首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
PURPOSE: To determine the accuracy of ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) for nodal staging in patients with head and neck cancer. MATERIALS AND METHODS: Twenty patients with carcinomas of the upper aerodigestive tract were prospectively enrolled. MRI was performed before and 24-36 hours after intravenous infusion of an USPIO agent, ferumoxtran-10 (Sinerem; Guerbet, France; and Combidex; Advanced Magnetics) at a dose of 2.6 mg Fe/kg using T2-weighted spin-echo and gradient-echo sequences. Surgery was performed the same day or the day after the ferumoxtran-10-enhanced MR examination. Based on MRI, selected nodes were surgically removed and directly correlated with pathology using hematoxylin-eosin (H&E) and Perls stainings. RESULTS: A total of 63 nodes were studied; 36 were nonmetastatic, 25 metastatic, and two inflammatory. Ferumoxtran-10-enhanced MRI allowed diagnosis of 24 metastatic and 30 nonmetastatic nodes, yielding a sensitivity of 96%, a specificity of 78.9%, a positive predictive value of 75%, and a negative predictive value of 96.8%, compared to 64%, 78.9%, 66.6%, and 76.9%, respectively, for nonenhanced MRI. Accuracy of ferumoxtran-10-enhanced MRI was 85.7%. The gradient-echo T2-weighted sequence was the most accurate to detect signal loss in nonmetastatic nodes. CONCLUSION: USPIO-enhanced MRI is useful for nodal staging of patients with head and neck cancers.  相似文献   

2.
RATIONALE AND OBJECTIVES: The objective is to compare three different ultrasmall superparamagnetic iron oxides (USPIOs) for magnetic resonance (MR) imaging of normal bone marrow in rodents. MATERIALS AND METHODS: Femoral bone marrow in 18 Sprague-Dawley rats was examined by using MR imaging before and up to 2 and 24 hours postinjection (PI) of 200 mumol of Fe/kg of SHU555C (n = 6), ferumoxtran-10 (n = 6), or ferumoxytol (n = 6), using T1-weighted (50 ms/1.7 ms/60 degrees = repetition time [TR]/echo time [TE]/flip angle) and T2*-weighted (100 ms/15 ms/38 degrees = TR/TE/flip angle) three-dimensional spoiled gradient recalled echo sequences. USPIO-induced bone marrow was evaluated qualitatively and quantified as signal-to-noise ratio (SNR) and change in signal intensity (DeltaSI) values. A mixed-effect model was fitted to the SNR and DeltaSI values, and differences among USPIOs were tested for significance by using F tests. RESULTS: At 2 hours PI, all three USPIOs showed marked positive signal enhancement on T1-weighted images and a corresponding marked signal loss on T2*-weighted images. At 24 hours PI, the T1 effect of all three USPIOs disappeared, whereas T2*-weighted images showed persistent signal loss on SHU555C and ferumoxytol-enhanced MR images, but not ferumoxtran-10-enhanced MR images. Corresponding SNR and DeltaSI values on T2*-weighted MR images at 24 hours PI were significantly different from baseline for SHU555C and ferumoxytol, but not ferumoxtran-10. CONCLUSION: All three USPIO contrast agents, ferumoxtran-10, ferumoxytol, and SHU555C, can be applied for MR imaging of bone marrow. Ferumoxtran-10 apparently reveals a different kinetic behavior in bone marrow than ferumoxytol and SHU555C.  相似文献   

