首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Region-specific cerebral blood flow (CBF) and the apparent diffusion coefficient (ADC) of tissue water in the rat brain were quantified by high-field magnetic resonance imaging at 9.4 T in the rat suture occlusion model. Cerebral blood flow and ADC were compared during the short- (4.5 hours) and long-term (up to 6 days) reperfusion after 80 minutes of transient middle cerebral artery occlusion, and correlated with the histology analysis. On occlusion, average CBF fell from approximately 100 to less than 50 mL x 100 g(-1) x min(-1) in the cortex, and to less than 20 mL x 100 g(-1) x min(-1) in the caudate putamen (CP). Corresponding ADC values decreased from (6.98 +/- 0.82) x 10(-4) to (5.49 +/- 0.54) x 10(-4) mm2/s in the cortex, and from (7.16 +/- 0.58) x 10(-4) to (4.86 +/- 0.62) x 10(-4) mm2/s in the CP. On average, CBF recovered to approximately 50% of baseline in the first 24 hours of reperfusion. After 2 to 4 days, a strong hyperperfusion in the ipsilateral cortex and CP, up to approximately 300 mL x 100 g(-1) x min(-1), was observed. The ADC ratio in the ipsilateral and contralateral CP was also inverted in the late reperfusion period. Histology revealed more severe tissue damage at the late stage of reperfusion than at 4.5 hours. Significant reversal of CBF and ADC during the late reperfusion period may reflect the impairment of autoregulation in the ischemic regions. Vascular factors may play an important role in the infarct development after 80-minute focal ischemia.  相似文献   

2.
The ability of transverse nuclear magnetic resonance relaxation time, T2, to reveal acutely reduced CBF was assessed using magnetic resonance imaging (MRI). Graded reduction of CBF was produced in rats using a modification of Pulsinelli's four-vessel occlusion model. The CBF in cerebral cortex was quantified using the hydrogen clearance method, and both T2 and the trace of the diffusion tensor (Dav = 1/3TraceD) in the adjacent cortical tissue were determined as a function of reduced CBF at 4.7 T. A previously published theory, interrelating cerebral hemodynamic parameters, hemoglobin, and oxygen metabolism with T2, was used to estimate the effects of reduced CBF on cerebral T2. The MRI data show that T2 reduces in a U-shape manner as a function of CBF, reaching a level that is 2.5 to 2.8 milliseconds (5% to 6%) below the control value at CBF, between 15% and 60% of normal. This reduction could be estimated by the theory using the literature values of cerebral blood volume, oxygen extraction ratio, and precapillary oxygen extraction during compromised CBF. Dav dropped with two apparent flow thresholds, so that a small 11% to 17% reduction occurred between CBF values of 16% to 45% of normal, followed by a precipitous collapse by more than 20% at CBF below 15% of normal. The current data show that T2 can be used as an indicator of acute hypoperfusion because of its ability to indicate blood oxygenation level-dependent phenomena on reduced CBF.  相似文献   

