首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes the formulation and characterization of urea-loaded microspheres prepared using various polymers such as ethyl cellulose (EC), cellulose acetate phthalate (CAP) and poly (D,L-lactic-co-glycolic acid) (PLGA), along with the utilization of a solvent evaporation technique. The effect of various formulation parameters (i.e. polymer type and concentration, vehicle type, polymer solution/vehicle volume ratio, drug/polymer ratio, homogenizer and stirrer speed, sonication time and speed, type of washing solution, drying and separation method) on the characteristics of microspheres was also evaluated. Results obtained indicated that, in the presence of urea, highest rate of EC microsphere production could be obtained at a drug/polymer ratio of 1:2 and a polymer solution/vehicle volume ratio of 1:50. In some cases, crystallization of urea was observed during the encapsulation process using cellulose derivative polymers. CAP microparticles showed a rough and tortuous surface while EC microparticles had a wider range of particle size. However, with the PLGA polymer, much better desired microparticles with a smaller size range of 1–3?µm were obtained. In general, PLGA microspheres were spherical in shape and possessed smooth surfaces with less pores in comparison with those obtained by the other polymers. The yield of particle production and the extent of urea encapsulation in PLGA particles were measured to be 68.87%?±?5.3 and 40.5%?±?3.4, respectively. The release study from PLGA microspheres revealed that up to 70% of the drug was released within a few days, through a four-stage release pattern.  相似文献   

2.
Cellulose propionate (CP) microparticles containing captopril (CAP) were prepared by solvent evaporation technique. The effects of polymer molecular weight, polymer composition and drug:polymer ratios on the particle size, flow properties, morphology, surface properties and release characteristics of the prepared captopril microparticles were examined. The anti-hypertensive effect of the selected CAP formulation in comparison with aqueous drug solution was also evaluated in vivo using hypertensive rats. The formulation containing drug:polymer blend ratio 1:1.5 (1:1 low:high molecular weight CP), namely F7, was chosen as the selected formulation with regard to the encapsulation efficiency (75.1%), flow properties (theta=24 degrees, Carr index=5%, Hausner ratio=1.1, packing rate=0.535) and release characteristics. Initial burst effect was observed in the release profile of all examined formulations. DSC and SEM results indicated that the initial burst effect could be attributed to dissolution of CAP crystals present on the surface or embedded in the superficial layer of the matrix. The release kinetics of CAP from most microparticle formulations followed diffusion mechanism. After oral administration of the selected microparticle formulation (F7) to hypertensive rats, systolic blood pressure decreased gradually over 24 h compared to reference drug solution. These results may suggest the potential application of cellulose propionate microparticles as a suitable sustained release drug delivery system for captopril.  相似文献   

3.
Polymeric microparticles suitable for topical and transdermal delivery systems were studied using poly D,L lactide (PLA), poly D,L lactide co glycoside (PLGA), poly (N-isopropylacrylamide) (PNIPAM) and ethyl cellulose (EC). Drug encapsulation efficacy, microparticle stability and skin permeation studies of levothyroxine loaded microparticles were carried out using excised human skin, and the skin permeation pattern was observed using confocal laser scanning microscopy. It was found that ethyl cellulose microparticles had the highest drug encapsulation and minimal drug leakage during the 14 week storage period. The PNIPAM microparticles had the lowest drug encapsulation efficiency and a fast degradation rate. The PLGA microparticles exhibited a temperature dependent drug leakage. Permeation studies using a flow-through diffusion cell indicated that the polymer transition temperature (T(g)) may influence the skin permeation rate of levothyroxine. Polyesters (PLA and PLGA) and PNIPAM acted as a skin penetration retardant and caused skin accumulation of the drug. These microparticles have potential use in skin formulations containing sunscreens and other active ingredients that are meant to be concentrated on the skin surface. However, skin permeation was observed from EC microparticles, therefore such polymers may be used as carriers in transdermal formulations to help achieve therapeutic concentrations of the drug in the plasma.  相似文献   

