Chelidonium majus L., its capacity to exert selective cytotoxic and cytostatic effects on tumor cells, simultaneously acting as an immune response modifier, its good tolerance and lack of side effects even after long-term application, perspectives of the application of this drug in oncology.  相似文献   

6.
Deoxynivalenol (DON) is one of the most common mycotoxin contaminants of raw and processed cereal food. Lymphoid cells and fibroblasts are specified to be the most DON-sensitive cell types. In this study, we investigated the toxic effects of DON in chicken embryo fibroblast DF-1 cells. The results showed that DON significantly inhibited DF-1 cell viability in both a time- and concentration-dependent manner. DON could also inhibit the proliferation of DF-1 cells through G2/M phase arrest in the cell cycle progression. Moreover, oxidative stress induced by DON was indicated by increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, DON could also cause mitochondrial damage by decreasing the mitochondrial membrane potential and induce apoptosis accompanied with the up-regulation of apoptosis-related genes including Caspase-3, Caspase-8, Caspase-9, and AIFM1. These results suggested that DON could cause cell cycle arrest, oxidative stress, and apoptosis in DF-1 cells.  相似文献   

7.
To explore the anticancer effects of the flavonoid quercetin on human breast cancer MDA-MB-453 cells via cell cycle regulation and the induction of apoptosis, the antiproliferative effect of quercetin was first examined by MTT assay. When MDA-MB-453 cells were treated with quercetin for various periods of time (3–24 hrs) and at various doses (1–100 μM), cell growth decreased significantly in a time-and dose-dependent manner. To elucidate the mechanism underlying the antiproliferative effect of quercetin, cell cycle progression and the induction of apoptosis in MDA-MB-453 cells exposed to 100 μM quercetin for 24 hrs were investigated. Quercetin caused a remarkable increase in the number of sub-G1 phase cells, and an Annexin-V assay revealed that exposure to quercetin affected apoptosis. Moreover, treatment with quercetin increased Bax expression but decreased Bcl-2 expression. Cleaved caspase-3 and PARP expression was also increased by quercetin. Thus, quercetin has probable anticancer activity. Our results suggest the existence of multiple pathways for the induction of cell cycle arrest and apoptosis by quercetin.  相似文献   

8.
Lissoclinolide is a small non-nitrogenous lactone isolated from the marine ascidian Lissoclinum patella. Previous studies of lissoclinolide (isolated from a fungus and an actinomycete) have identified varying activity against both Gram-negative and Gram-positive bacteria. In this study, lissoclinolide was able to inhibit cell growth in various mammalian tumor lines at an average IC(50) of 395 nM (determined by MTT conversion after 48-h treatment). Treatment of HCT 116 human colon tumor cells with 2.4 microM lissoclinolide resulted in a strong arrest in the G(2)/M phase of the cell cycle after 24-h exposure. A daughter cell line lacking p53 showed an identical response while there was a slight increase in cytotoxicity towards a p21 null cell line. Although treatment with 2.4 microM lissoclinolide did not result in apoptosis after 48 h, this arrest was not reversible when drug wash out was attempted. The mechanism of action does not appear to involve tubulin, ubiquitin-specific isopeptidases, p53 or p21. COMPARE analysis in the NCI 60 cell line tumor panel revealed a moderate selectivity towards colon tumor cell lines.  相似文献   

9.
目的探讨赖氨大黄酸对HeLa细胞周期的影响及其机制。方法 MTT法检测赖氨大黄酸对HeLa细胞增殖的影响;流式细胞技术检测活性氧水平和细胞周期变化;显微镜下观察HeLa细胞形态变化;Western blot法检测p53和p21蛋白表达。结果赖氨大黄酸剂量依赖性地抑制HeLa细胞增殖,IC50约为83μmol·L-1。随着赖氨大黄酸剂量的增加,HeLa细胞中活性氧水平增加,并出现S期和G2期阻滞,以及细胞空泡样变性。通过Western blot研究发现赖氨大黄酸处理后的p53蛋白磷酸化水平呈剂量依赖性地增加,同时下游周期相关蛋白p21表达水平也随之增加,而p53蛋白表达水平未出现显著地剂量依赖性变化。结论赖氨大黄酸通过增加HeLa细胞中活性氧水平,引起细胞周期相关蛋白p53的磷酸化水平和p21蛋白表达水平增加,引起HeLa细胞出现空泡样变性,并诱导S期和G2期阻滞。  相似文献   

