首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Alzheimer disease (AD) and related tauopathies are all characterized histopathologically by neurofibrillary degeneration. The neurofibrillary changes, whether of paired helical filaments (PHF), twisted ribbons or straight filaments (SF) are made up of abnormally hyperphosphorylated tau. Unlike normal tau which promotes assembly and maintains structure of microtubules, the abnormal tau not only lacks these functions but also sequesters normal tau, MAP1 and MAP2, and causes disassembly of microtubules. This toxic behavior of the abnormal tau is solely due to its hyperphosphorylation because dephosphorylation restores it into a normal-like protein. The abnormal hyperphosphorylation also promotes the self-assembly of tau into PHF/SF. The state of phosphorylation of a phosphoprotein is the function of the activities of protein kinases and as well as of protein phosphatases that regulate the level of phosphorylation. A cause of the abnormal hyperphosphorylation in AD brain is a decrease in the activity of protein phosphatase (PP)-2A, a major regulator of the phosphorylation of tau. A decrease in PP-2A activity results in the abnormal hyperphosphorylation of tau not only by decreased dephosphorylation of tau but also by stimulating the activities of tau kinases like CaMKII, PKA and MAP kinases which are regulated by PP-2A. Thus, the abnormal hyperphosphorylation can be inhibited both by inhibition of the activity/s of a tau protein kinase and as well as by restoration of the activity/s of a tau protein phosphatase. The development of drugs that inhibit neurofibrillary degeneration is a very promising and feasible therapeutic approach to inhibit the progression of AD and related tauopathies.  相似文献   

2.
Abnormally hyperphosphorylated tau which is the major protein subunit of paired helical filaments (PHF)/neurofibrillary tangles is the pivotal lesion in Alzheimer disease (AD) and related tauopathies. The cosegregation of tau mutations with disease in inherited cases of frontotemporal dementia has confirmed that abnormalities in this protein can be a primary cause of neurodegeneration. Unlike normal tau that promotes assembly and maintains the structure of microtubules, the abnormally hyperphosphorylated protein sequesters normal tau, MAP1 and MAP2 and consequently disassembles microtubules. The abnormal hyperphosphorylation also promotes the self assembly of tau into tangles of PHF. The hyperphosphorylation of tau in AD is probably due to a protein phosphorylation/dephosphorylation imbalance produced by a decrease in the activity of protein phosphatase (PP)-2A and increase in the activities of tau kinases which are directly or indirectly regulated by PP-2A. Two of the most promising pharmacologic therapeutic approaches to AD are (1) the development of drugs that can inhibit the sequestration of normal MAPs by the abnormally hyperphosphorylated tau, and (2) the development of drugs that can reverse the abnormal hyperphosphorylation of tau by correcting the protein phosphorylation/dephosphorylation imbalance.  相似文献   

3.
Microtubule associated protein (MAP) tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) and related tauopathies; in this form it is the major protein subunit of paired helical filaments (PHF)/neurofibrillary tangles. However, the nature of protein kinases and phosphatases and tau sites involved in this lesion has been elusive. We investigated self-assembly and microtubule assembly promoting activities of hyperphosphorylated tau isolated from Alzheimer disease brain cytosol, the AD abnormally hyperphosphorylated tau (AD P-tau) before and after dephosphorylation by phosphoseryl/phosphothreonyl protein phosphatase-2A (PP-2A), and then rephosphorylation by cyclic AMP-dependent protein kinase (PKA), calcium, calmodulin-dependent protein kinase II (CaMKII), glycogen synthase kinase-3beta (GSK-3beta) and cyclin-dependent protein kinase 5 (cdk5) in different kinase combinations. We found that (i) dephosphorylation of AD P-tau by PP-2A inhibits its polymerization into PHF/straight filaments (SF) and restores its binding and ability to promote assembly of tubulin into microtubules; (ii) rephosphorylation of PP-2A-dephosphorylated AD P-tau by sequential phosphorylation by PKA, CaMKII and GSK-3beta or cdk5, and as well as by cdk5 and GSK-3beta, promotes its self-assembly into tangles of PHF similar to those seen in Alzheimer brain, and (iii) phosphorylation of tau sites required for this pathology are Thr231 and Ser262, along with several sites flanking the microtubule binding repeat region. Phosphorylation of recombinant human brain tau(441) yielded similar results as the PP-2A dephosphorylated AD P-tau, except that mostly SF were formed. The conditions for the abnormal hyperphosphorylation of tau that promoted its self-assembly also induced the microtubule assembly inhibitory activity. These findings suggest that activation of PP-2A or inhibition of either both GSK-3beta and cdk5 or one of these two kinases plus PKA or CaMKII might be required to inhibit Alzheimer neurofibrillary degeneration.  相似文献   

