共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages 总被引:2,自引:0,他引:2
Clarification of the key regulatory steps that lead to nuclear factor-kappa B (NF-kappaB) under cellular and pathological conditions is very important. The action of p38 mitogen-activated protein kinase (MAPK) on the upstream of NF-kappaB activation remains controversial. To examine this issue using an in vivo lung injury model, SB203580, a p38 MAPK inhibitor was given intraorally 1h prior to lipopolysaccharide (LPS) treatment (intratracheally). The mice were sacrificed 4 h after LPS treatment. SB203580 substantially suppressed LPS-induced rises in p38 MAPK phosphorylation, neutrophil recruitment, total protein content in bronchoalveolar lavage fluid, and apoptosis of bronchoalveolar cells. Furthermore, SB203580 blocked LPS-induced NF-kappaB activation in lung tissue through down-regulation of serine phosphorylation, degradation of IkappaB-alpha, and consequent translocation of the p65 subunit of NF-kappaB to the nucleus. It is likely that, in cultured RAW 264.7 macrophages, SB203580 also blocked LPS-induced NF-kappaB activation in a dose-dependent manner. SB203580 inhibited LPS-induced serine phosphorylation, degradation of IkappaB-alpha, and tyrosine phosphorylation of p65 NF-kappaB. These data indicate that p38 MAPK acts upstream of LPS-induced NF-kappaB activation by modulating the phosphorylation of IkappaB-alpha and p65 NF-kappaB during acute lung injury. Because LPS-stimulated macrophages may contribute to inflammatory lung injury, the inhibition of the p38 MAPK-mediated intracellular signaling pathway leading to NF-kappaB activation represents a target for the attenuation of lung inflammation and parenchymal damage. 相似文献
3.
4.
Ban HS Suzuki K Lim SS Jung SH Lee S Ji J Lee HS Lee YS Shin KH Ohuchi K 《Biochemical pharmacology》2004,67(8):1549-1557
In cultures of the murine macrophage cell line RAW 264.7, effects of four 2'-hydroxychalcone derivatives, 2'-hydroxy-4'-methoxychalcone (compound 1), 2',4-dihydroxy-4'-methoxychalcone (compound 2), 2',4-dihydroxy-6'-methoxychalcone (compound 3) and 2'-hydroxy-4,4'-dimethoxychalcone (compound 4), on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha were examined. Compounds 1, 2 and 3 at 3-30microM inhibited the production with almost the same potency. Compound 4 showed no inhibitory activity. Compounds 1, 2 and 3 at 3-30microM inhibited the LPS-induced expression of inducible nitric oxide synthase (iNOS) and TNF-alpha mRNA. To clarify the mechanism involved, effects of compounds 1, 2 and 3 on the activation of nuclear factor (NF)-kappaB and activator protein-1 (AP-1) were examined. Both the LPS-induced activation of NF-kappaB and AP-1 were blocked by compounds 1, 2 and 3 at 3-30microM. Moreover, the three compounds at such concentrations inhibited the LPS-induced IkappaB degradation and the phosphorylation of c-jun N-terminal kinase (JNK) and c-jun. These findings suggest that the inhibition of the LPS-induced production of NO and TNF-alpha by the 2'-hydroxychalcone derivatives is due to the inhibition of NF-kappaB and AP-1 activations. 相似文献
5.
Cha Kyung Youn Seon Joo Park Min Young Lee Man Jin Cha Ok Hyeun Kim Ho Jin You In Youp Chang Sang Pil Yoon Young Jin Jeon 《Biomolecules & therapeutics.》2013,21(4):258-263
We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-α, and IL1β. We also showed that silibinin strongly inhibits p38 MAPK phosphorylation, whereas the ERK1/2 and JNK pathways are not inhibited. The p38 MAPK inhibitor abrogated the LPS-induced nitrite production, whereas the MEK-1 inhibitor did not affect the nitrite production. A molecular modeling study proposed a binding pose for silibinin targeting the ATP binding site of p38 MAPK (1OUK). Collectively, this series of experiments indicates that silibinin inhibits macrophage activation by blocking p38 MAPK signaling. 相似文献
6.