3.
OBJECTIVES: We sought to compare the ability of 3 ultrasmall superparamagnetic iron oxides (USPIOs) to detect and characterize antigen-induced arthritis with MR imaging. MATERIALS AND METHODS: A monoarthritis was induced in the right knee of 18 rats. The left knee served as a normal control. Knees underwent magnetic resonance (MR) imaging before, up to 2 hours, and 24 hours after injection (p.i.) of 200 mumol Fe/kg SHU 555 C (n= 6), ferumoxtran-10 (n = 6), or ferumoxytol (n = 6), using T2-2D-SE 100/20,40,60,80/90 (TR/TE/flipangle), T2*-3D-spoiled gradient recalled (SPGR) 100/15/38, and T1-3D-SPGR 50/1,7/60 sequences. RESULTS: Quantitative signal to noise ratio and DeltaSI data of arthritic knees on T1- and T2*-weighted MR images showed no significant differences between the 3 USPIOs (P > 0.05). At 2 hours p.i., SNR and DeltaSI data were significantly increased from baseline on T1-weighted images and significantly decreased on T2*-weighted images (P < 0.001). At 24 hours p.i., the T1-enhancement returned to baseline, whereas the T2*-enhancement remained significantly elevated (P < 0.001). Immunostains demonstrated an USPIO compartmentalization in macrophages in the arthritic synovium. CONCLUSIONS: Based on the relatively small number of animals in our study group, inflammation in antigen-induced arthritis can be equally detected and characterized with any of the three USPIOs evaluated.  相似文献   

4.
RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate superparamagnetic iron oxide (SPIO) nanoparticles to discriminate infarcted from normal tissue after myocardial infarction using high field MR imaging (7 tesla).MATERIALS AND METHODS: Permanent myocardial infarction was induced in rats. SPIO nanoparticles (1 mg Fe/kg) were assessed with T1-weighted gradient echo sequence to visualize the myocardial infarction 48 hours after ligature (n = 6). Furthermore, MR Imaging was performed using a T2-weighted RARE sequence and nanoparticles were injected (5 or 10 mg Fe/kg) on 36 rats 5, 24 or 48 hours after infarction. RESULTS: No changes in contrast between normal and infarcted myocardium was observed after nanoparticle injection on T1-weighted images. However, nanoparticles induced a significant contrast increase between normal and infarcted myocardium on T2-weighted images whatever the delay between infarction and imaging (2.99 +/- 1.66 preinjection vs. 7.82 +/- 1.96 after SPIO injection at a dose of 5 mg Fe/kg 5 hours postinfarction, P = 0.0001). CONCLUSIONS: Nanoparticle injection made it possible to discriminate normal from infarcted myocardium on T2-weighted images. However, the high magnetic field prevented the visualization of the T1 effect of SPIO nanoparticles.  相似文献   

5.
AIM: A dose ranging multicentre phase-II clinical trial was conducted to evaluate the efficacy of ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 for magnetic resonance (MR) imaging of focal hepatic lesions. MATERIAL AND METHODS: Ninety-nine patients with focal liver lesions received USPIO at a dose of 0.8 (n = 35), 1.1 (n = 32), or 1.7 (n = 32) mg Fe/kg. Liver MR imaging was performed before and after USPIO with T1-weighted and T2-weighted pulse sequences. Images were analysed by two independent readers for additional information (lesion detection, exclusion, characterization and patient management). Signal intensity (SI) based quantitative measurements were also taken. RESULTS: Post-contrast medium MR imaging showed additional information in 71/97 patients (73%) for reader one and 83/96 patients (86%) for reader two. The results with all three doses were statistically significant (P < 0.05). Signal intensity analysis revealed that all three doses increased liver SI on T1-weighted images and decreased liver SI on T2-weighted images. On T2-weighted images metastases increased in contrast relative to normal hepatic parenchyma whereas haemangiomas decreased in contrast. On T2-weighted images there was statistically improved efficacy at the intermediate dose, which did not improve at the highest dose. CONCLUSION: Ultrasmall superparamagnetic iron oxide was an effective contrast agent for liver MR imaging at all doses and a dose of 1.1 mg Fe/kg was recommended for future clinical trials.  相似文献   