4.
Alzheimer neurofibrillary degeneration   总被引:4,自引:0,他引:4  
Neurofibrillary degeneration has primary and pivotal involvement in the pathogenesis of Alzheimer disease (AD) and other tauopathies. The inhibition of this lesion offers a promising therapeutic approach. The microtubule- associated protein (MAP) tau is abnormally hyperphosphorylated in the brain of patients with AD, and in this form it is the major protein subunit of paired helical filaments/neurofibrillary tangles (PHF/NFT). The abnormal tau that is polymerized into PHF/NFT is apparently inert and has no effect on microtubule assembly in vitro. The cytosolic abnormally hyperphosphorylated tau from AD brain, the AD P-tau, does not promote in vitro microtubule assembly but, instead, sequesters normal tau, MAP1, and MAP2 and inhibits microtubule assembly. The AD P-tau readily self-assembles in vitro into tangles of PHF/straight filaments, and this self-assembly requires the abnormal hyperphosphorylation of this protein. Although, to date, an up-regulation of the activity of a tau kinase has not been established, the activity of phosphoseryl/ phosphothreonyl protein phosphatase (PP)-2A, which regulates the phosphorylation of tau, is compromised in AD brain. Thus, modulation of the activities of pp-2A and one or more tau kinases and inhibition of the sequestration of normal MAPs by AD P-tau offer promising therapeutic opportunities to inhibit neurofibrillary degeneration and the diseases characterized by this lesion. Development of high-throughput screening assays for potential drugs aimed at these therapeutic targets is currently under way.  相似文献   

5.
Neurofibrillary degeneration appears to be required for the clinical expression of Alzheimer disease (AD) and related tauopathies. Given the polyetiology of these diseases and the pivotal involvement of neurofibrillary degeneration in their pathogenesis, inhibition of this lesion offers a promising therapeutic target. Studies from our laboratories have shown that there is a protein phosphorylation/dephosphorylation imbalance and that the microtubule associated protein tau is abnormally hyperphosphorylated in the brain of patients with AD and in this form it is the major protein subunit of paired helical filaments/neurofibrillary tangles (PHF/NFT). The abnormal tau which is polymerized into PHF/NFT neither promotes or inhibits in vitro microtubule assembly. In contrast the cytosolic abnormally hyperphosphorylated tau from AD brain, the AD P-tau neither associates with tubulin nor promotes in vitro microtubule assembly but instead it sequesters normal tau, MAP1 and MAP2 and inhibits microtubule assembly. The AD P-tau readily self-assembles in vitro into tangles of PHF/straight filaments under physiological conditions of protein concentration, pH, ionic strength and reducing conditions and this self assembly requires the abnormal hyperphosphorylation of this protein. The activity of phosphoseryl/phosphothreonyl protein phosphatase (PP)-2A which regulates the phosphorylation of tau, is compromised in AD brain. Thus, modulation of the activities of protein phosphatase-2A and tau kinases and inhibition of the sequestration of normal MAPs by AD P-tau offer promising therapeutic opportunities to inhibit neurofibrillary degeneration and the diseases characterized by this lesion.  相似文献   