4.
Cellulose propionate (CP) microparticles containing captopril (CAP) were prepared by solvent evaporation technique. The effects of polymer molecular weight, polymer composition and drug?:?polymer ratios on the particle size, flow properties, morphology, surface properties and release characteristics of the prepared captopril microparticles were examined. The anti-hypertensive effect of the selected CAP formulation in comparison with aqueous drug solution was also evaluated in vivo using hypertensive rats. The formulation containing drug?:?polymer blend ratio 1?:?1.5 (1?:?1 low?:?high molecular weight CP), namely F7, was chosen as the selected formulation with regard to the encapsulation efficiency (75.1%), flow properties (θ?=?24°, Carr index?=?5%, Hausner ratio?=?1.1, packing rate?=?0.535) and release characteristics. Initial burst effect was observed in the release profile of all examined formulations. DSC and SEM results indicated that the initial burst effect could be attributed to dissolution of CAP crystals present on the surface or embedded in the superficial layer of the matrix. The release kinetics of CAP from most microparticle formulations followed diffusion mechanism. After oral administration of the selected microparticle formulation (F7) to hypertensive rats, systolic blood pressure decreased gradually over 24?h compared to reference drug solution. These results may suggest the potential application of cellulose propionate microparticles as a suitable sustained release drug delivery system for captopril  相似文献   

5.
The aim of this study was to prepare and evaluate Eudragit (RS and RL) microspheres containing acetazolamide. Microspheres were prepared by solvent evaporation method using acetone/liquid paraffin system. The influence of formulation factors (stirring speed, polymer:drug ratio, type of polymer, ratio of the combination of polymers) on particle size, encapsulation efficiency and in vitro release characteristics of the microspheres were investigated. The yields of preparation and the encapsulation efficiencies were high for all formulations the microspheres were obtained. Mean particle size changed by changing the polymer:drug ratio or the stirring speed of the system. Although acetazolamide release rates from Eudragit RS microspheres were very slow and incomplete for all formulations, they were fast from Eudragit RL microspheres. When Eudragit RS was added to Eudragit RL microsphere formulations, release rates slowed down and achieved the release profile suitable for peroral administration.  相似文献   

6.
The aim of this study was to formulate biodegradable microspheres containing an anti-parkinsonian agent, bromocryptine mesylate, for brain delivery. The effect of formulation parameters (e.g. polymer, emulsifying agent type and concentration) on the characteristics of the microspheres produced, the efficiency of drug encapsulation, the particle size distribution and in vitro drug release rates from the bromocryptine mesylate microspheres were investigated using a 3 2 factorial design. Bromocryptine mesylate was encapsulated into biodegradable polymers using the following three different polymers; poly(L-lactide), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide). The SEM photomicrographs showed that the morphology of the microspheres greatly depended on the polymer and emulsifying agent. The results indicate that, regardless of the polymer type, increase in emulsifying agent concentration from 0.25-0.75% w/v markedly decreases the particle size of the microspheres. Determination of particle size revealed that the use of 0.75% w/v of emulsifying agent concentration and a polymer solution concentration of 10% w/v resulted in optimum particle size. In order to prepare biodegradable microspheres with high drug content and small particle size, selection of polymer concentration as well as emulsifying agent concentration is critical. Polymer type has a less pronounced effect on the percentage encapsulation efficiency and particle size of microspheres than on the t 50% . The microspheres prepared by all three polymers, at a polymer concentration of 10% w/v and an emulsifying agent concentration of 0.75% w/v with NaCMC:SO (4:1, w/v) mixture was as the optimum formulation.  相似文献   

7.
The aim of this study was to formulate biodegradable microspheres containing an anti-parkinsonian agent, bromocryptine mesylate, for brain delivery. The effect of formulation parameters (e.g. polymer, emulsifying agent type and concentration) on the characteristics of the microspheres produced, the efficiency of drug encapsulation, the particle size distribution and in vitro drug release rates from the bromocryptine mesylate microspheres were investigated using a 3(2) factorial design. Bromocryptine mesylate was encapsulated into biodegradable polymers using the following three different polymers; poly(L-lactide), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide). The SEM photomicrographs showed that the morphology of the microspheres greatly depended on the polymer and emulsifying agent. The results indicate that, regardless of the polymer type, increase in emulsifying agent concentration from 0.25-0.75% w/v markedly decreases the particle size of the microspheres. Determination of particle size revealed that the use of 0.75% w/v of emulsifying agent concentration and a polymer solution concentration of 10% w/v resulted in optimum particle size. In order to prepare biodegradable microspheres with high drug content and small particle size, selection of polymer concentration as well as emulsifying agent concentration is critical. Polymer type has a less pronounced effect on the percentage encapsulation efficiency and particle size of microspheres than on the t(50%). The microspheres prepared by all three polymers, at a polymer concentration of 10% w/v and an emulsifying agent concentration of 0.75% w/v with NaCMC:SO (4:1, w/v) mixture was as the optimum formulation.  相似文献   