6.
OBJECTIVE: Ferumoxtran-10 is a lymphotropic MR contrast agent that is currently under investigation. It has been shown to be effective in staging lymph nodes of patients with various primary malignancies. The current technique with ferumoxtran-10 involves imaging before and 24 hr after contrast administration. The purpose of this study was to evaluate the accuracy of ferumoxtran-10-enhanced images alone in characterizing lymph nodes for oncologic staging 24 hr after contrast enhancement. MATERIALS AND METHODS: Seventy-seven patients (58 men, 19 women) with proven primary cancer (bladder [n = 20], breast [n = 10], endometrial [n = 1], renal [n = 3], penile [n = 4], prostate [n = 31], rectal [n = 1], testicular [n = 5], and ureteral [n = 2]) who were scheduled for surgical lymph node dissection were enrolled in the study. In these patients, 169 lymph nodes (mean size, 11.2 mm) were evaluated on T2*-weighted gradient-refocused echo MRI at l.5 T both before and 24-36 hr after the IV administration of ferumoxtran-10 (2.6 mg Fe/kg). Two blinded reviewers with differing levels of interpreting experience separately performed qualitative image evaluation. A 6-point scale was used to characterize lymph nodes on contrast-enhanced images alone and on combined unenhanced and contrast-enhanced images. Receiver operating characteristic (ROC) analysis was performed separately for both reviewers. RESULTS: Of the 169 lymph nodes evaluated, 55 were benign and 114 malignant by histopathologic analysis. The results of the ROC analysis comparing contrast-enhanced images ([A(z) = area under ROC curve] reviewer 1, A(z) = 0.92; reviewer 2, A(z) = 0.94) alone with combined unenhanced and contrast-enhanced images (reviewer 1, A(z) = 0.94; reviewer 2, A(z) = 0.93) showed a statistically significant difference (p = 0.01) for reviewer 1 but no difference for reviewer 2 (p = 0.88). Reviewer 2 was more experienced in interpreting ferumoxtran-10-enhanced images than reviewer 1. CONCLUSION: On ferumoxtran-10-enhanced MR lymphangiography, contrast-enhanced images alone may suffice for lymph node characterization. However, a certain level of interpretation experience may be required before contrast-enhanced images can be used alone.  相似文献   

7.
PURPOSE: To prospectively evaluate ferumoxtran-10-enhanced magnetic resonance (MR) imaging for nodal staging in patients with urinary bladder cancer. MATERIALS AND METHODS: Fifty-eight patients with proved bladder cancer were enrolled. Results of MR imaging performed before and after injection of ferumoxtran-10 were compared with histopathologic results in surgically removed lymph nodes. High-spatial-resolution three-dimensional T1-weighted magnetization-prepared rapid acquisition gradient-echo (voxel size, 1.4 x 1.4 x 1.4 mm) and T2*-weighted gradient-echo (voxel size, 0.8 x 0.8 x 3.0 mm) sequences were performed before and 24 hours after injection of ferumoxtran-10 (2.6 mg iron per kilogram of body weight). On precontrast images, lymph nodes were defined as malignant by using size and shape criteria (round node, >8 mm; oval, >10 mm axial diameter). On postcontrast images, nodes were considered benign if there was homogeneous decrease in signal intensity and malignant if decrease was absent or heterogeneous. Qualitative evaluation was performed on a node-to-node basis. Sensitivity, specificity, predictive values, and accuracy were evaluated with logistic regression analysis. RESULTS: In 58 patients, 172 nodes imaged with use of ferumoxtran-10 were matched and correlated with results of node dissection. Of these, 122 were benign and 50 were malignant. With nodal size and shape criteria, accuracy, sensitivity, specificity, and positive and negative predictive values on precontrast images were 92%, 76%, 99%, 97%, and 91%, respectively; corresponding values on postcontrast images were 95%, 96%, 95%, 89%, and 98%. In the depiction of pelvic metastases, sensitivity and negative predictive value improved significantly at postcontrast compared with those at precontrast imaging, from 76% to 96% (P < .001) and from 91% to 98% (P < .01), respectively. At postcontrast imaging, metastases (4-9 mm) were prospectively found in 10 of 12 normal-sized nodes (<10 mm); these metastases were not detected on precontrast images. Postcontrast images also showed lymph nodes that were missed at pelvic node dissection in two patients. CONCLUSION: Ferumoxtran-10-enhanced MR imaging significantly improves nodal staging in patients with bladder cancer by depicting metastases even in normal-sized lymph nodes.  相似文献   