3.
The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.  相似文献   

4.
The impact of brain imaging on the assessment of tissue status is likely to increase with the advent of treatment methods for acute cerebral ischemia. Multimodal magnetic resonance imaging (MRI) demonstrates potential for selecting stroke therapy patients by identifying the presence of acute ischemia, delineating the perfusion defect, and excluding hemorrhage. Yet, the identification of tissue subject to reversible or irreversible ischemia has proven to be difficult. Here, the authors show that T1 relaxation time in the rotating frame, so-called T1rho, serves as a sensitive MRI indicator of cerebral ischemia in the rat. The T1rho prolongs within minutes after a drop in the CBF of less than 22 mL 100 g(-1) min(-1). Dependence of T1rho on spin-lock amplitude, termed as T1rho dispersion, increases by approximately 20% on middle cerebral artery (MCA) occlusion, comparable with the magnitude of diffusion reduction. The T1rho dispersion change dynamically increases to be 38% +/- 10% by the first 60 minutes of ischemia in the brain region destined to develop infarction. Following reperfusion after 45 minutes of MCA occlusion, the tissue with elevated T1rho dispersion (yet normal diffusion) develops severe histologically verified neuronal damage; thus, the former parameter unveils an irreversible condition earlier than currently available MRI methods. The T1rho dispersion as a novel MRI index of cerebral ischemia may be useful in determination of the therapeutic window for acute ischemic stroke.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) techniques were used to study haemodynamic and metabolic responses in human visual cortex during varying arterial blood oxygen saturation levels (Y(sat), determined by pulse-oximeter) and stimulation with contrast-reversing checkerboards. The visual-evoked potential amplitude remained constant at lowered Y(sat) of 0.82+/-0.03. Similarly, fMRI cerebral blood flow (CBF) responses were unchanged during reduced Y(sat). In contrast, visual cortex volume displaying blood oxygen level-dependent (BOLD) fMRI response decreased as a function of Y(sat), but the BOLD signal change of 3.6%+/-1.4% was constant. Oxygen extraction ratio (OER) during visual activation showed values of 0.26+/-0.03 for normal Y(sat). At lowered Y(sat), two OER patterns were observed. Firstly, a reduced OER of 0.14+/-0.03 in the visual cortex structures showing BOLD in hypoxia was observed. Secondly, signs of much higher OER in other parts of visual cortex were obtained. T2*-weighted magnetic resonance imaging revealed signal increases by 0.8%+/-0.4% with visual activation during lowered Y(sat) in the visual cortex structures, which showed BOLD of 3.6% in magnitude under normoxia. Because the CBF response in the visual cortex was quantitatively similar during stimulation in normoxia and hypoxia, attenuated T2*-weighted signal increase in parts of visual cortex indicated high OER during visual activation in hypoxia, which was close to that encountered in the resting brain. These spatially localised regions of tissue oxygen extraction and metabolism argue for dissociation between CBF and BOLD fMRI signals in mild hypoxia. The findings point to heterogeneity with regard to oxygen requirement and its coupling to the haemodynamic response in the brain.  相似文献   

6.
A quantitative understanding of unidirectional versus net extraction of oxygen in the brain is required because an important factor in calculating oxidative metabolism by calibrated functional magnetic resonance imaging (fMRI) as well as oxygen inhalation methods of positron emission tomography (15O2-PET) and nuclear magnetic resonance (17O2-NMR)) is the degree of oxygen efflux from the brain back into the blood. Because mechanisms of oxygen transport from blood to brain are dependent on cerebral metabolic rate of oxygen consumption (CMRO2), cerebral blood flow (CBF), and oxygen partial pressure (pO2) values in intravascular (Piv) and extravascular (Pev) compartments, we implemented multimodal measurements of these parameters into a compartmental model of oxygen transport and metabolism (i.e., hemoglobin-bound oxygen, oxygen dissolved in plasma and tissue spaces, oxygen metabolized in the mitochondria). In the alpha-chloralose anesthetized rat brain, we used magnetic resonance (7.0 T) and fluorescence quenching methods to measure CMRO2 (2.5+/-1.0 micromol/g min), CBF (0.7+/-0.2 mL/g min), Piv (74+/-10 mm Hg), and Pev (16+/-5 mm Hg) to estimate the degree of oxygen efflux from the brain. In the axially distributed compartmental model, oxygen molecules in blood had two possible fates: enter the tissue space or remain in the same compartment; while in tissue there were three possible fates: enter the blood or the mitochondrial space, or remain in the same compartment. The multiparametric results indicate that the probability of unmetabolized (i.e., dissolved) oxygen molecules reentering the blood from the tissue is negligible and thus its inclusion may unnecessarily complicate calculations of CMRO2 for 15O-PET, 17O-NMR, and calibrated fMRI methods.  相似文献   

