首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21-56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70-76% and Fe by 20-32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P < 0.05). ID decreased serotonin (5-HT) levels in OB, with a significant decrease in ID+(n-3)FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P < 0.05). Dopa decarboxylase was downregulated in the hippocampus of ID and ID+(n-3)FAD rats (fold-change = -1.33; P < 0.05). ID and (n-3)FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P < 0.05) and was negatively associated with 5-HT in FC (r = -0.42; P = 0.018). These results suggest that the combined deficiencies of Fe and (n-3) FA disrupt brain monoamine metabolism and produce greater deficits in reference memory than ID or (n-3)FAD alone.  相似文献   

2.
The crossover relationship between cardiometabolic risk, in terms of insulin resistance and vascular dysfunction, and the fatty acid (FA) profile of insulin-sensitive tissues as well as the dietary FA impact has almost never been explored in the same experiment. In this study, the intake of alpha-linolenic acid (ALA) alone and/or with its higher metabolites, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were evaluated in a nonobese, hypertriglyceridemic and insulin-resistant rat model, that exhibits the 2 main characteristics of metabolic syndrome. Wistar rats were fed either a cornstarch and (n-6) PUFA-based diet (C-N6) or a 66% fructose diet over a 10-wk period. Fructose-fed rats received a diet containing ALA alone (F-ALA group) or ALA plus EPA and DHA (F-LC3 group) or no (n-3) PUFA (F-N6 group). The 10-wk high-fructose diet (F-N6) induced an insulin-resistant state, as assessed by glucose and insulin tolerance tests. Insulin resistance was linked to a specific FA pattern in insulin-sensitive tissues, which probably involved modifications of Delta9, Delta6, and Delta5-desaturases. This pathological status was related to high cardiovascular risk as assessed by increases in systolic and diastolic blood pressures and particularly by the increase of pulse pressure, an index of vascular stiffness obtained from telemetry investigations. The (n-3) experimental diets prevented changes in the FA patterns in insulin-sensitive tissues, insulin resistance, and vascular dysfunction. This beneficial effect was large with an intake of long chain (n-3) PUFA (ALA+EPA+DHA) and to a lesser extent with dietary ALA alone.  相似文献   

3.
Most previous studies have focused on improved reference memory and recovery of whole brain docosahexaenoic acid [DHA, 22:6(n-3)] levels in DHA-deficient animals supplemented with fish oil (FO) or switched to an adequate DHA-enriched diet. The aims of this study were to determine whether reference and working memory performance can be enhanced in control male rats and improved in (n-3) fatty acid-deficient male rats given an FO supplement and whether brain DHA accumulation, deficiency, and recovery are region specific. From the embryo to postnatal d 140, 4 groups of rats were fed a nonpurified or sunflower oil-based (n-3) fatty acid-deficient diet alone or supplemented with (n-3) fatty acids from FO representing approximately 0.3% of the energy source. The male rats were tested at postnatal d 102-130 for spatial learning memory performance in the Morris water maze. The fatty acid composition of different brain regions was analyzed by GC. Rats fed the (n-3) fatty acid-deficient diet showed significantly poorer reference and working memory, and FO supplementation partially rescued both memory performances. Furthermore, FO supplementation during brain development and adulthood in normal rats resulted in significant enhancement of both memories. Following dietary DHA repletion, the hippocampus and olfactory bulbs accumulated more DHA, were more resistant to dietary DHA deprivation, and showed better DHA recovery than the visual cortex, frontal cortex, and cerebellum. These results suggest that DHA is critical for the development and maintenance of learning memory performance.  相似文献   

4.
(n-3) PUFA deficiency and repletion effects on bone mechanical properties have not been examined. The primary research aim was to evaluate whether changes in the fatty acid composition of bone tissue compartments previously reported to influence bone formation rates would affect bone modeling and mechanical properties. In this investigation, three groups of rats were studied, second generation (n-3)-deficient, (n-3)-repleted, and a control (n-3)-adequate. The (n-3)-adequate diet contained alpha-linolenic acid [LNA, 18:3(n-3), 2.6% of total fatty acids] and docosahexaenoic acid [DHA, 22:6(n-3), 1.3% of total fatty acids]. Fatty acid composition of the hindlimb tissues (bone and muscle) of chronically (n-3)-deficient rats revealed a marked increase in (n-6) PUFA [20:4(n-6), 22:4(n-6), and 22:5(n-6)] and a corresponding decrease in (n-3) PUFA [18:3(n-3), 20:5(n-3), 22:5(n-3) and 22:6(n-3)]. Measurement of bone mechanical properties (energy to peak load) of tibiae showed that (n-3) deficiency diminished structural integrity. Rats repleted with (n-3) fatty acids demonstrated accelerated bone modeling (cross-sectional geometry) and an improved second moment in tibiae compared with control (n-3)-adequate rats after 28 d of dietary treatment. This study showed that repletion with dietary (n-3) fatty acids restored the ratio of (n-6)/(n-3) PUFA in bone compartments and reversed compromised bone modeling in (n-3)-deficient rats.  相似文献   