8.
目的:制备并评价Notel聚乳酸-羟基乙酸共聚物(PLGA)长效缓释微球。方法:采用乳化-溶剂挥发法制备Notel缓释微球,以载药量、包封率、体外释放为评价指标,考察高分子材料、高分子溶液浓度、硬脂酸、不同pH的聚乙烯醇(PVA)溶液等因素对微球的影响,筛选最优处方并制备微球,考察大鼠药动学及对db/db小鼠的降血糖作用。结果:按最优处方制备的微球形态圆整,平均粒径为60 μm,载药量12.5%,体外释药可达1个月。微球在大鼠体内1 h即有药物释放,第8天血药浓度达到峰值Cmax(52.96±3.20) ng·mL-1并持续释放30 d。db/db小鼠的空腹血糖浓度在1个月内有效降低。结论:Notel缓释微球作为1个月长效制剂治疗2型糖尿病(T2DM)具有良好的开发前景。  相似文献   

9.
Multi-phase microspheres of poly(D,L-lactic acid) (PLA) or poly(D,L-lactic-co-glycolic acid) (PLGA) containing a water-in-oil (W/O) emulsion were prepared by a multiple emulsion solvent evaporation technique. Acetonitrile was used as the solvent for the polymers and light mineral oil as the dispersion medium for the encapsulation procedure. Process and formulation parameters to optimize the microencapsulation of a W/O emulsion containing water-soluble drugs were investigated. Drug loading efficiencies of 80-100 per cent were obtained under specific preparative conditions. The drug loading efficiency in the microspheres was dependent upon the ratio of the W/O emulsion to polymer and the concentration of surfactant in the mineral oil. Compared to conventional microspheres, in which fine drug particles are homogeneously dispersed in the polymer beads, the multi-phase microspheres permit the higher encapsulation efficiency of water-soluble drugs and eliminate partitioning into the polymer-acetonitrile phase which results in low encapsulation efficiency with conventional solvent evaporation techniques.  相似文献   

10.
Present research investigates the formulation of stavudine loaded biodegradable microspheres from different grades of Poly (D, L Lactide-co-glycolide) as a depot system for parenteral delivery. Prolonged release of stavudine facilitates reduction in symptoms of HIV infection and delay AIDS progression by reducing viral load to undetectable levels. Microspheres were prepared from PLGA 85:15 and PLGA 50:50 (RESOMER(?) 505H) by solvent evaporation technique with different drug/polymer ratios (1:4, 1:10, 1:20, 1:50, 1:100) and a polymer solution/vehicle ratio of 1:2. The effects of various formulation variables like polymer type and concentration, surfactant concentration and drug to polymer ratio on the characteristics of microspheres were evaluated. All thirteen formulations of microspheres were evaluated for yield, entrapment efficiency, particle size and In vitro release studies. Microspheres were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), residual solvent analysis and confocal laser scanning microscopy (CLSM). Microspheres showed excellent surface topography with uniform distribution and structural integrity of the drug. Resulting microspheres showed the maximum entrapment efficiency of 68.0 ± 1.62% and mean particle diameter below 100μ. Drug release kinetics data were obtained from various kinetic models and best explained by "Higuchi Kinetic" i.e. drug release was largely governed by diffusion through water-filled pores in the matrix. Korsmeyer-Peppas equation depicted that drug release mechanism is anomalous transport, i.e. diffusion as well as polymer relaxation. Drug release from microspheres exhibited the characteristic release pattern of a monolithic matrix system with a maximum of 80-90% drug release in 6-8 weeks demonstrating the feasibility of prolonged delivery of stavudine using biodegradable microspheres for parenteral depot system.  相似文献   

11.
A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.  相似文献   

12.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15?000 microspheres possessed a smooth and round appearance with average particle size of 50?µm or so. The encapsulation percentages of microspheres prepared from PLGA 15?000, 20?000 and 30?000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30?000 microspheres to 3.97% of PLGA 15?000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30°C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

13.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15,000 microspheres possessed a smooth and round appearance with average particle size of 50 microm or so. The encapsulation percentages of microspheres prepared from PLGA 15,000, 20,000 and 30,000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30,000 microspheres to 3.97% of PLGA 15,000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30 degrees C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