7.
Proton magnetic resonance spectroscopy(1H-MRS) has less been used to analyze cerebral metabolism in ischemic lesions compared to single photon emission computed tomography or positron emission computed tomography. Recent advances in magnetic resonance imaging apparatus and the related software have made possible obtaining multi-voxel 1H-MRS in a single study. We examined multi-voxel 1H-MRS in patients with unilateral internal carotid artery(ICA) occlusion to study the relationship between cerebral metabolism and cerebral blood flow. Fifteen patients(male 11; female 4, 47-76; average 67.1 year-old) with chronic unilateral ICA occlusion and without any marked infarction were studied. 1H-MRS was obtained using a 1.5 T Siemens Magnetom Vision scanner. Multi-voxel spectra were recorded using a SE-2 D-CSI sequence(TR/TE = 1500/135 ms). The volume of interest was 90 x 90 x 20 mm3, placed axially above the lateral ventricle. The single voxel size was 10 x 10 x 20 mm3. N-acetyl aspartate/creatine ratios(NAA/Cr) were calculated on each voxel and were averaged in view of the cortex and the white matter. The regional cerebral blood flow(CBF) was measured by Xenon-CT method. Eight patients were also examined by acetazolamide challenge to evaluate the cerebrovascular reserve capacity. NAA/Cr ratios in normal subjects were 1.905 +/- 0.090(mean +/- standard deviation) in the cortex and 2.183 +/- 0.258 in the white matter in 40's(n = 6), 2.046 +/- 0.166 in the cortex and 2.039 +/- 0.288 in the white matter in 60's(n = 5). The study revealed 7 patients with normal NAA/Cr ratio and CBF, 5 with reduced NAA/Cr ratio and normal CBF, and 3 with reduced NAA/Cr ratio and CBF in the affected cortex. A low correlation coefficient of 0.46 was noted between NAA/Cr ratio and the cerebrovascular reserve capacity calculated by acetazolamide challenge in the affected cortex. In the range of less than +10%(lower limit) in percentile change of regional CBF after acetazolamide injection, NAA/Cr ratio was distributed between 1.600 and 2.044, which were normal or slightly under the lower limit(mean-2 x standard deviation). Multi-voxel 1H-MRS is useful for the evaluation of cerebral metabolism, because it enables to quantify different chemicals in many fields at one time and to compare its distribution with regional CBF. In patients with unilateral ICA occlusion, NAA/Cr ratio of the affected cortex varies depending on the collateral circulation and the contralateral ICA lesions. The Extracranial-Intracranial Bypass should be considered if the case with unilateral ICA occlusion reveals reduced CBF and normal or slightly decreased NAA/Cr ratio in the affected cortex.  相似文献   

8.
Platelet-activating factor has been implicated in a variety of disease processes including ischemic brain injury and endotoxic shock, but its effects on cerebral blood flow (CBF) and metabolism in normal brain have not been described. The effects of platelet-activating factor on global CBF (hydrogen clearance) and the global cerebral metabolic rate for oxygen (CMRO2) were studied in halothane-N2O anesthetized Wistar rats. Hexadecyl-platelet-activating factor infused into the right carotid artery (67 pmol/min) for 60 min decreased mean arterial pressure (MAP) from 122 +/- 4 (x +/- SEM) to 77 +/- 6 mm Hg and CBF from 159 +/- 12 to 116 +/- 14 ml/100 g/min (p less than 0.002). In contrast, CMRO2 increased from 9.7 +/- 0.9 to 11.7 +/- 1.1 ml/100 g/min after 15 min (p less than 0.05). In controls rendered similarly hypotensive by blood withdrawal and infused with the platelet-activating factor vehicle, CMRO2 was unchanged, whereas CBF transiently decreased then returned to baseline at 60 min. These cerebrovascular and cerebrometabolic effects of PAF are reminiscent of and may be relevant to hypoperfusion and hypermetabolism observed after global brain ischemia and in endotoxic shock.  相似文献   

9.
The spatial correlation of nuclear magnetic resonance imaging (NMRI) and cerebral blood flow (CBF) may improve our ability to identify ischemic brain lesions and may provide further insight into the pathophysiology of early cerebral ischemia. Eleven pentobarbital-anesthetized adult cats underwent exposure of the common carotid arteries bilaterally and the right middle cerebral artery through a transorbital approach. Baseline NMRI images were obtained with a single spin-echo, multislice technique using a 0.6-T field, 0.4-cm slice thickness, and a surface coil. Focal ischemia was produced with right middle cerebral artery occlusion and potentiated with bilateral common carotid artery ligation. Sequential NMRI studies were then performed at 1, 2, 4, 6, and 12 hours or until CBF was determined in the same cats using [14C]iodoantipyrine at either 2 (n = 2), 4 (n = 2), 6 (n = 2), or 12 (n = 1) hours after the time of occlusion. This protocol allowed temporal and spatial correlation of NMRI and CBF. Alternate 5-mm brain slices were incubated with 1% 2,3,5-triphenyltetrazolium chloride (TTC) for 45 minutes at 37-41 degrees C and frozen in liquid Freon for later autoradiographic CBF determination. Four cats were studied only with NMRI and TTC (not CBF). The correlation between areas of increased NMRI signal intensity observed in T2-weighted images (repetition time 2,000 msec, echo time 120 msec), vital staining with TTC, low CBF, and routine histology was evaluated. During the early phase (less than 6 hours), T2-weighted NMRI changes were localized to the central ischemic gray matter areas, as defined in the later CBF images, with no involvement of the white matter. By the twelfth hour the NMRI changes involved the entire ischemic area including gray and white matter. The initial visible changes seen on T2-weighted NMRI are suggestive of cellular edema, and the later changes are characteristic of vasogenic edema. The spread of NMRI changes compared with the ischemic area determined from autoradiographic CBF is consistent with the previously described biphasic evolution of ischemic injury. These data suggest that T2-weighted NMRI could be used clinically to delineate areas of acute ischemic stroke.  相似文献   