10.
Recently, genkwanin (GKA) has been shown to display in vitro antitumor activity against some cancer cells, but its poor solubility restricted the in vivo study and further investigation of its antitumor therapeutic efficacy. In this paper, genkwanin nanosuspensions (GKA-NSps) were successfully prepared using D-alpha tocopherol acid polyethylene glycol succinate (TPGS) as a stabilizer using the precipitation-homogenization method. The obtained GKA-NSps had an average particle size of 183.1?±?4.4?nm, a PDI value of 0.16?±?0.07, a zeta potential of ?16.2?±?0.1?mV, and a drug loading content of 49.36?±?0.14%. GKA-NSps showed spherical morphology and very good stability in normal saline, phosphate buffer saline (PBS, pH 7.4), 5% glucose, artificial gastric juice, artificial intestinal juice and plasma; thus, it is suitable for both oral and intravenous administration. The resultant GKA-NSps displayed sustained drug release behavior and stronger in vitro cytotoxicity against 4T1, MCF-7, MDA-MB-453, HeLa, HepG2, BT474, and A549 cells than free GKA. The in vivo study in MCF-7 tumor-bearing nude mice indicated that GKA-NSps (60?mg/kg, i.v.) achieved similar therapeutic efficacy as PTX injection (8?mg/kg, i.v.) (62.09% vs. 61.27%), while the minimal lethal dose was more than 320?mg/kg, indicating good safety. By using nanotechnology, our study suggested that some antitumor flavonoids of low potency, such as GKA, are promising as safe but effective anticancer drugs.  相似文献   

11.
Jin F  Zhang N  Tan C  Gao D  Zhang C  Liu F  Chen Z  Gao C  Liu H  Li S  Jiang Y 《Archiv der Pharmazie》2012,345(7):525-534
A series of 2'-chloro-4'-nitroflavone and 2'-chloro-4'-aminoflavone derivatives were synthesized by a convenient synthetic process. The in vitro anti-proliferation ability of these compounds was evaluated against hepatocarcinoma cells (HepG2), breast adenocarcinoma cells (MCF-7), and human chronic myelogenous leukemia cells (K562). Most of synthetic compounds possessed notable anti-proliferation activity against HepG2 cells and little activity against MCF-7 cells and K562 cells. In particular, compounds 4c and 4e exhibited high anti-proliferation activity against HepG2 cells with IC(50) at about 2.0 μM. Further toxicity screening toward normal human hepatocytes indicated that some compounds had low toxicity against normal liver cells, among which 4e displayed very weak effects on QSG7701 and HL7702 cells, with IC(50) values >100 and 50 μM, respectively. Compound 4c, with the best anti-proliferation activity in amino-substituted flavones (IC(50) = 2.0 μM), was selected for further evaluation of its effects on apoptosis and the cell cycle. HepG2 cells were exposed to this compound at 10 μM, which induced nuclear disassembly and DNA fragmentation. Flow cytometry analysis suggested that the population of apoptotic cells greatly increased in the 4c-treated HepG2 cells, and the cell cycle was arrested at the G(2)/M phase.  相似文献   

12.
We have recently shown that the actinobacterium Streptomyces californicus and the fungus Stachybotrys chartarum originating from moisture damaged buildings possess both immunotoxic and immunostimulatory characteristics, which are synergistically potentiated by microbial interaction. In the search for the causative agent(s) behind the immunotoxicity, the cytostatic effects of the co-cultivated spores of S. californicus and S. chartarum were compared to those caused by widely used cytostatic agents produced by streptomycetes. The RAW264.7 macrophages were exposed to four doses of doxorubicin (DOX), actinomycin D (AMD), mitomycin C (MMC) or phleomycin (PHLEO) for 24 h. Kinetics of the spores of the co-cultivated and the separately cultivated microbes (1x10(6) spores/ml) was compared to DOX (0.15 muM). Apoptotic responses were analyzed by measuring DNA content and mitochondria membrane depolarization with flow cytometer, and by the fluorometric caspase-3 assay. The present data indicate that interactions during co-cultivation of S. californicus and S. chartarum stimulate the production of an unidentified cytostatic compound(s) capable of inducing mitochondria mediated apoptosis and cell cycle arrest at S-G(2)/M. The spores of co-cultivated microbes caused a 4-fold collapse of mitochondrial membrane potential and an almost 6-fold caspase-3 activation and DNA fragmentation when compared to control. Similar responses were induced by DNA cleaving compounds, especially DOX and AMD, at the relatively low concentrations, but not the spores of the same microbes when they were grown separately. These data suggest that when growing in the same habitat, interactions between S. californicus and S. chartarum stimulates the production of an unknown cytostatic compound(s) which evoke immunotoxic effects similar to those by chemotherapeutic drugs.  相似文献   