5.
The purpose of this study was to determine whether the dose of (n-3) fatty acids (FA) administered, independent of the relative ratio of (n-6) to (n-3) FA in the food, influences plasma FA composition in dogs. Healthy female, geriatric beagles (7-10 y old) were fed foods containing (n-6) to (n-3) FA ratios of either 40.0:1 or 1.4:1 for 12 wk (study 1) or 36 wk (study 2). In study 3, beagles were fed food with the same 1:1 ratio of (n-6) to (n-3) FA, but with increasing concentrations of (n-6) and (n-3) FA. Plasma FA concentrations were measured after completing the feeding studies. In studies 1 and 2, dogs fed fish oil-enriched food with a high (n-3) FA concentration had higher plasma total (n-3) FA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) concentrations and lower plasma total (n-6) FA, linoleic acid, and arachidonic acid concentrations than dogs fed corn oil-enriched food with a low (n-3) FA concentration (P < 0.001). Both inclusion of fish oil (P < 0.001) and increased food intake independent of treatment effects increased the plasma DHA (P = 0.05) concentration. Furthermore, constancy of the dose of (n-3) FA administered over long periods of time was necessary to maintain plasma levels of total (n-3) FA, EPA, and DHA. In study 3, up to certain dietary concentrations (6.3 g total (n-3) FA/kg food for DHA and 9.8 g total (n-3) FA/kg food for EPA), the dose of (n-3) FA administered, independent of the (n-6) to (n-3) FA ratio, determined the plasma (n-3) FA composition. Results from our studies indicate that approximately 175 mg DHA/(kg body weight . d) is required to attain maximum plasma levels of DHA.  相似文献   

6.
Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.  相似文献   

7.
Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition–93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P < .05) greater in the 1% EPA + DHA–fed rats than in other rats. Magnetic resonance imaging consistently showed that edema and bleeding were visible in only the rats fed 1% EPA + DHA. Levels of superoxide dismutase and glutathione were significantly (P < .05) lower in rats fed 0.5% and 1% EPA + DHA than those fed 0% EPA + DHA. Thiobarbituric acid–reactive substance content was significantly (P < .05) higher in 1% EPA + DHA–fed rats than in 0% and 0.5% EPA + DHA–fed rats. The level of 8-hydroxydeoxyguanosine was significantly (P < .05) higher in ICH rats with all diets than in sham surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.  相似文献   

8.
(n-3) PUFA are a family of biologically active fatty acids. The simplest member of this family, α-linolenic acid, can be converted to the more biologically active very long-chain (n-3) PUFA EPA and DHA; this process occurs by a series of desaturation and elongation reactions, with stearidonic acid being an intermediate in the pathway. Biological activity of α-linolenic and stearidonic acids most likely relates to their conversion to EPA. The very long-chain (n-3) PUFA have a range of physiological roles that relate to optimal cell membrane structure and optimal cell function and responses. Thus, (n-3) PUFA play a key role in preventing, and perhaps treating, many conditions of poor health and well-being. The multiple actions of (n-3) PUFA appear to involve multiple mechanisms that connect the cell membrane, the cytosol, and the nucleus. For some actions, (n-3) PUFA appear to act via receptors or sensors, so regulating signaling processes that influence patterns of gene expression. Some effects of (n-3) PUFA seem to involve changes in cell membrane fatty acid composition. Changing membrane composition can in turn affect membrane order, formation of lipid rafts, intracellular signaling processes, gene expression, and the production of both lipid and peptide mediators. Under typical Western dietary conditions, human cells tend to have a fairly high content of the (n-6) fatty acid arachidonic acid. Increased oral intake of EPA and DHA modifies the content of arachidonic acid as well as of EPA and DHA. Arachidonic acid is the substrate for eicosanoids involved in physiology and pathophysiology. The eicosanoids produced from EPA frequently have properties that are different from those that are produced from arachidonic acid. EPA and DHA are also substrates for production of resolvins and protectins, which seem to be biologically extremely potent. Increasing the contents of EPA and DHA in membranes modifies the pattern of production of these different lipid mediators.  相似文献   