10.
Previous studies of white matter signal hyperintensity (WMSH) on T 2-weighted MRI (magnetic resonance imaging) have shown it to he related to decreased cerebral blood flow (CBF). However, there have been few studies on the relationship of WMSH and the internal carotid blood flow (CaBF). Doppler ultrasound sonography is widely used for evaluation of CaBF. We analyzed the relationship between CBF, CaBF, and WMSH. The subjects had not suffered cerebral ischemic episodes although they had some risk factors for stroke. They received MRI and were classified into three groups, i.e. mild, moderate, and severe WMSH. The % stenosis of the internal carotid artery (ICA) was measured with angiography. Doppler sonography was used to measure the mean bilateral CaBF. The oxygen-15 steady-state technique and PET (positron emission tomography) were used to measure CBF. There were significant correlations between the % stenosis of ICA and the ipsilateral CaBF and between the % stenosis of ICA and hemispheric CBF. There was a significant relationship between CBF and CaBF in the severe WMSH group, remaining significant after partialling out of the effects of the % stenosis. This indicated that an atherosclerotic change of the cerebral artery occurred in a way that carotid vascular resistence and cerebrovascular resistence were 'proportional'.  相似文献   

11.
We used positron emission tomography and magnetic resonance imaging to evaluate 16 patients with transient ischemic attacks or minor strokes and unilateral internal carotid occlusive disease, five with stenosis, and 11 with occlusion. Cerebral blood flow, cerebral metabolic rate of oxygen, oxygen extraction fraction, cerebral blood volume, and T2-weighted magnetic resonance images obtained at 1.5-T were analyzed. Irrespective of vascular disease, patients with a confluent high-intensity area in the middle centrum semiovale had substantially decreased cerebral blood flow and ratio of cerebral blood flow to blood volume in the middle cerebral artery distribution of the cortex, with a substantially increased oxygen extraction fraction. We concluded that the confluent high-intensity area in the deep white matter region indicates hemodynamic compromise in the affected hemisphere in internal carotid artery occlusive disease.  相似文献   

12.
Magnetic resonance imaging (MRI) and spectroscopy (MRS) were used at a magnetic field strength of 7 T to measure CBF and CMRO2 in the sensorimotor cortex of mature rats at different levels of cortical activity. In rats maintained on morphine anesthesia, transitions to lower activity and higher activity states were produced by administration of pentobarbital and nicotine, respectively. Under basal conditions of morphine sulfate anesthesia, CBF was 0.75 +/- 0.09 mL x g(-1) x min(-1) and CMRO2 was 3.15 +/- 0.18 micromol x g(-1) x min(-1). Administration of sodium pentobarbital reduced CBF and CMRO2 by 66% +/- 16% and 61% +/- 6%, respectively (i.e., "deactivation"). In contrast, administration of nicotine hydrogen tartrate increased CBF and CMRO2 by 41% +/- 5% and 30% +/- 3%, respectively (i.e., "activation"). The resting values of CBF and CMRO2 for alpha-chloralose anesthetized rats were 0.40 +/- 0.09 mL x g(-1) x min(-1) and 1.51 +/- 0.06 micromol x g(-1) x min(-1), respectively. Upon forepaw stimulation, CBF and CMRO2 were focally increased by 34% +/- 10% and 26% +/- 12%, respectively, above the resting nonanesthetized values (i.e., "activation"). Incremental changes in CBF and CMRO2, when expressed as a percentage change for "deactivation" and "activation" from the respective control conditions, were linear (R2 = 0.997) over the entire range examined with the global and local perturbations. This tight correlation for cerebral oxygen delivery in vivo is supported by a recent model where the consequence of a changing effective diffusivity of the capillary bed for oxygen, D, has been hypothetically shown to be linked to alterations in CMRO2 and CBF. This assumed functional characteristic of the capillary bed can be theoretically assessed by the ratio of fractional changes in D with respect to changes in CBF, signified by omega. A value 0.81 +/- 0.23 was calculated for omega with the in vivo data presented here, which in turn corresponds to a supposition that the effective oxygen diffusivity of the capillary bed is not constant but presumably varies to meet local requirements in oxygen demand in a similar manner with both "deactivation" and "activation."  相似文献   