8.
PURPOSE: Ferumoxtran-10 (ultrasmall superparamagnetic iron oxide; Combidex, AMI-7227) is a long-circulating MR contrast agent with reticuloendothelial uptake known to enhance tissue T1 and T2 relaxation rates. The purpose of this study was to assess the effect of ferumoxtran-10-enhanced MRI in evaluating focal splenic lesions. METHOD: Eighteen patients underwent MR evaluation of the spleen. Two of these patients with exophytic normal splenic tissue (splenules) and 13 of these patients with 24 focal splenic lesions (7 cysts, 2 hemangiomas, 7 metastases, 1 infarct, 7 lymphoma) were assessed by T1-weighted gradient echo and T2-weighted fast SE MRI following intravenous administration of ferumoxtran-10 (1.1 mg of Fe/kg). Qualitative analysis involving improved lesion detection and/or characterization, additional information from postcontrast images affecting staging, and patient management was performed. Quantitative measurements of lesion-to-spleen contrast-to-noise ratio were also performed. RESULTS: Additional information was provided by ferumoxtran-10-enhanced images in 15 of 18 patients. In 8 of 15 (53%) patients, improved lesion detection (i.e., number of lesions) was obtained on contrast-enhanced images. Improved lesion visualization (i.e., conspicuity) was noted in 11 of 15 (73%) of patients. In 10 of 15 (67%) patients, postcontrast imaging provided additional information leading to lesion characterization. Staging of disease and patient management were affected in 5 of 15 (33%) and 6 of 15 (40%) patients, respectively. CONCLUSION: Ferumoxtran-10 is a promising contrast agent for the evaluation of focal splenic lesions.  相似文献   

9.
PURPOSE: This investigation sought to optimize ultrasmall particles of iron oxide (USPIO) contrast agent dosage for visualizing cerebral microvasculature on an 8.0-Tesla ultra high field magnetic resonance imaging system. MATERIALS AND METHODS: USPIO contrast agent was intravenously administered to 3 groups of 4 rats at 1, 2, and 3 mg Fe/kg. Each animal was scanned before and after injection of USPIO using a high resolution T2*-weighted gradient recalled echo sequence with an in-plane resolution of 78 microm. The signal-to-noise ratio (SNR) and the number of microvessels visualized within the cortex and basal ganglia were calculated and compared before and after the administration of USPIO. RESULTS: As the USPIO dose increased, microvascular conspicuity increased, and SNR decreased. A dosage of 2 mg Fe/kg improved microvascular visualization in both cortex and basal ganglion regions relative to 1 mg Fe/kg without significantly sacrificing SNR as was the case at 3 mg Fe/kg. CONCLUSION: Two mg Fe/kg USPIO is an optimal dose when imaging normal rat cerebral microvasculature using GRE T2*-weighted MR imaging at a field strength of 8 T.  相似文献   

10.
MR重T2W首次通过灌注成像鉴别乳腺良恶性肿瘤的价值初探   总被引:12,自引:1,他引:11  
目的 评价在同 1次检查中T1W动态增强成像之后进行重T2 W (T 2 W )首次通过灌注成像的可行性 ,以及后者在鉴别乳腺良恶性肿瘤方面的诊断价值。方法  2 9例乳腺病患者在T1W动态增强后进一步行病灶局部的T 2 W首次通过灌注成像 ,分别根据病灶T1W动态增强的早期强化程度和T 2 W首次通过灌注成像的早期信号丢失程度判定病灶的良恶性 ,计算其敏感度、特异度 ,以进行两方法间的比较。结果 应用T1W动态增强成像序列 ,良、恶性病变的信号强度增加率之间差异有显著性意义 (t=2 5 6 3,P =0 0 16 ) ,但两者的早期增强程度范围有很大的重叠 ;早期增强率诊断的敏感度为 94 % ,特异度仅为 2 5 %。应用T 2 W首次通过灌注成像序列 ,良、恶性病变之间的T2 信号强度丢失程度差异有非常显著性意义 (t=4 777,P <0 0 0 1) ,良、恶性病变的早期信号丢失率之间重叠很少 ;早期信号丢失率诊断的敏感度为 88% ,特异度为 75 %。结论 T 2 W首次通过灌注成像在鉴别良恶性乳腺肿瘤方面具有较高特异度 ;在同一患者中 ,T 2 W首次通过灌注成像结合T1W动态增强成像检查是可行的 ,可以提高乳腺MR成像的诊断准确性。  相似文献   