6.
A phosphorylated tau epitope specific for paired helical filaments in Alzheimer's disease is recognized by monoclonal antibody PHF-1. Healthy adult brains lack the PHF-1 epitope (PHF-1 tau), but it is transiently expressed by immature neurons during development. We have found that proliferating SH-SY5Y human neuroblastoma cells also express PHF-1 tau. Consistent with the recent finding that cell-cycle-dependent kinases can phosphorylate tau in vitro, flow cytometry showed that mitotic SH-SY5Y cells were up to 18-fold more PHF-1 immunoreactive than nonmitotic cells. On immunoblots, PHF-1 tau in mitotic and nonmitotic cells also was strikingly different. First, mitosis induced a prominent PHF-1 reactive band at 120 kDa, which likely accounted for the large increase in PHF-1 signal seen at mitosis. Although the size of the 120-kDa band is consistent with it being the high-molecular-weight form of tau, other antibodies to tau did not recognize it. Second, mitosis caused a hyperphosphorylation of the PHF-1 immunoreactive tau band normally seen at 50 kDa. In mitotic cells this band had an increased intensity and molecular weight. Alkaline phosphatase treatment abolished tau Mr heterogeneity, verifying that the variations in mobility were due to phosphorylation. These data show that cell-cycle-dependent hyperphosphorylation of tau occurs in intact cells, and they support the hypothesis that aberrant activity of cell-cycle-dependent kinases may contribute to tau phosphorylation and PHF formation in Alzheimer's disease.  相似文献   

7.
The reversible protein phosphorylation is the most important cellular regulation of the biological functions of many proteins. Disregulation of protein phosphorylation is involved in pathogeneses of several human diseases. The abnormal hyperphosphorylation of microtubule-associated protein tau and its aggregation into neurofibrillary tangles in selective neurons is one of the major brain pathologies of Alzheimer's disease and several other related neurodegenerative diseases. Here we present metabolically competent rat brain slices as a model to study the regulation of protein phosphorylation in brain. Employing this model we have been able to study the abnormal hyperphosphorylation of tau and other microtubule-associated proteins. We have evaluated the activity and intactness of the rat brain slices both biochemically and morphologically. Selective inhibition of protein phosphatase 2A in these rat brain slices by the treatment with okadaic acid induced hyperphosphorylation of tau at many abnormal sites seen in Alzheimer's disease brain and the accumulation of hyperphosphorylated tau in pyramidal neurons of the cortex and hippocampus. The regulation of the phosphorylation of high-molecular-weight microtubule-associated protein, MAP1b, was also studied with this model. This model enables studies on the regulation of protein phosphorylation not only biochemically, but also histochemically and immunocytochemically. Furthermore, unlike cultured cells, the neurons in the brain slices reside in the physiological environment of the brain consisting of natural extracellular matrix, neuronal connectivity, and neuronal-glial interactions.  相似文献   

8.
The microtubule-associated protein tau, which is abundantly expressed in neurons, is deposited in cells in an abnormally phosphorylated state as fibrillar lesions in numerous neurodegenerative diseases, with the most notable being Alzheimer's disease. Tau plays a crucial role in the neuron as it binds and stabilizes microtubules, and can regulate axonal transport; functions that are regulated by site-specific phosphorylation events. In pathological conditions such as Alzheimer's disease and other tauopathies, tau is abnormally phosphorylated, and that this contributes to its dysfunction. Given the increasing evidence that a disruption in the normal phosphorylation state of tau followed by conformational changes plays a key role in the pathogenic events that occur in Alzheimer's disease and other tauopathies; it is critical to elucidate the regulation of tau phosphorylation. This review focuses on recent literature pertaining to the regulation of tau phosphorylation and function, and the role that a dysregulation of tau phosphorylation may play in the neuronal dysfunction in Alzheimer's disease.  相似文献   

9.
Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease(AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells.Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca~(2+)concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca~(2+)concentration with a simultaneous increase in the phosphorylation of Ca~(2+)/calmodulin-dependent protein kinase IV(Ca MKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca~(2+)/Ca MKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation ofthe Ca~(2+)/calmodulin complex abolished the okadaic acidinduced tau hyperphosphorylation in the nuclear fraction.We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca~(2+)/Ca MKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca~(2+)concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.  相似文献   

10.
Neurofibrillary tangles (NFT) and dystrophic neurites represent dense cytoplasmic accumulations of abnormal polymers in the brain of patients with Alzheimer's disease (AD). These polymers are referred to as paired helical filaments (PHFs) whose main structural core is composed of tau protein. Tau processing has been associated with hyperphosphorylation and truncation that results in PHF assembly. Both molecular events appear to cause conformational change of tau molecules [11,17,32]. In this regard, in a previous work focused on the analysis of patterns of immunolabeling in pre-tangle cells, we found that regional changes precede the structural modifications in tau [32]. In the present study, we further analyzed the early stages of tau processing in pre-tangle cells by using a variety of immunological markers of specific N-terminus phosphorylation tau sites. We used AT100, TG-3, AT8, pT231, Alz-50, Tau-C3 and 423 antibodies that recognize different abnormal tau epitopes in AD brains. These antibodies were combined and analyzed using a confocal microscope. Our results indicate that the early stages of abnormal tau processing are characterized by a sequential appearance of specific phospho-dependent epitope. The cascade of appearance of the antibodies is: pT231 --> TG-3 --> AT8 -->AT100 --> Alz-50. In addition; truncation at Asp-421 of the C-terminus of tau protein, as detected by Tau-C3, is also an early molecular event in tau protein aggregation prior to PHF formation in AD.  相似文献   