13.
Safe and effective chemotherapeutic agents for the treatment of pancreatic cancer remain elusive. We found that chalcone epoxides (1,3‐diaryl‐2,3‐epoxypropanones) inhibited growth in two pancreatic cancer cell lines, BxPC‐3 and MIA PaCa‐2. Three compounds were active, with GI50 values of 5.6 to 15.8 µM. Compound 4a , 1,3‐bis‐(3,4,5‐trimethoxyphenyl)‐2,3‐epoxypropanone, had an average GI50 of 14.1 µM in the NCI 60‐cell‐line panel. To investigate the mode of action, cell cycle analyses of BxPC‐3 cells were carried out. Treatment of cells with 50 µM 4a resulted in dramatic accumulation at G2/M (61% after 12 h for 4a vs. 15% for untreated cells). The cells rapidly entered apoptosis. After 12 h, 26% of cells treated with 50 µM 4a had entered apoptosis vs. 4% for cells treated with 100 µM etoposide and 2% for untreated cells. Compound 4a interfered with paclitaxel enhancement of tubulin polymerization, suggesting microtubules as the site of action. Reaction of thiol nucleophiles with 4a under basic conditions resulted in epoxide ring‐opening and retroaldol fragmentation, yielding alkylated thiol. MALDI mass spectrometry showed that retroaldol reaction occurred upon treatment of β‐tubulin with 4a . The site of alkylation was identified as Cys354. Chalcone epoxides warrant further study as potential agents for treatment of cancer.  相似文献   

14.
We recently established that GL-V9, a newly synthetic flavonoid derivative, is an active cytotoxic component. In this study, we demonstrated that GL-V9 inhibited cells growth via inducing apoptosis and G2/M cell cycle arrest in human hepatocellular carcinoma HepG2 cells. Following the treatment of HepG2 cells with GL-V9, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3 and caspase-9, while caspase-8 remained unchanged. The expression ratio of Bcl-2/Bax was also decreased in GL-V9-treated cells. Meanwhile, the cell cycle-related proteins, such as cyclin B1, CDK1 and cdc25 were down-regulated in GL-V9-induced G2/M cell cycle arrest. Furthermore, we showed that GL-V9-induced apoptosis in HepG2 cells was achieved through mitochondrial pathway. It also regulated changes of mitochondrial membrane potential and increased the production of intracellular reactive oxygen species. Besides, the growth inhibitory effect of GL-V9 was examined in vivo using murine implanted tumor model. These studies indicate that GL-V9 shows promise as a therapeutic agent against human heptoma.  相似文献   

15.
《药学学报(英文版)》2020,10(8):1492-1510
Simultaneous inhibition of MDM2 and CDK4 may be an effective treatment against glioblastoma. A collection of chiral spirocyclic tetrahydronaphthalene (THN)-oxindole hybrids for this purpose have been developed. Appropriate stereochemistry in THN-fused spirooxindole compounds is key to their inhibitory activity: selectivity differed by over 40-fold between the least and most potent stereoisomers in time-resolved FRET and KINOMEscan® in vitro assays. Studies in glioblastoma cell lines showed that the most active compound ent-4g induced apoptosis and cell cycle arrest by interfering with MDM2 -P53 interaction and CDK4 activation. Cells treated with ent-4g showed up-regulation of proteins involved in P53 and cell cycle pathways. The compound showed good anti-tumor efficacy against glioblastoma xenografts in mice. These results suggested that rational design, asymmetric synthesis and biological evaluation of novel tetrahydronaphthalene fused spirooxindoles could generate promising MDM2-CDK4 dual inhibitors in glioblastoma therapy.  相似文献   