7.
Recent investigations have shown that certain flavonoids, especially flavone derivatives, inhibit nitric oxide (NO) production by inducible NO synthase (iNOS) in macrophages, which contribute their anti-inflammatory action. For the purpose of finding the optimized chemical structures of flavonoids that inhibit NO production, various A- and B-ring substituted flavones were synthesized and evaluated for their inhibitory activity using lipopolysaccharide-treated RAW 264.7 cells. It was found that the optimal chemical structures were A-ring 5,7-dihydroxyflavones having the B-ring 2',3'-dihydroxy or 3',4'-dihydroxy or 3',4'-hydroxy/methoxy (methoxy/hydroxy) groups. These structurally optimized compounds were revealed to be down-regulators of iNOS induction, but not direct iNOS inhibitors. Of these derivatives that were evaluated, 2',3',5,7-tetrahydroxyflavone and 3',4',5,7-tetrahydroxyflavone (luteolin) showed the strongest inhibition. The IC50 values for these compounds were 19.7 and 17.1 microM, respectively. Therefore, these compounds may have a potential as new anti-inflammatory agents. 相似文献
8.
Nitric oxide (NO) plays a role in various physiological and pathophysiological conditions such as immunoregulatory and inflammatory processes. Hence, NO and its generating enzyme, inducible nitric oxide synthase (iNOS) may not only be of diagnostic and prognostic value, but may also serve as targets for novel therapeutic options. In the present investigation, we have screened a phytochemical library by correlating the IC50 values for 531 natural products of 60 cell lines with the microarray-based mRNA expression of 95 genes known to be involved in NO metabolism and signaling with the aim to identify candidate compounds as inhibitors for NO metabolism and signaling. We identified bis(helenalinyl)glutarate (BHG) as putative candidate compound. Indeed, BHG inhibited NO production (IC50 value: 0.90 ± 0.04 μM) and down-regulated iNOS protein expression (IC50 value: 1.12 ± 0.16 μM) of RAW264.7 mouse macrophages in the presence of lipopolysaccharide and interferon-γ. Performing XTT cytotoxicity assays, we found that BHG inhibited cell growth in a dose-dependent manner with an IC50 value of 5.6 μM. To gain insight into molecular pathways involved in NO inhibition and cytotoxicity, we performed microarray experiments which were exemplarily validated by real-time RT-PCR. A total of 227 genes (67 up- and 160 down-regulated) were obtained, which exhibited significant differences in mRNA regulation between BHG-treated and untreated RAW264.7 macrophages. Sixteen of 227 genes are known to be involved in NO-signaling. Pathway analyses revealed that further five and four down-regulated genes belong to the glucocorticoid receptor and interleukin-1 and interleukin-10 pathways, respectively. An interference of these two pathways and NO is known for inflammation and auto-immune diseases. The therapeutic potential of this compound has to be explored in the future. 相似文献
9.
目的 探讨诱导型一氧化氮合酶 (iNOS)在膀胱移行细胞癌中表达及与临床病理特征的关系。方法 应用兔抗入iNOS多克隆抗体对 60例膀胱移行细胞癌和 10名正常人膀胱粘膜进行免疫组化染色 ,观察iNOS的表达情况。结果 膀胱移行细胞癌中阳性表达率为 63 .3 % ( 3 8/ 60 ) ,10名正常人膀胱粘膜中无阳性表达。iNOS在肿瘤中表达与患者年龄、性别、肿瘤分级无关 (P >0 .0 5 ) ;但浸润型肿瘤iNOS表达显著高于表浅型 ( P <0 .0 1) ,有淋巴结转移的肿瘤组iNOS表达高于无淋巴结转移组 ( P<0 .0 5 )。结论 iNOS在膀胱移行细胞癌中可能促进了肿瘤的浸润和转移 ,iNOS对膀胱移行细胞癌预后判断和基因治疗具有重要理论意义。 相似文献
10.