11.
The ultrasmall superparamagnetic iron oxide (USPIO) preparation NC100150 Injection (Clariscan; Nycomed Imaging, Oslo, Norway) was tested for its ability to delineate nonperfused myocardium under steady-state conditions. An experimental animal model of focal myocardial ischemia induced by ligation of the distal part of the left anterior descending artery was used. The contrast agent was administered in four doses: 0, 4, 8, and 12 mg Fe/kg body weight. Magnetic resonance examination ex vivo, including T1-, T2-, and T2*-weighted sequences, was performed. Nonperfused myocardium was determined by fluorescein. The best delineation of nonperfused myocardium was found with a T1-weighted inversion recovery/turbo spin-echo sequence and doses of 4 and 8 mg Fe/kg body weight, where 95% of the volume was discernible at the dose of 4 mg Fe/kg body weight. The results suggest that steady-state imaging by T1-weighted sequence with the use of NC100150 Injection to delineate nonperfused myocardium is feasible. J. Magn. Reson. Imaging 2000;12:866-872.  相似文献   

12.
Choi SH  Han MH  Moon WK  Son KR  Won JK  Kim JH  Kwon BJ  Na DG  Weinmann HJ  Chang KH 《Radiology》2006,241(3):753-762
PURPOSE: To prospectively compare the accuracy of gadofluorine M with that of monocrystalline iron oxide nanoparticle (MION)-47 for the depiction of cervical lymph node metastases at magnetic resonance (MR) imaging in a rabbit model of head and neck cancer by using histologic analysis as the reference standard. MATERIALS AND METHODS: Experiments were approved by the animal care committee. VX2 carcinomas were implanted in both ears of 11 rabbits 4 weeks before MR imaging. T2-weighted, T2*-weighted, and T1-weighted MR images were acquired, and sequential T1-weighted MR imaging was performed immediately and 30 minutes after administration of gadofluorine M (0.05 mmol gadolinium per kilogram body weight). T2-weighted and T2*-weighted MR imaging were performed 24 hours after administration of MION-47 (2.6 mg iron per kilogram body weight). Gadofluorine M- and MION-47-enhanced MR imaging were performed separately and independently by two radiologists who had no knowledge of histopathologic results, and the presence of metastases in lymph nodes was evaluated. A receiver operating characteristic analysis was conducted to compare the diagnostic value of gadofluorine M- and MION-47-enhanced MR imaging. RESULTS: Metastases were confirmed in 20 of 77 lymph nodes at histopathologic analysis. The area under the curve was significantly greater for gadofluorine M-enhanced MR imaging (0.997 and 0.981 for readers 1 and 2, respectively) than for MION-47-enhanced MR imaging (0.889 and 0.846 for readers 1 and 2, respectively). For gadofluorine M-enhanced MR imaging, sensitivity was 100% for both readers and specificity was 89.5% for reader 1 and 87.7% for reader 2. For MION-47-enhanced MR imaging, sensitivity was 80.0% for both readers and specificity was 75.4% for reader 1 and 71.9% for reader 2. CONCLUSION: Gadofluorine M-enhanced MR imaging has higher accuracy for depicting lymph node metastases than does MION-47-enhanced MR imaging.  相似文献   

13.
PURPOSETo investigate dextran-coated superparamagnetic iron oxide particles (BMS 180549) as an MR contrast agent for assessing lymph nodes.METHODSFive different doses ranging from 0.3 to 1.7 mg Fe/kg were evaluated in five healthy human male subjects as part of a phase 1 clinical study. T1-, T2-, and proton density-weighted spin-echo images as well as multiplanar gradient-echo and spoiled gradient-echo images were acquired before and 1 hour, 4 hours, and 24 hours after contrast administration. Image analysis was performed with visually selected regions of interest. Signal intensities were measured for neck lymph nodes and the adjacent muscle. Enhancement effects were evaluated as a function of dose, imaging time after contrast administration, and MR pulse sequence.RESULTSThe iron oxide particles were phagocytized by macrophages within the normal functioning lymph nodes, resulting in a dramatic decrease in signal intensity because of magnetic susceptibility effects. T2*-weighted gradient echo and T2-weighted spin echo showed significant decrease in the signal intensity of normal lymph nodes at 24 hours after contrast injection at a dose of 1.7 mg Fe/kg. No significant changes in lymph node signal intensity on T1-weighted spin-echo images were noted at any dose or imaging time point.CONCLUSIONSThis preliminary clinical evaluation demonstrates intravenous delivery of an iron-based contrast agent, resulting in negative enhancement of normal lymph nodes.  相似文献   