14.
Abstract

Encapsulation of amoxicillin (AMC) with ethyl cellulose (EC) by a supercritical antisolvent process (SAS) was investigated. AMC microparticles obtained previously by an SAS process were used as host particles and EC, a biodegradable polymer used for the controlled release of drugs, was chosen as the coating material. In this work, a suspension of AMC microparticles in a solution of ethyl cellulose in dichloromethane (DCM) was sprayed through a nozzle into supercritical CO2. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and HPLC analyses were carried out. The effects of AMC:EC ratio, the initial polymer concentration of the solution, temperature and pressure on the encapsulation process were investigated. Although all the experiments led to powder precipitation, the AMC encapsulation was achieved in only half of the cases, particularly when the lower drug:polymer ratios were assayed. In general, it was observed that the percentages of AMC present in the precipitates were higher on increasing the AMC:EC ratio. In these cases composites rather than encapsulates were obtained. The in vitro release profiles of the resulting materials were evaluated in order to ascertain whether composites can be used as encapsulated systems for drug delivery systems.  相似文献   

15.
Lung-targeting sophoridine-loaded poly(lactide-co-glycolide) (PLGA) microspheres were constructed by a simple oil-in-oil emulsion-solvent evaporation method. The obtained microspheres were systematically studied on their morphology, size distribution, drug loading, encapsulation efficiency, in vitro release profile, and biodistribution in rats. The drug-loaded microparticles showed as tiny spheres under SEM and had an average size of 17?μm with 90% of the microspheres ranging from 12 to 24?μm. The drug loading and encapsulation efficiency were 65% and 6.5%, respectively. The in vitro drug release behavior of microspheres exhibited an initial burst of 16.6% at 4?h and a sustained-release period of 14 days. Drug concentration in lung tissue of rats was 220.10?μg/g for microspheres and 6.77?μg/g for solution after intraveneous injection for 30?min, respectively. And the microsphere formulation showed a significantly higher drug level in lung tissue than in other major organs and blood samples for 12 days. These results demonstrated that the obtained PLGA microspheres could potentially improve the treatment efficacy of sophoridine against lung cancer.  相似文献   

16.
Floating microparticles based on low density foam powder   总被引:5,自引:0,他引:5  
The aim of this study was to develop a novel multiparticulate gastroretentive drug delivery system and to demonstrate its performance in vitro. Floating microparticles consisting of (i) polypropylene foam powder; (ii) verapamil HCl as model drug; and (iii) Eudragit RS, ethylcellulose (EC) or polymethyl methacrylate (PMMA) as polymers were prepared with an O/W solvent evaporation method. The effect of various formulation and processing parameters on the internal and external particle morphology, drug loading, in vitro floating behavior, in vitro drug release kinetics, particle size distribution and physical state of the incorporated drug was studied. The microparticles were irregular in shape and highly porous. The drug encapsulation efficiency was high and almost independent of the theoretical loading. Encapsulation efficiencies close to 100% could be achieved by varying either the ratio 'amount of ingredients: volume of the organic phase' or the relative amount of polymer. In all cases, good in vitro floating behavior was observed. The release rate increased with increasing drug loading and with decreasing polymer amounts. The type of polymer significantly affected the drug release rate, which increased in the following rank order: PMMA相似文献   

17.
Purpose We studied a novel method for preparing polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier. Method Ethylcellulose (EC) and poly(lactic-co-glycolic acid) (PLGA), either alone or in combination with polyethylenimine (PEI), were used as polymers to produce submicron particles, and mannitol (MAN) was used as a water-soluble carrier for the microparticles. The polymer and MAN solutions were supplied through different liquid passages of a 4-fluid nozzle and then dried to obtain MAN microparticles containing EC or PLGA submicron particles. The polymer/MAN ratio was controlled by changing the concentration of the polymer and MAN solutions. EC or PLGA microparticles were observed via scanning electron microscopy, and the size of microparticles was determined by image analysis. The particle size distribution of EC or PLGA submicron particles was measured with a super dynamic light scattering spectrophotometer. Results The method generated submicron-sized (<1 μm) particles of EC and PLGA. The mean diameters of EC and PLGA particles at a polymer/MAN ratio of 1:10 were 631 and 490 nm, respectively. The mean diameter of PLGA particles decreased as the PLGA/MAN ratio was reduced, reaching ∼200 nm at a PLGA/MAN ratio of 1:100. The mean diameter of PLGA/PEI particles at PLGA/PEI/MAN ratios of 1:0.5:10 and 1:0.5:100 were 525 and 223 nm, respectively, and their zeta potentials were +50.8 and +58.2 mV, respectively. The size of EC submicron particles could be controlled by varying the spray conditions. Conclusions This study demonstrated that it is possible to prepare polymeric submicron particles dispersed in MAN microparticles in a single process using the 4-fluid nozzle spray drying method. Cationic PLGA particles with a diameter of ∼200 nm could be prepared by adding PEI, suggesting the possibility of its use as a carrier for delivering DNA into cells. The precipitation of EC may occur by the mutual dispersion and mixing of solvents after collision of EC and MAN mists by antisolvent effect, thereby producing MAN microparticles containing EC submicron particles.  相似文献   