13.
The relation between white-matter lesions (WMLs), demonstrated with magnetic resonance imaging, and regional cerebral blood flow (CBF), measured with dynamic positron emission tomography and [18F] fluoromethane, was investigated in 20 patients with atherosclerotic disease of the internal carotid artery. There was no correlation between the extent of small patchy WMLs and hemispheric CBF, but hemispheric CBF was significantly reduced in 5 patients with multiple large or confluent lesions. Distinct focal cortical CBF reductions were observed when large WMLs (greater than 5 mm) were located directly beneath the cortex, whereas large WMLs in deeper white matter were associated with a more diffuse decrease of cortical perfusion. There was no evidence of preferential CBF reduction in vascular border zones with increasing severity of WMLs or stenosis of the internal carotid artery. The side of previous transient ischemic symptoms correlated significantly with hemispheric CBF asymmetries, but not with asymmetries of WMLs and internal carotid artery stenosis. It can be concluded from these results that the presence of small patchy WMLs shown by magnetic resonance imaging cannot be used as evidence of impaired cerebral perfusion, while large lesions indicate clinically relevant cerebrovascular disease affecting cortical blood flow.  相似文献   

14.
Time-dependent variations in the brain temperature (Tt) are likely to be caused by fluctuations of cerebral blood flow (CBF) and cerebral metabolic rate of oxidative consumption (CMRO2) both of which are seemingly coupled to alterations in neuronal activity. We combined magnetic resonance, optical imaging, temperature sensing, and electrophysiologic methods in alpha-chloralose anesthetized rats to obtain multimodal measurements during forepaw stimulation. Localized changes in neuronal activity were colocalized with regional increases in Tt (by approximately 0.2%), CBF (by approximately 95%), and CMRO2 (by approximately 73%). The time-to-peak for Tt (42+/-11 secs) was significantly longer than those for CBF and CMRO2 (5+/-2 and 18+/-4 secs, respectively) with a 2-min stimulation. Net heat in the region of interest (ROI) was modeled as being dependent on the sum of heats attributed to changes in CMRO2 (Qm) and CBF (Qf) as well as conductive heat loss from the ROI to neighboring regions (Qc) and to the environment (Qe). Although tissue cooling because of Qf and Qc can occur and are enhanced during activation, the net increase in Tt corresponded to a large rise in Qm, whereas effects of Qe can be ignored. The results show that Tt increases slowly (by approximately 0.1 degrees C) during physiologic stimulation in alpha-chloralose anesthetized rats. Because the potential cooling effect of CBF depends on the temperature of blood entering the brain, Tt is mainly affected by CMRO2 during functional challenges. Implications of these findings for functional studies in awake humans and temperature regulation are discussed.  相似文献   