14.
PURPOSE: To evaluate the diagnostic value of an imaging protocol that combines dynamic contrast-enhanced T1-weighted magnetic resonance (MR) imaging and T2*-weighted first-pass perfusion imaging in patients with breast tumors and to determine if T2*-weighted imaging can provide additional diagnostic information to that obtained with T1-weighted imaging. MATERIALS AND METHODS: One hundred thirty patients with breast tumors underwent MR imaging with dynamic contrast-enhanced T1-weighted imaging of the entire breast, which was followed immediately with single-section, T2*-weighted imaging of the tumor. RESULTS: With T2*-weighted perfusion imaging, 57 of 72 carcinomas but only four of 58 benign lesions had a signal intensity loss of 20% or more during the first pass, for a sensitivity of 79% and a specificity of 93%. With dynamic contrast-enhanced T1-weighted imaging, 64 carcinomas and 19 benign lesions showed a signal intensity increase of 90% or more in the first image obtained after the administration of contrast material, for a sensitivity of 89% and a specificity of 67%. CONCLUSION: T2*-weighted first-pass perfusion imaging can help differentiate between benign and malignant breast lesions with a high level of specificity. The combination of T1-weighted and T2*-weighted imaging is feasible in a single patient examination and may improve breast MR imaging.  相似文献   

15.
OBJECTIVE: The aim of this study was to evaluate the characteristics of an ultrasmall superparamagnetic iron oxides (USPIO) agent in patients with brain tumors and to correlate changes on MRI with histopathologic data collected systematically in all patients. SUBJECTS AND METHODS: Nine patients with brain tumors were imaged before and 24 hr after administration of a USPIO at a dose of 2.6 mg Fe/kg. Analysis of MR images included qualitative and quantitative comparison of the USPIO and gadolinium enhancement of brain tumors. Brain surgery was performed 25-112 hr after administration of the USPIO. The histopathologic workup included iron histochemistry with diaminobenzidine (DAB)-enhanced Perls stain. RESULTS: In seven of nine patients, USPIO-related changes of signal intensity were observed in gadolinium-enhancing brain tumors on T1- and T2*-weighted sequences. The difference in signal intensity on T1-weighted USPIO series was 40.1% +/- 26.7% (mean +/- SD). On T2*-weighted USPIO series, the difference in signal intensity was -33.1% +/- 18.4% in solid tumor parts. Areas of suspected radiation necrosis did not enhance in three patients with prior radiation therapy. Iron histochemistry revealed the presence of iron deposits in macrophages in two patients. CONCLUSION: USPIO agents will not replace gadolinium in the workup of patients with brain tumors. Our findings suggest that USPIO agents seem to offer complementary information and may help to differentiate between brain tumors and areas of radiation necrosis. Signal intensity changes on T2*-weighted images might be related to the blood pool properties of the agent, possibly reflecting steady-state susceptibility effects.  相似文献   