18.
This study describes the formulation and characterization of O/W and W/O creams containing urea-loaded microparticles prepared with poly (D, L-lactic-co-glycolic acid) (PLGA) in order to encapsulate and stabilize urea. The solvent evaporation method was used for preparing PLGA microparticles containing urea. The microparticles size was evaluated by laser light diffractometry. The resulting microparticles were then incorporated in O/W and W/O creams and stability and the release pattern from the creams was evaluated by UV-spectrophotometry. The particle size of PLGA microparticles was in the range of 1-5 microm and most microparticles had a particle size smaller than 3 microm. The encapsulation efficiency was calculated as 40.5% +/- 3.4. This study also examined release pattern of urea which varied among different formulations. The results showed that the release from O/W creams followed Higuchi kinetics while the release from W/O creams showed the zero order kinetics and the creams containing microparticulated urea had slower release than free urea creams.  相似文献   

19.
Suspensions of nitrofurantoin (NTF) microparticles for controlled release were investigated in this study. The microparticles were enteric coated with various combinations of the two polymers, cellulose acetate phthalate/cellulose acetate butyrate (CAP/CAB) by a modified solvent evaporation method. Ratios of NTF to the two polymers (NTF/CAP/CAB) ranged from 1.0:1.6:0.4,1.0:1.0:1.0,1.0: 0.4:1.6 to 1.0:0.0:2.0. The encapsulation efficiency, percentage yield, determined by comparing the final mass of the microparticles with the initial mass of the ingredients used, distribution of particle size and the in-vitro dissolution profiles of the microparticles were determined. Based on light photographs for the evaluation of the microparticle morphology, the drug crystals appeared to be encapsulated sufficiently by the enteric polymers. In our study, the microparticles enteric coated with CAP/CAB in the ratio of 0.4:1.6 displayed the most satisfactory in-vitro release profile (reduced release in the simulated gastric fluid and sustained release in the simulated intestinal fluid). Thus, microparticles with NTF/CAP/CAB in the ratio of 1.0:0.4:1.6 were formulated into a suspension for further bioavailability and ulcerogenicity studies in Sprague-Dawley rats, with the suspension of NTF crystals as a control. The bioavailability study was carried out in eight rats fed with either the free NTF or the corresponding microparticles in a cross-over design. The ulcerogenicity study was carried out in three groups of six rats each: one group received no drug treatment; the control group was treated with free NTF; and the third group was treated with enteric-coated NTF microparticles. The bioavailability of NTF from the microparticles was comparable with the control. More importantly, there was notably less ulceration of the gastric mucosa observed after dosing with the microparticle suspension compared with that after the administration of the control suspension.  相似文献   

20.
目的:以利福平为模型药物,研究多孔聚乳酸—羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)微球的最佳制备工艺。方法乳化溶剂扩散法制备多孔微球,采用扫描电镜观察微球形态,HPLC 法测定微球包封率。通过单因素考察实验,筛选影响微球形态和包封率的主要因素并优选条件。结果制备过程中 PLGA 种类、PLGA 浓度、致孔剂浓度、均质速度、外水相 PVA 浓度等影响微球的粒径、多孔结构和包封率。按优化工艺制备的微球平均粒径为8.6μm,密度为0.1 g·cm -3,易于吸入并提高肺部的沉积率。结论低密度多孔微球具有适宜的吸入特性和肺部沉积率,或可成为递送抗结核药物的新载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号