9.
Consumption of fish or fish oils rich in the n-3 long chain PUFA EPA and DHA may improve multiple risk factors for CVD. The objective of this study was to determine whether regular consumption of foods enriched with n-3 long-chain PUFA can improve n-3 long-chain PUFA status (erythrocytes) and cardiovascular health. Overweight volunteers with high levels of triacylglycerols (TG; >1.6 mmol/l) were enrolled in a 6-month dietary intervention trial conducted in Adelaide (n 47) and Perth (n 39), and randomised to consume control foods or n-3-enriched foods to achieve an EPA + DHA intake of 1 g/d. Test foods were substituted for equivalent foods in their regular diet. Erythrocyte fatty acids, plasma TG and other CVD risk factors were monitored at 0, 3 and 6 months. There were no significant differences between groups for blood pressure, arterial compliance, glucose, insulin, lipids, C-reactive protein (CRP) or urinary 11-dehydro-thromboxane B2 (TXB2) over 6 months, even though regular consumption of n-3-enriched foods increased EPA + DHA intake from 0.2 to 1.0 g/d. However, the n-3 long-chain PUFA content of erythrocytes increased by 35 and 53 % at 3 and 6 months, respectively, in subjects consuming the n-3-enriched foods. These increases were positively associated with measures of arterial compliance and negatively associated with serum CRP and urinary 11-dehydro-TXB2 excretion. Sustainable increases in dietary intakes and erythrocyte levels of n-3 long-chain PUFA can be achieved through regular consumption of suitably enriched processed foods. Such increases may be associated with reduced CV risk.  相似文献   

10.
The study was undertaken to determine whether the content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in neonatal rats can be increased through milk provided by lactating mothers fed a diet containing 20% menhaden oil (experimental group), in comparison with a group fed a 20% corn oil diet (control group). The test diets were isocaloric and provided 41% of total energy as fat. Coinciding with 3-9% higher maternal body weight gain throughout the lactation period with the menhaden oil diet, the suckling rats in the experimental group at the ages of 3-9 d gained 5-10% more weight than did their control counterparts. When compared with corn oil, maternal dietary menhaden oil induced not only a higher weight percentage but also higher concentrations (microgram/mL) of EPA, DHA and total (n-3) fatty acids in milk, plasma, platelets and erythrocytes of neonates. These changes were accompanied by lower arachidonic and linoleic acid levels. EPA and DHA were detected in all three blood components of the control group, whose corn oil diet contained linolenic acid but not longer chain (n-3) fatty acids. This finding, together with the higher DHA to EPA ratios found in the three blood components than in the milk of the experimental group, suggests that neonatal rats possess the enzymes necessary for producing DHA from EPA and linolenate by desaturation and elongation mechanisms.  相似文献   

11.
To examine the incorporation of n-3 polyunsaturated fatty acids (PUFAs) into erythrocyte membranes during and after moderate n-3 PUFA intake, 12 healthy men were fed three diets for 6-wk periods in a 3 x 3 crossover design, supplying different amounts of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3): a control diet, a fish diet (0.15 g EPA/d, 0.41 g DHA/d), and a fish + oil diet (5 g fish oil/d; 0.99 g EPA/d and 0.99 g DHA/d). A 6-wk washout period was allowed between diets. Between 6 and 12 wk after the fish + oil diet, erythrocyte EPA and DHA were still declining and it was only after 18 wk that erythrocyte EPA had returned to baseline whereas DHA had not. Investigators examining variables that are influenced by altered membrane fatty acid composition should be aware of these prolonged effects when designing studies. Protracted washout periods (greater than 18 wk) make the classic crossover design prohibitive and a parallel design becomes essential.  相似文献   