Kentaroh Kamata Masato Inazu Hiroshi Takeda Hiroshi Goto Teruhiko Matsumiya Masahiko Usui 《Pharmacological research》2003,47(6):485-491
Inducible nitric oxide (NO) synthase (iNOS) is believed to contribute to the pathogenesis of endotoxin-induced uveitis (EIU). In the present study, we investigated the inhibitory effects of N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, and S,S'-1,4-phenylene-bis(1,2-ethanediyl)bis-isothiourea (PBITU), a potent and selective iNOS inhibitor, on intraocular NO production in EIU rabbits using an in vivo intraocular microdialysis technique. The flare level in the anterior chamber increased from 1h after the injection of 100 micro g/kg lipopolysaccharide (LPS), and continued to increase for 24h. Aqueous humor protein concentrations were significantly increased at 24h after LPS-injection. These changes were significantly reduced by L-NAME (10mg/kg) and PBITU (1mg/kg), but not by D-NAME (10mg/kg). The increase in NO(2)(-) and NO(3)(-) levels in the dialysate induced by LPS was significantly inhibited by L-NAME (10mg/kg) and PBITU (1mg/kg), but not by D-NAME (10mg/kg). These results suggest that activation of iNOS may play a key role in the development of EIU, and selective inhibitors of iNOS may have therapeutic applications in the treatment of EIU. 相似文献
11.
Infection with Helicobacter pylori is recognized as a primary factor in the etiology of gastric disease and its early pathogenic effects are manifested by up-regulation in proinflammatory cytokine release, enhancement in nitric oxide generation, and amplification of apoptotic events. We applied the animal model of H. pylori -induced gastritis to study the effect of a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), SB 203580, on the mucosal apoptotic processes, and the expression of inducible nitric oxide synthase (NOS-2) activity and soluble tumor necrosis factor- (TNF-). Groups of rats were pretreated intragastrically with SB 203580 (5, 10, and 20 mg/kg) or vehicle, followed 60 min later by intragastric application of H. pylori lipopolysaccharide at 50 g/animal, and after 2 and 4 additional days on the twice daily regimen of SB 203580 or vehicle, the animals were killed and their gastric mucosal tissue subjected to histologic and biochemical assessment. In the absence of SB 203580, H. pylori lipopolysaccharide elicited within 2 days a pattern of acute mucosal inflammatory responses resembling that of acute gastritis which reached a maximum by the 4th day and were accompanied by an 11.6-fold enhancement in epithelial cell apoptosis, an 8.8-fold increase in the expression of soluble TNF-, and a 6.5-fold induction in NOS-2 activity. Administration of SB 203580 produced dose-dependent reduction (up to 58.7%) in the severity of mucosal inflammatory involvement elicited by H. pylori lipopolysaccharide and this effect of the agent was reflected in a marked reduction (up to 72.9%) in the lipopolysaccharide-induced NOS-2 expression, decline (up to 57.4%) in epithelial cell apoptosis, and a decrease (up to 51.5%) in the mucosal level of soluble TNF-. Our findings thus suggest that the p38 MAPK signaling pathway plays a key role in H. pylori lipopolysaccharide-induced gastric mucosal inflammatory responses leading to up-regulation of apoptotic events and induction of NOS-2 expression. 相似文献
12.