15.
Autoregulation of cerebral (CBF) and cerebellar blood flow (CeBF) was studied before, during and after acutely induced cerebral ischemia in spontaneously hypertensive rats. Cerebral ischemia of the supratentorial portion was induced for one hour by bilateral carotid artery ligation (BCL). The animals were artificially ventilated and the blood flow was measured with a hydrogen clearance technique. To test the autoregulation, the blood pressure was stepwise lowered by bleeding and maintained at a new level, i.e. 15% or 30% lower than the baseline values before, during and after cerebral ischemia. At the preischemic state, CBF and CeBF were 52.1 +/- 6.2 and 58.9 +/- 4.6 ml/100 g/min (mean +/- SEM), of which autoregulations were normally preserved. Following BCL, CBF was markedly decreased to about 10% of control value while CeBF was minimally reduced to 46.9 +/- 8.6 ml/100 g/min (80%). At the ischemic state, CBF became almost zero flow during hypotension. CeBF was also reduced to 74% and further to 58% of the resting value by 15% and 30% decrease in the blood pressure, respectively, indicating impaired CeBF autoregulation. At the 30 min post-ischemic state, CBF was recovered to 48.0 +/- 4.9 and CeBF to 53.9 +/- 5.4 ml/100 g/min. Autoregulation of CBF was still abolished, whereas CeBF was kept constant by 15% fall of blood pressure and slightly reduced to 84% by 30% hypotension, indicating almost recovery of CeBF autoregulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The goal of the present study was to test the impact of administration time of the angiotensin II type 1-receptor blocker candesartan on cerebral blood flow (CBF), infarct size, and neuroscore in transient cerebral ischemia. Therefore, 1-hour middle cerebral artery occlusion (MCAO) was followed by reperfusion. Rats received 0.5-mg/kg candesartan intravenously 2 hours before MCAO (pretreatment), 24 hours after MCAO, every 24 hours after MCAO, or 2 hours before and every 24 hours after MCAO. Infarct size (mm3) and a neuroscore at day 7 were compared with controls. CBF was quantified by radiolabeled microspheres and laser-Doppler flowmetry. Compared with controls (95 +/- 8), infarct size in candesartan-treated groups was smaller (59 +/- 5, 68 +/- 10, 28 +/- 3, and 15 +/- 3, respectively; P<0.05). Although there was no difference in neuroscore between pretreatment and controls (1.55 +/- 0.18, 1.80 +/- 0.13), other treatment regimens resulted in improved neuroscores (1.33 +/- 0.16, 1.11 +/- 0.11, 0.73 +/- 0.15; P<0.05). CBF in pretreated animals at 0.5 hours after MCAO was significantly higher than in controls (0.58 +/- 0.09 mL x g(-1) x min(-1) and 44% +/- 7% of baseline compared with 0.49 +/- 0.06 mL x g(-1) x min(-1) and 37% +/- 6%, microspheres and laser-Doppler flowmetry; P<0.05). Thus, candesartan reduces infarct size even if administered only during reperfusion. Apart from pretreatment, other treatment regimens result in significantly improved neuroscores. In the acute phase of cerebral ischemia, candesartan increases CBF.  相似文献   

17.
Although perfusion-weighted imaging techniques are increasingly used to study stroke, no particular hemodynamic variable has emerged as a standard marker for accumulated ischemic damage. To better characterize the hemodynamic signature of infarction. the authors have assessed the severity and temporal evolution of ischemic hemodynamics in a middle cerebral artery occlusion model in the rat. Cerebral blood flow (CBF) and total and microvascular cerebral blood volume (CBV) changes were measured with arterial spin labeling and steady-state susceptibility contrast magnetic resonance imaging (MRI), respectively, and analyzed in regions corresponding to infarcted and spared ipsilateral tissue, based on 2,3,5-triphenyltetrazolium chloride histology sections after 24 hours ischemia. Spin echo susceptibility contrast was used to measure microvascular-weighted CBV, which had a maximum sensitivity for vessels with radii between 4 and 30 microm. Serial measurements between 1 and 3 hours after occlusion showed no change in CBF (22 +/- 20% of contralateral, mean +/- SD) or in total CBV (78 +/- 13% of contralateral) in regions destined to infarct. However, microvascular CBV progressively declined from 72 +/- 5% to 64 +/- 11% (P < 0.01) during this same period. Microvascular CBV changes with time were entirely due to decreases in subcortical infarcted zones (from 73 +/- 9% to 57 +/- 14%. P < 0.001) without changes in the cortical infarcted territory. The hemodynamic variables showed differences in magnitude and temporal response, and these changes varied based on histologic outcome and brain architecture. Such factors should be considered when designing imaging studies for human stroke.  相似文献   