16.
PURPOSE: To compare a superparamagnetic iron oxide (SPIO), VSOP-C184, with a gadopentetate dimeglumine with regard to signal-enhancing effects on T1-weighted dynamic magnetic resonance (MR) images and with another SPIO contrast medium with regard to signal-reducing effects on delayed T2-weighted MR images. MATERIALS AND METHODS: All experiments were approved by the responsible Animal Care Committee. Twenty rabbits (five for each contrast agent and dose) implanted with VX-2 carcinoma were imaged at 1.5 T. VSOP-C184 at 0.015 and 0.025 mmol Fe/kg was compared with gadopentetate dimeglumine at 0.15 mmol Gd/kg and ferucarbotran at 0.015 mmol Fe/kg. The imaging protocol comprised a T1-weighted dynamic gradient-echo (GRE) MR before injection and at 6-second intervals for up to 42 seconds after injection and a T2-weighted turbo spin-echo MR before and 5 minutes after injection. Images were evaluated quantitatively, and contrast media were compared by using nonparametric analysis of variance. RESULTS: At dynamic T1-weighted GRE MR imaging with 0.015-mmol Fe/kg VSOP-C184, 0.025-mmol Fe/kg VSOP-C184, gadopentetate dimeglumine, and ferucarbotran, the median peak contrast-to-noise ratio (CNR) was 20.7 (25th percentile, 16.3; 75th percentile, 22.6), 24.2 (25th percentile, 19.3; 75th percentile, 28.5), 16.4 (25th percentile, 13.7; 75th percentile, 20.3), and 14.0 (25th percentile, 11.4; 75th percentile, 16.8), respectively. Both doses of VSOP-C184 yielded significantly higher CNR (P < .05) than the other two agents. At T2-weighted turbo spin-echo imaging with 0.015-mmol Fe/kg VSOP-C184, 0.025-mmol Fe/kg VSOP-C184, gadopentetate dimeglumine, and ferucarbotran, the median CNR was 15.0 (25th percentile, 13.4; 75th percentile, 21.3), 15.7 (25th percentile, 14.5; 75th percentile, 19.8), 11.3 (25th percentile, 8.2; 75th percentile, 12.2), and 15.7 (25th percentile, 12.5; 75th percentile, 22.4), respectively. There was no significant difference between VSOP-C184 and ferucarbotran; both had a significantly higher CNR than did gadopentetate dimeglumine. CONCLUSION: VSOP-C184 produces higher liver-to-tumor contrast at dynamic T1-weighted imaging than does gadopentetate dimeglumine; at delayed T2-weighted imaging, the contrast is comparable to that achieved with ferucarbotran.  相似文献   

17.
PURPOSE: To determine whether emergency subtraction dynamic contrast-enhanced MR imaging (DCE-MRI) in combination with T2- and T2*-weighted imaging of the testis is useful in the evaluation of patients with testicular torsion. MATERIALS AND METHODS: Fourteen patients with surgically proven testicular torsion were examined using preoperative emergency MRI, including T2-weighted, T2*-weighted, and DCE-MRI. The affected testis was examined histologically in eight patients who underwent orchiectomy, and by postoperative follow-up MRI in six patients who underwent orchiopexy. The diagnostic criteria for testicular torsion and detection of hemorrhagic necrosis in the affected testis in emergency MRI were decreased or no perfusion in DCE-MRI and a spotty and/or streaky pattern of low or very low signal intensity in T2- and T2*-weighted images. The intraoperative findings and clinical outcomes were also compared. RESULTS: The histological findings and follow-up MR images revealed total or partial necrosis of the affected testis in 10 of the 14 patients. In the diagnosis of complete torsion, the sensitivities were 100% for DCE-MRI and 75% for T2- and T2*-weighted imaging. In the detection of testicular necrosis, T2- and T2*-weighted imaging showed the highest accuracy (100%), followed by 12-hour time from onset (93%), intraoperative findings (79%), and DCE-MRI (71%). CONCLUSION: Emergency MRI can help diagnose testicular torsion and detect testicular necrosis when DCE-MRI is used in combination with T2- and T2*-weighted images.  相似文献   