11.
Neurofibrillary degeneration of abnormally hyperphosphorylated tau, a hallmark of Alzheimer's disease (AD) and related tauopathies, occurs both as cytosolic aggregated/oligomeric protein (AD P-tau) and as neurofibrillary tangles. The abnormal hyperphosphorylation not only results in the loss of tau function of promoting assembly and stabilizing microtubules but, in the case of the cytosolic AD P-tau, also in a gain of a toxic function whereby the pathological tau sequesters not only normal tau, but also the other two neuronal microtubule associated proteins (MAPs), MAP1A / MAP1B and MAP2, and causes inhibition and disruption of microtubules. The sequestration of normal MAPs leads to a slow but progressive degeneration of the affected neurons. The affected neurons defend against the toxic tau by continually synthesizing new normal tau as well as by packaging the abnormally hyperphosphorylated tau into polymers, i.e., neurofibrillary tangles of paired helical filaments, twisted ribbons and straight filaments. The filamentous tau is inert; it neither interacts with tubulin and stimulates it assembly, nor binds to normal MAPs and causes disruption of microtubules. These findings suggest the inhibition of tau abnormal hyperphosphorylation and not the aggregation of tau as the preferred therapeutic target for AD and related tauopathies.  相似文献   

12.
In Alzheimer's disease (AD), a family of proteins collectively named tau are displaced from their normal association with microtubules and are found in in a hyperphosphorylated state deposited into paired helical filaments (PHFs). PHFs are the hallmark cytoskeletal pathology of the disease, and the degree of PHF pathology correlates with the clinical severity of AD. Certain apolipoprotein E (apoE) isoforms have been identified as either risk or protective factors for AD, and one of the proposed mechanisms involves an interaction and potentially modulatory effects on tau hyperphosphorylation by the different apoE isoforms. In these studies, we directly tested the effects of apoE, E2, E3, and E4 on AD-like phosphorylation of tau in brain microtubule fractions. We found that apoE attenuates tau hyperphosphorylation in the fractions, but the pattern was indistinguishable for the different isoforms.  相似文献   

13.
Abnormal hyperphosphorylation of tau is believed to lead to neurofibrillary degeneration in Alzheimer's disease (AD) and other tauopathies. Recent studies have shown that protein phosphatases (PPs) PP1, PP2A, PP2B and PP5 dephosphorylate tau in vitro, but the exact role of each of these phosphatases in the regulation of site-specific phosphorylation of tau in the human brain was unknown. Hence, we investigated the contributions of these PPs to the regulation of tau phosphorylation quantitatively. We found that these four phosphatases all dephosphorylated tau at Ser199, Ser202, Thr205, Thr212, Ser214, Ser235, Ser262, Ser396, Ser404 and Ser409, but with different efficiencies toward different sites. The K(m) values of tau dephosphorylation catalysed by PP1, PP2A and PP5 were 8-12 microm, similar to the intraneuronal tau concentration of human brain, whereas the K(m) of PP2B was fivefold higher. PP2A, PP1, PP5 and PP2B accounted for approximately 71%, approximately 11%, approximately 10% and approximately 7%, respectively, of the total tau phosphatase activity of human brain. The total phosphatase activity and the activities of PP2A and PP5 toward tau were significantly decreased, whereas that of PP2B was increased in AD brain. PP2A activity negatively correlated to the level of tau phosphorylation at the most phosphorylation sites in human brains. Our findings indicate that PP2A is the major tau phosphatase that regulates its phosphorylation at multiple sites in human brain. The abnormal hyperphosphorylation of tau is partially due to a downregulation of PP2A activity in AD brain.  相似文献   