Adenosine kinase inhibitor attenuates the expression of inducible nitric oxide synthase in glial cells 总被引:2,自引:0,他引:2
The present study demonstrates the anti-inflammatory effect of adenosine kinase inhibitor (ADKI) in glial cells. Treatment of glial cells with IC51, an ADKI, stimulated the extracellular adenosine release and reduced the LPS/IFNgamma-mediated production of NO, and induction of iNOS and TNF-alpha gene expression. The recovery of IC51-mediated inhibition of iNOS expression by adenosine transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI), and the inhibition of LPS/IFNgamma-induced iNOS gene expression by exogenous adenosine indicate a role for adenosine release in IC51-mediated iNOS expression. The rescue of IC51-mediated inhibition of iNOS expression by adenosine receptor antagonist for A2A, 8-(3-chlorostyryl)caffeine (CSC) and alloxazine for A2B, further supports a role for interaction of adenosine and its receptors in anti-inflammatory activity. The IC51-mediated induction of cAMP levels, downstream target of A2A and A2B, and inhibition of LPS/IFNgamma-induced expression of iNOS by forskolin, a cAMP activator, document a role for cAMP mediated pathway in anti-inflammatory activity of IC51. Taken together, these studies document that IC51-mediated inhibition of iNOS expression is through activation of adenosine receptors, which activates A2A and A2B resulting in increased cAMP levels following LPS/IFNgamma stimulation. Moreover, the lack of effect of IC51 or adenosine on NFkappaB DNA binding activity and its transactivity indicates that the inhibition of iNOS expression mediated by IC51 may be through an NFkappaB independent pathway. 相似文献
13.
14.
Triptolide (PG490) is a natural, biologically active compound extracted from the Chinese herb Tripterygium wilfordii. It has been shown to possess potent anti-inflammatory and immunosuppressive properties. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, triptolide inhibits nitric oxide (NO) production in a dose-dependent manner and abrogates inducible nitric oxide synthase (iNOS) gene expression. To investigate the mechanism by which triptolide inhibits murine iNOS gene expression, we examined activation of mitogen-activated protein kinases (MAP kinases) and nuclear factor-kappa B (NF-kappa B) in these cells. Addition of triptolide inhibited phosphorylation of c-Jun NH(2)-terminal kinase (JNK) but not that of extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase. In addition, triptolide significantly inhibited the DNA binding activity of NF-kappa B. Taken together, these results suggest that triptolide acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of NF-kappa B and JNK activation. 相似文献
15.
Dimerization of inducible NOS has been known to be a potential therapeutic target for iNOS-mediated pathologies. Cyclic dipeptides are among the simplest peptides commonly found as by-products of food processing or metabolites of microorganisms. In this study, we found that cyclo(dehydrohistidyl-l-tryptophyl) (CDHT), a cyclic dipeptide from an unidentified fungal strain Fb956, prevents iNOS dimerization in activated microglial BV-2 cells. CDHT inhibited NO production with an IC50 of 6.5 microM in LPS-treated BV-2 cells. Western blot analysis and iNOS activity measurement of fractions from size-exclusion chromatography of cell lysates indicated that CDHT inhibits dimerization of iNOS, while it has no effect on iNOS expression or enzyme activity. The CDHT inhibition of iNOS dimerization was confirmed by partially denaturing SDS-PAGE analysis. In contrast, CDHT did not affect cGMP production in endothelial HUVEC cells, which indicates no inhibition of endothelial NOS activity. These results reveal that CDHT, one of the simplest and cyclic dipeptides, selectively inhibits NO production by inhibiting iNOS dimerization, and could be a useful therapeutic agent for inflammation-mediated diseases. 相似文献
16.