18.
Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes.   总被引:16,自引:0,他引:16  
PURPOSE: To compare findings on superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) images of the head and neck with those from resected lymph node specimens and to determine the effect of such imaging on surgical planning in patients with histopathologically proved squamous cell carcinoma of the head and neck. MATERIALS AND METHODS: Thirty patients underwent MR imaging with nonenhanced and SPIO-enhanced (2.6 mg Fe/kg intravenously) T1-weighted (500/15 [repetition time msec/echo time msec]) and T2-weighted (1,900/80) spin-echo and T2-weighted gradient-echo (GRE) (500/15, 15 degrees flip angle) sequences. Signal intensity decrease was measured, and visual analysis was performed. Surgical plans were modified, if necessary, according to MR findings. Histopathologic and MR findings were compared. RESULTS: Histopathologic evaluation of 1,029 lymph nodes revealed 69 were metastatic. MR imaging enabled detection of 59 metastases. Regarding lymph node levels, MR diagnosis was correct in 26 of 27 patients who underwent surgery: Only one metastasis was localized in level II with MR imaging, whereas histopathologic evaluation placed it at level III. Extent of surgery was changed in seven patients. SPIO-enhanced T2-weighted GRE was the best sequence for differentiating between benign and malignant lymph nodes. CONCLUSION: SPIO-enhanced MR imaging has an important effect on planning the extent of surgery. On a patient basis, SPIO-enhanced MR images compared well with resected specimens.  相似文献   

19.
Curvilinear T1 hyperintense lesions in the cerebral cortex in patients with subacute infarction were investigated for: (1) the presence or absence of T2* hypointensity and (2) correlations with neuropathologic findings. Thirty-six consecutive patients with subacute to chronic embolic infarction, in whom curvilinear hyperintense lesions in the infarcted cortex were seen on T1-weighted images, underwent echo-planar gradient-echo (GRE-EPI) T2*-weighted imaging. GRE-EPI T2*-weighted imaging revealed no evidence of hemorrhage within the curvilinear T1 hyperintense lesions of the cerebral cortex in all of the patients. In 11 of the 36 patients, focal hypointense lesions were seen in the depth of infarcted gyri on GRE-EPI T2*-weighted images. In the remaining 25 patients, no T2* hypointensities were seen in the infarct zone. Pathological correlation was performed in a patient with middle cerebral artery infarction and curvilinear hyperintense lesions on postmortem T1-weighted images. In the autopsied brain, curvilinear T1 hyperintense lesions corresponded to necrosis of all the cortical layers on histological examination. These data suggest that curvilinear hyperintense lesions in the cerebral cortex on T1-weighted images during the subacute to chronic period of cerebral infarction may not represent hemorrhage.  相似文献   

20.
PURPOSE: To compare short inversion time inversion-recovery (STIR) and T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance (MR) sequences for depiction of bone marrow abnormalities of the foot and ankle. MATERIALS AND METHODS: Fifty-one consecutive patients with bone marrow abnormalities depicted on turbo STIR images were examined with additional T1-weighted contrast-enhanced (0.1 mmol/kg gadopentetate dimeglumine) MR imaging with fat suppression. Volume and signal difference-to-noise ratio (SDNR) were measured. An additional qualitative analysis was performed by two experienced musculoskeletal radiologists to correlate the presence or absence of ill-defined edema-like zones, well-defined zones, and cystlike zones. Diagnoses determined with MR findings with each sequence were compared with the results of a review panel. Correlation coefficients (r(2)) and paired t tests were calculated for all measurements. Agreement percentages and kappa values were calculated for inter- and intraobserver reproducibility. RESULTS: Regarding volume of bone marrow abnormalities, a high correlation (r(2) = 0.98) of both sequences was found. SDNR was substantially higher on T1-weighted contrast-enhanced images than on STIR images (mean, 125.9 vs 95.4; P <.001). The qualitative analysis demonstrated identical imaging patterns with both sequences in 96% (79 of 82, kappa = 0.38) of ill-defined zones, in 88% (72 of 82, kappa = 0.76) of well-defined zones, and in 98% (80 of 82, kappa = 0.84) of cystlike zones. Interobserver reproducibility of the three imaging patterns was similar for both sequences. The kappa values for these three zones with STIR sequence were 0.55, 0.68, and 0.69, and those for the T1-weighted contrast-enhanced MR sequence were 0.49, 0.73, and 0.58, respectively. Diagnoses determined with MR findings were equal with both sequences in 94% (80 of 85) of involved bones. CONCLUSION: STIR images and T1-weighted contrast-enhanced fat-suppressed MR images demonstrate almost identical imaging patterns, and diagnoses determined with these findings show little difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号