12.
Omega-3 (n-3) fatty acids have been reported to have a variety of cardiovascular and neuropsychiatric benefits. Although obtaining the preformed fatty acids EPA and DHA from their traditional source (fish) is optimal, such an approach may not be realistic for meeting the world's growing demand for (n-3) fatty acids; therefore, a more sustainable and dependable source is needed. Stearidonic acid (SDA) is a metabolic precursor of EPA that can be provided by SDA-enhanced soybean oil. Such a product can provide a sustainable source of (n-3) fatty acids that does not endanger fish stocks. Two clinical trials have demonstrated that SDA-enhanced soybean oil can significantly improve an emerging marker of cardiovascular health, the omega-3 index (RBC EPA+DHA). The increase in the Index seen in these trials was used to estimate the potential clinical benefit of SDA consumption based on prior prospective cohort studies. In this analysis, risk for sudden cardiac death and the rate of cellular aging would both theoretically be reduced. The lower risk for major cardiac events seen in the Japan EPA Lipid Intervention Study (which used EPA supplementation) suggests that raising EPA tissue levels, independent of changes in DHA, can have clinical benefit. Thus, the consumption of foods containing SDA-enhanced soybean oil may be both a practical and sustainable approach to enriching tissues with beneficial (n-3) fatty acids.  相似文献   

13.
Low dietary intakes of the n-3 long-chain PUFA (LCPUFA) EPA and DHA are thought to be associated with increased risk for a variety of adverse outcomes, including some psychiatric disorders. Evidence from observational and intervention studies for a role of n-3 LCPUFA in depression is mixed, with some support for a benefit of EPA and/or DHA in major depressive illness. The present study was a double-blind randomised controlled trial that evaluated the effects of EPA+DHA supplementation (1.5 g/d) on mood and cognitive function in mild to moderately depressed individuals. Of 218 participants who entered the trial, 190 completed the planned 12 weeks intervention. Compliance, confirmed by plasma fatty acid concentrations, was good, but there was no evidence of a difference between supplemented and placebo groups in the primary outcome - namely, the depression subscale of the Depression Anxiety and Stress Scales at 12 weeks. Mean depression score was 8.4 for the EPA+DHA group and 9.6 for the placebo group, with an adjusted difference of - 1.0 (95 % CI - 2.8, 0.8; P = 0.27). Other measures of mood, mental health and cognitive function, including Beck Depression Inventory score and attentional bias toward threat words, were similarly little affected by the intervention. In conclusion, substantially increasing EPA+DHA intake for 3 months was found not to have beneficial or harmful effects on mood in mild to moderate depression. Adding the present result to a meta-analysis of previous relevant randomised controlled trial results confirmed an overall negligible benefit of n-3 LCPUFA supplementation for depressed mood.  相似文献   

14.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

15.
Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHD). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.  相似文献   

16.
Alpha-linolenic acid (ALA) is a major dietary (n-3) fatty acid. ALA is converted to longer-chain (n-3) PUFA, such as eicosapentaenoic acid (EPA) and possibly docosahexaenoic acid (DHA). EPA and DHA are fish-based (n-3) fatty acids that have proven cardioprotective properties. We studied the effect of daily supplementation with 3 g of ALA on the plasma concentration of long-chain (n-3) fatty acids in a predominantly African-American population with chronic illness. In a randomized, double-blind trial, 56 participants were given 3 g ALA/d from flaxseed oil capsules (n = 31) or olive oil placebo capsules (n = 25). Plasma EPA levels at 12 wk in the flaxseed oil group increased by 60%, from 24.09 +/- 16.71 to 38.56 +/- 28.92 micromol/L (P = 0.004), whereas no change occurred in the olive oil group. Plasma docosapentaenoic acid (DPA) levels in the flaxseed oil group increased by 25% from 19.94 +/- 9.22 to 27.03 +/- 17.17 micromol/L (P = 0.03) with no change in the olive oil group. Plasma DHA levels did not change in either group. This study demonstrates the efficacy of the conversion of ALA to EPA and DPA in a minority population with chronic disease. ALA may be an alternative to fish oil; however, additional clinical trials with ALA are warranted.  相似文献   