14.
Exonic and intronic tau mutations have been described in a number of families of frontotemporal dementia and parkinsonism linked to chromosome 17. Most of missense mutations alter the ability of tau to promote microtubule assembly, whereas others influence splicing of exon10 and change the ratio of 3Rtau to 4Rtau isoform. In either case, filamentous hyperphosphorylated tau pathology in neurons and glial cells was observed in affected brains. These observations suggest that the effects of tau mutations may induce its hyperphosphorylation and accumulation, resulting in cell death. In sporadic tauopathies, decreased levels of 3R tau mRNA were detected not only in severely affected cases with progressive supranuclear palsy or corticobasal degeneration but also in cases with Alzheimer's disease or Pick's disease. In addition, levels of 3R tau mRNA were closely correlated with levels of neurofilament mRNA. These results suggest that decreased levels of 3R tau mRNA in sporadic tauopathies may be due to degeneration and loss of neurons that express 3R tau isoforms. In tauopathies, neuronal cell death may occur with multiple defects or abnormalities arisen directly or indirectly from hyperphosphorylation of tau and formation of oligomer or filamentous tau.  相似文献   

15.
The relationship between Alzheimer's disease (AD) and expression of fetal proteins was examined by: (i) determining the phosphate content of tau prepared from fetal brains (F-tau); (ii) comparing F-tau, tau from normal adult human brains (N-tau) and tau from paired helical filaments in AD brains (PHF-tau) for phosphate content; and (iii) testing the reactivity of F-tau with five antibodies known to recognize PHF-tau. The antibodies have been reported to recognize phosphate dependent epitopes at the carboxy-terminal half of the tau molecule. Our data shows that on the average, F-tau contains 7 mol phosphate/mol protein, which is comparable to the phosphate content of PHF-tau, but is 3–4 times higher than that of N-tau. Immunoblotting shows that all of the tested antibodies reacted with F-tau on immunoblots, indicating that F-tau and PHF-tau are phosphorylated at similar sites. A difference between PHF-tau and F-tau is the state of phosphorylation in the Tau-1 epitope, an epitope reactive with a monoclonal anti-tau antibody, Tau-1. This epitope, which is phosphorylated in all PHF-tau, is phosphorylated only in some of the F-tau. The sharing of phosphorylated sites between F-tau and PHF-tau has also been reported by others in studies with antibodies to different and similar phosphorylated epitopes. Together these observations indicate that the extent and the site of phosphorylation in F-tau and PHF-tau tau are similar. Although hyperphosphorylation of tau proteins may be an important step for PHF formation, the absence of AD type pathology in fetal brains containing hyperphosphorylated tau suggests that the transformation of soluble forms of normal tau to AD type cytoskeletal abnormalities may require the presence of other factors.  相似文献   

16.
To determine if the high phosphate content of paired helical filaments (PHFs) in Alzheimer's disease (AD) is a result of limited access to filament phosphorylation sites, we studied in vitro dephosphorylation of intact PHFs, PHFs with filamentous structure abolished by formic acid treatment (PHF(FA)) and fetal human tau protein. Samples were treated with alkaline phosphatase for up to 24 h at 37 degrees C and then immunoblotted with eight well characterized tau antibodies, that recognize two phosphorylation-insensitive sites and six phosphorylation-sensitive epitopes at Thr181, Ser199/202, Ser202/Thr205, Thr231, Ser262/356 and Ser396/404. Intact PHFs were effectively dephosphorylated only at the two N-terminal epitopes Ser199/202 and Ser202/Thr205, with little change in electrophoretic mobility. In contrast, PHF(FA) were dephosphorylated at all epitopes, with particular effectiveness at those in the C-terminus and with significant increase in electrophoretic mobility. The fetal tau epitopes were effectively dephosphorylated except at Thr181 and Thr231 with marked increase in mobility. The extent of dephosphorylation of PHF(FA) was equal or more effective than in fetal tau, except for Thr181 that was minimally dephosphorylated in both proteins. The results indicate that intact PHFs, but not PHF(FA) or fetal tau display differential dephosphorylation of the N- and C-terminal epitopes. The results confirm that the filamentous conformation may significantly contribute to hyperphosphorylation of PHFs in the C-terminus. The filamentous conformation, however, does not limit access to two N-terminal epitopes Ser199/202 and Ser202/Thr205. The access to these sites in AD may be limited by other factors, e.g., inhibition of phosphatase binding.  相似文献   