16.
Natural polysulfanes including diallyltrisulfide (DATS) and diallyltetrasulfide (DATTS) from garlic possess antimicrobial, chemopreventive and anticancer properties. However these compounds exhibit chemical instability and reduced solubility, which prevents their potential clinical applicability. We synthesized six DATS and DATTS derivatives, based on the polysulfane motif, expected to exhibit improved physical and chemical properties and verified their biological activity on human leukemia cells.We identified four novel cytotoxic compounds (IC50 values: compound 1, 24.96 ± 12.37 μM; compound 2, 22.82 ± 4.20 μM; compound 3, 3.86 ± 1.64 μM and compound 5, 40.62 ± 10.07 μM, compared to DATTS: IC50: 9.33 ± 3.86 μM). These polysulfanes possess excellent differential toxicity, as they did not affect proliferating mononuclear blood cells from healthy donors.We further demonstrated ability of active compounds to induce apoptosis in leukemia cells by analysis of nuclear fragmentation and of cleavage of effector and executioner caspases. Apoptosis was preceded by accumulation of cells in G2/M phase with a pro-metaphase-like nuclear pattern as well as microtubular alterations. Prolonged and persistent arrest of cancer cells in early mitosis by the benzyl derivative identifies this compound as the most stable and effective one for further mechanistic and in vivo studies.  相似文献   

17.
Dietary flavonoids have been shown to exert specific cytotoxicity towards some cancer cells, but the precise molecular mechanisms are still not completely understood. In our study, cytotoxic effects of structurally related flavones and flavonols on a human oesophageal adenocarcinoma cell line (OE33) were compared, and the molecular mechanisms responsible for their cytotoxic effects were explored. The results of MTT assay showed that flavones (luteolin, apigenin, chrysin) and flavonols (quercetin, kaempferol, myricetin) were all able to induce cytotoxicity in OE33 cells in a dose- and time-dependent manner, and the cytotoxic potency of these compounds was in the order of quercetin > luteolin > chrysin > kaempferol > apigenin > myricetin. Flow cytometry and DNA fragmentation analysis indicated that the cytotoxicity induced by flavones and flavonols was mediated by G2/M cell cycle arrest and apoptosis. Furthermore, the expression of genes related to cell cycle arrest and apoptosis was assessed by oligonucleotide microarray, real-time RT-PCR and Western blot. It was found that the treatment of OE33 cells with flavones and flavonols caused G2/M arrest through up-regulation of GADD45β and 14-3-3σ and down-regulation of cyclin B1 at the mRNA and protein levels, and induced p53-independent mitochondrial-mediated apoptosis through up-regulation of PIG3 and cleavage of caspase-9 and caspase-3. The results of western blot analysis further showed that increases of p63 and p73 protein translation or stability might be contribute to the regulation of GADD45β, 14-3-3σ, cyclin B1 and PIG3.  相似文献   

18.
Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G1 to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.  相似文献   

19.
Following numerous experimental observations that various non-steroidal anti-inflammatory drugs have antitumor potentials, a series of fenoprofenamides (1a-g) and ketoprofenamides (2a-c) was tested on proliferation of different human tumor cell lines and normal human fibroblasts in vitro. Fenoprofen and ketoprofen showed modest antiproliferative activity, whereas the growth inhibitory activity of the tested amides clearly demonstrates that the substituents linked by an amide bond are essential for the significantly stronger cytostatic activity, probably because of a greater lipophilicity and/or better cell uptake. Additionally, it was shown that the most active derivatives (1d and 2a) induced cell cycle arrest at the G1 phase, as well as apoptosis.  相似文献   

20.
Context Asiatic acid, a triterpenoid compound extracted from the tropical medicinal plant Centella asiatica (Family: Apiaceae), has exhibited various biological activities.

Objective This study was performed to investigate the cytotoxic effects of asiatic acid on human ovarian cancer cells.

Materials and methods SKOV3 and OVCAR-3 ovarian cancer cells were exposed to different concentrations of asiatic acid (10–100?μg/mL) for 72 or 48?h. Cell viability, colony formation, cell cycle distribution, apoptotic response were examined. Involvement of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was tested.

Results At the concentration of 40?μg/mL, asiatic acid caused about 50% reduction in the viability of ovarian cancer cells, but had little effect on the viability of normal human ovarian epithelial cells. Asiatic acid at 10?μg/mL reduced colony formation of ovarian cancer cells by 25–30%. Asiatic acid-treated cells showed a cell cycle arrest at the G0/G1 phase and 7- to 10-fold increase in apoptosis. The phosphorylation levels of PI3K, Akt and mTOR were remarkably lower in asiatic acid-treated cells. Overexpression of constitutively active Akt partially reversed the cytotoxic effects of asiatic acid, as evidenced by increased cell viability and colony formation. Furthermore, knockdown of Akt mimicked the growth-suppressive activity of asiatic acid.

Discussion and conclusion These results provide first the evidence for the anticancer potential of asiatic acid in ovarian cancer cells, partially via inactivation of the PI3K/Akt/mTOR pathway. Asiatic acid may represent a potential therapeutic agent for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号