Kim MJ Ryu GR Kang JH Sim SS Min DS Rhie DJ Yoon SH Hahn SJ Jeong IK Hong KJ Kim MS Jo YH 《Biochemical pharmacology》2004,68(9):1775-1785
Cytokines that are released by infiltrating inflammatory cells around the pancreatic islets are involved in the pathogenesis of type 1 diabetes mellitus. Specifically, interleukin-1beta (IL-1beta) stimulates inducible nitric oxide synthase (iNOS) expression and nitric oxide overproduction, leading to the beta-cell damage. In activating this pathway, nuclear factor-kappaB (NF-kappaB) plays a crucial role, and many of the IL-1beta-sensitive genes contain NF-kappaB binding sites in their promoter regions. We have recently shown that epicatechin, which is a flavonoid, had a protective effect on pancreatic beta-cells in both streptozotocin-treated rats and islets. In the present study, the effects of epicatechin on IL-1beta-induced beta-cell damage were examined. RINm5F cells and islets were pretreated with epicatechin and next incubated with IL-1beta. The released nitrite, iNOS protein and mRNA expression levels were then measured. IkappaBalpha protein, nuclear translocation of NF-kappaB, and NF-kappaB DNA binding activity were also determined. Following the transient transfection of an iNOS promoter into the cells, the iNOS promoter activity was measured. ATP- or D-glucose-induced insulin release was measured in RINm5F cells and islets, respectively. Epicatechin significantly reduced IL-1beta-induced nitrite production, iNOS protein and mRNA expressions, and it also inhibited IL-1beta-induced IkappaBalpha protein degradation, NF-kappaB activation, and iNOS promoter activity. Epicatechin partly restored the IL-1beta-induced inhibition of insulin release. These results suggest that epicatechin inhibits the IL-1beta-induced iNOS expression by down-regulating NF-kappaB activation, and protecting beta-cells from IL-1beta. 相似文献
17.
In the present study, the roles of protein kinase C (PKC) in BSA-derived advanced glycosylation end products (BSA-AGEs)-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were investigated. Treatment of RAW 264.7 cells with BSA-AGEs caused dose- and time-dependent increases in NO release and iNOS expression in RAW 264.7 cells, whereas BSA alone had no effect on iNOS induction. The tyrosine kinase inhibitor (genistein), the phosphatidylinositol-specific phospholipase C inhibitor (U-73122), the phosphatidylcholine-specific phospholipase C inhibitor (D-609), and the PKC inhibitors (staurosporine, Ro 31-8220, and Go 6976) all inhibited BSA-AGE-induced NO release and iNOS expression in RAW 264.7 cells. Stimulation of RAW 264.7 cells with BSA-AGEs resulted in the formation of inositol monophosphate; the response was attenuated by U-73122 and genistein. BSA-AGEs stimulated PKC-alpha, -betaI, -delta, and -eta but not -zeta translocation from the cytosol to the membrane. However, incubation of RAW 264.7 cells with BSA-AGEs increased phosphorylation of PKC-zeta at threonine-410, which reflects activation of PKC-zeta, indicating the possible involvement of these PKC isoforms in AGE-mediated effects. Pretreatment of RAW 264.7 cells with U-73122, D-609, and genistein reduced the AGE-stimulated translocation of PKC-alpha, -betaI, -delta, and -eta and activation of PKC-zeta. Taken together, these data suggest that BSA-AGEs might activate PKC and subsequently induce iNOS expression and NO release. 相似文献
18.
19.
The large amount of nitric oxide (NO) produced by inducible NO synthase (iNOS) contributes to cellular injury in inflammatory disease. In the present study, a novel synthetic compound (3E)-4-(2-hydroxyphenyl)but-3-en-2-one (HPB) was found to inhibit lipopolysaccharide (LPS)-induced NO generation, but not through the inhibition of iNOS activity, in RAW 264.7 macrophages. Administration of HPB into mice also inhibited the LPS-induced increase in serum nitrite/nitrate levels. To evaluate the underlying mechanisms of HPB inhibition of NO generation, the expression of the iNOS gene in RAW 264.7 macrophages was examined. HPB abolished the LPS-induced expression of iNOS protein, iNOS mRNA and iNOS promoter activity in a similar concentration-dependent manner. LPS-induced nuclear factor-κB (NF-κB) DNA binding and NF-κB-dependent reporter gene activity were both significantly inhibited by HPB. This effect was mediated through the inhibition of inhibitory factor-κBα (IκBα) phosphorylation and degradation, and of p65 nuclear translocation. HPB had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases (MAPK), and c-Jun NH2-terminal kinase (JNK). However, HPB suppressed the LPS-induced intracellular reactive oxygen species (ROS) production. These results indicate that HPB down-regulates iNOS gene expression probably through the inhibition of LPS-induced intracellular ROS production, which has been implicated in the activation of NF-κB. 相似文献