17.
Kim I  Park EJ  Seo J  Ko SJ  Lee J  Kim CH 《Neuroreport》2011,22(16):839-844
Hyperphosphorylated tau is a main component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). There is evidence that various protein kinases are involved in tau hyperphosphorylation. However, little is known about AD-related stimuli that activates tau kinases. We investigated the role of zinc, a metal involved in AD pathology, in tau phosphorylation. Zinc increased the phosphorylation of serine 214 (S214) in tau protein in human wild-type tau1-441-expressing SH-SY5Y cells. The phosphorylation was inhibited by suppressing the Ras-Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathway. Mutation of serine to alanine at residue 214 of tau reduced microtubule polymerization impairment by ERK phosphorylation. These data suggest that zinc induces S214 phosphorylation in tau through ERK activation and interferes with microtubule polymerization.  相似文献   

18.
The hyperphosphorylation of tau is an early step in the degeneration of neurons in Alzheimer's disease and other tauopathies. Of particular importance is the phosphorylation of tau in the repeat domain which detaches tau from microtubules. This makes microtubules dynamic for their role in differentiation and neurite outgrowth, and it controls the level of tau on the microtubule surface which keeps the tracks clear for axonal transport. However, the detachment of tau from microtubules can also initiate the reactions that lead to pathological aggregation into neurofibrillary tangles. Phosphorylation of tau in the repeat domain is achieved by the kinase MARK/Par-1, a member of the calcium/calmodulin-dependent protein kinase group of kinases. In this report, we focus on the modes of MARK regulation. MARK contains several domains which offer multiple ways of regulation by posttranslational modification (e.g. phosphorylation), interactions with scaffolding proteins and subcellular targeting (e.g. 14-3-3), and interactions with other proteins. We consider in particular the interactions between MARK and other kinases, notably MARKK/TAO-1 and PAK5. MARKK (a member of the Ste20 family of kinases) activates MARK by phosphorylating it at a critical threonine residue within the activation loop. Activated MARK in turn phosphorylates tau, causes its detachment from microtubules and renders them labile. PAK5 inactivates MARK, not by phosphorylation, but by binding to the catalytic domain. PAK5 contributes to microtubule stability by preventing the MARK-induced phosphorylation of tau; conversely, PAK5 contributes to actin dynamics, presumably through the activation of cofilin, an F-actin severing protein. Thus, MARK and its regulators MARKK and PAK5 appear to mediate the crosstalk between the actin and microtubule cytoskeleton in an antagonistic fashion.  相似文献   

19.
Hyperphosphorylated tau protein is a major component of neurofibrillary tangles, a prominent intracellular hallmark of Alzheimer's disease. Both hyperphosphorylated tau and neurofibrillary tangles have been shown to correlate with dementia in Alzheimer's disease, but the relationship between hyperphosphorylation and tangle formation is not clear. Using a cell-free in vitro model system, in which tau polymerization is induced by arachidonic acid, we show that GSK-3beta phosphorylation of pre-assembled tau filaments makes those filaments prone to coalesce into large neurofibrillary tangle-like structures. Five phosphorylation sites, S199, T205, T231, S396 and S404, were identified in the phosphorylated filaments; many of the five are within epitopes recognized by Alzheimer's disease-associated antibodies. These tangle-like structures are optically visible and are similar to those formed by polymerization of GSK-3beta phosphorylated tau monomer and to those isolated from Alzheimer's disease tissue. We conclude that the phosphorylation of tau by GSK-3beta either prior to or following polymerization promotes polymer/polymer interactions that result in stable clusters of tau filaments.  相似文献   

20.
Alzheimer's disease is characterized by the presence of two histopathological aberrant structures, the senile plaques and the neurofibrillary tangles. The main component of these tangles is the cytoskeletal protein tau in hyperphosphorylated form. Since a main tau kinase is glycogen synthase kinase 3 (GSK-3), the use of specific GSK-3 inhibitors, like lithium, could be a potential therapy in Alzheimer's disease. In this short article, we have done a review on tau phosphorylation in Alzheimer's disease and other tauopathies, and on the inhibition of kinases like GSK-3, involved in tau modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号