17.
Melatonin (MEL) plays an essential role in physiologic functions associated with darkness. We examined the effects of docosahexaenoic acid (DHA)-enriched phospholipids from pig brains (BPL) or hen eggs (EPL), as sources of DHA, on lipid FA composition of pineal membranes and daytime and nighttime concentrations of 6-sulfatoxymelatonin (aMT6) in adult male control and (n-3)-deficient rats fed BPL and EPL diets for 5 wk. In two experiments, at 3 wk of age, rats were divided into subgroups and fed semipurified diets containing either peanut oil [(n-3)-deficient group] or peanut plus rapeseed oil (control group) and two dietary formulas containing either 3.5 g/100 g diet of BPL (Experiment 1) or 5.0 g/100 g diet of EPL (Experiment 2). BPL and EPL diets provided approximately 200 mg of DHA/100 g diet. During the daytime, aMT6 concentrations were not significantly different among groups. Conversely, the (n-3)-deficient rats had significantly lower nighttime aMT6 concentrations than the control rats. BPL and EPL did not affect urinary nighttime aMT6 concentration in the control group, whereas (n-3)-deficient + BPL or EPL groups exhibited significantly higher nighttime aMT6 concentrations than the (n-3)-deficient group (76 and 110%, respectively). The level of DHA was significantly higher in the pineal glands of control rats than in (n-3)-deficient rats. In rats fed EPL and BPL, the level of DHA reached a plateau, between 10 and 11 mg/100 mg total fatty acids in control + BPL or EPL and (n-3)-deficient + BPL or EPL groups. These findings suggest that new DHA-enriched formulas may be used as an efficient alternative source of (n-3) polyunsaturated fatty acids to normalize MEL secretion.  相似文献   

18.
Loss of intestinal barrier function and subsequent edema formation remains a serious clinical problem leading to hypoperfusion, anastomotic leakage, bacterial translocation, and inflammatory mediator liberation. The inflammatory mediator platelet activating factor (PAF) promotes eicosanoid-mediated edema formation and vasoconstriction. Fish oil-derived (n-3) fatty acids (FA) favor the production of less injurious eicosanoids but may also increase intestinal paracellular permeability. We hypothesized that dietary (n-3) FA would ameliorate PAF-induced vasoconstriction and enhance vascular leakage of dextran tracers. Rats were fed either an (n-3) FA-rich diet (EPA-rich diet; 4.0 g/kg EPA, 2.8 g/kg DHA) or a control diet (CON diet; 0.0 g/kg EPA and DHA) for 3 wk. Subsequently, isolated and perfused small intestines were stimulated with PAF and arterial pressure and the translocation of fluid and macromolecules from the vasculature to lumen and lymphatics were analyzed. In intestines of rats fed the EPA-rich diet, intestinal phospholipids contained up to 470% more EPA and DHA at the expense of arachidonic acid (AA). The PAF-induced increase in arterial pressure was not affected by the EPA-rich diet. However, PAF-induced fluid loss from the vascular perfusate was higher in intestines of rats fed the EPA-rich diet. This was accompanied by a greater basal loss of dextran from the vascular perfusate and a higher PAF-induced transfer of dextran from the vasculature to the lumen (P = 0.058) and lymphatics. Our data suggest that augmented intestinal barrier permeability to fluid and macromolecules is a possible side effect of (n-3) FA-rich diet supplementation.  相似文献   

19.
BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  相似文献   

20.
BACKGROUND: Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and gamma-linolenic acid (GLA) have lipid-modifying and antiinflammatory properties. The effects of supplement mixtures of these fatty acids on plasma lipids and the fatty acid compositions of serum phospholipids have received little attention. OBJECTIVE: The objective was to determine the effects of different levels of GLA supplementation together with a constant intake of EPA plus DHA on the triacylglycerol-lowering effect of EPA plus DHA alone and on the fatty acid patterns (eicosanoid precursors) of serum phospholipids. DESIGN: Thirty-one women were assigned to 1 of 4 groups, equalized on the basis of their fasting triacylglycerol concentrations. They received supplements providing 4 g EPA+DHA (4:0, EPA+DHA:GLA; control group), 4 g EPA+DHA plus 1 g GLA (4:1), 2 g GLA (4:2), or 4 g GLA (4:4) daily for 28 d. Plasma lipids and fatty acids of serum phospholipids were measured on days 0 and 28. RESULTS: Plasma triacylglycerol concentrations were significantly lower on day 28 than on day 0 in the 4:0, 4:1, and 4:2 groups. LDL cholesterol decreased significantly (by 11.3%) in the 4:2 group. Dihomo-gamma-linolenic acid increased significantly in serum phospholipids only in the 4:2 and 4:4 groups; however, total n-3 fatty acids increased in all 4 groups. CONCLUSIONS: A mixture of 4 g EPA+DHA and 2 g GLA favorably altered blood lipid and fatty acid profiles in healthy women. On the basis of calculated PROCAM values, the 4:2 group was estimated to have a 43% reduction in the 10-y risk of myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号