18.
A novel photothrombotic ring stroke model was characterized by multiparametric magnetic resonance imaging, imaging of cerebral blood flow (CBF), adenosine triphosphate (ATP), pH, and histology. Ischemia was initiated by transosseous irradiation of a predefined brain area intravenously perfused by the photosensitive dye erythrosin B in male Wistar rats. In the region of the primary ring-lesion, the phototoxic reaction caused necrosis reflected by low relative ATP levels (28 +/- 15%), alkalosis (pH: 7.35 +/- 0.50), and histologic evidence at 14 days after lesion induction. In the ring-encircled interior region (region-at-risk), spontaneous tissue reperfusion (relative CBF: 93 +/- 3%) enabled partial tissue preservation. This was demonstrated by a less impaired energy metabolism (ATP: 65 +/- 23%), normal pH (7.01 +/- 0.50), and still normal cellular structures shown by histologic staining. Analysis of the temporal characteristics within the region-at-risk revealed a slow continuous increase of the apparent diffusion coefficient of water (ADC) to 144 +/- 16% of control (14d) and an early vasogenic edema, reflected by an increase of the T2 relaxation time to 143 +/- 17% of control (2d). Both final ADC and T2 correlated well with the tissue pH within the region-at-risk, thus emphasizing the usefulness of this multiparametric noninvasive imaging approach.  相似文献   

19.
Cerebral hypoxia-ischemia is an important cause of brain injury in the newborn infant. Our purpose was to study magnetic resonance (MR) imaging changes in P7 rat brains submitted to permanent or reversible ischemia. Ischemia was induced by permanent electro-cauterization of the middle cerebral artery combined with a permanent or a transient (50 min) common carotid artery occlusion. The early events during ischemia and reperfusion were investigated by T2-weighted images (T2WI) at 1 and 3 h and by serial diffusion-weighted images (DWI) during 3 h in a 7 T magnet with a standard weighted diffusion sequence (b=1282.04 s mm(-2)) and a SEMS sequence. Within the first hour after MCA occlusion, the T2WI areas of contrast enhancement increased to a mean volume of 12.9+/-6.4%, a steady state still detected at 3 h after the ischemic onset (10.5+/-2.5%). Contrast enhancement in DWI increased as soon as 15 min of ischemia in all animals up to 50 min after CCA occlusion. In permanent ischemia, DWI abnormalities volume then increased more slowly from 50 min to 3 h after CCA occlusion (+25%, n=5). In reversible ischemia, the DWI abnormalities volume either moderately decreased and reached a plateau (-8.4%, n=4) or dramatically decreased (-53.0%, n=3). Both T2WI and DWI evidenced a "patchy" pattern of recovery as also shown on cresyl violet-stained sections. In contrast to the adult, early ischemic injury in P7 rat brains is detected as an increase in hyper-intensities both in T2WI and DWI. Our data indicate that reperfusion is able to block edema evolution after neonatal stroke and that early T2WI and more accurately DWI allow to distinguish between different patterns of injury in reversible ischemia.  相似文献   

20.
The aim of the present study was to investigate whether immediate ischemia is more harmful to the brain than progressive ischemia. To do so, we examined the correlation between the degree and the process of ischemia using hypobaric hypotension technique, which was used to reduce systemic blood pressure acutely or progressively below the lower threshold of CBF regulation, in rat brain. In Wistar rats (n = 21), global ischemia using bilateral carotid arteries occlusion coupled with hypobaric hypotension was induced by lowering mean arterial blood pressure (MABP) progressively to 55, 45 and 35 mmHg or immediately to 35 mm Hg. Local cerebral blood flow (ICBF) by laser Doppler (LD) flowmetry and tissue hemoglobin oxygen saturation (HbSO2) by a microspectrophotometric method were measured at 25 corresponding locations using a 'scanning' technique which employs a computer-controlled micromanipulator. Regional CBF (rCBF) and rHbSO2 were determined by calculation of the median value from the 25 ICBF and IHbSO2 data. In the 'progressive' group, rCBF and rHbSO2 decreased gradually and reached 12.2 +/- 15.8 LD-units and 44.9% +/- 13.4% at 35 mm Hg of MABP, respectively. In the 'immediate' group, both parameters dropped suddenly to 7.86 +/- 10.6 LD-units (p < 0.01 vs. CBF of the progressive group) and 22.5% +/- 15.5% (p < 0.001 vs. tissue HbSO2 of the progressive group) from the control at 35 mmHg. These data suggested that cerebral ischemia is better tolerated if it is induced gradually. CBF recorded by LD-scanning technique and HbSO2 value by microspectrophotometric method correlated well in the ischemic condition, indicating that HbSO2 can be preserved if CBF is decreased gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号