共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat 总被引:6,自引:0,他引:6
A Mitani M Shimokouchi K Itoh S Nomura M Kudo N Mizuno 《The Journal of comparative neurology》1985,235(4):430-447
The morphology of electrophysiologically identified neurons was examined in the primary auditory cortex (AI) of the cat. After stimulation of the medial geniculate nucleus (MG), second auditory cortex, posterior ectosylvian gyrus, contralateral AI, or corpus callosum, intracellular potentials were recorded from AI neurons, which were then injected intracellularly with horseradish peroxidase and recovered. Layer IV neurons, which receive MG fibers monosynaptically, are spiny and nonspiny stellate cells, small and medium-sized nonspiny tufted cells, and fusiform cells. They send their axons to layer III of the AI. Corticocortical AI neurons are medium-sized pyramidal cells in layer III. They receive axons from layer IV neurons of the AI and send their axons to layers I, II, IV, and V of the AI. Horizontal cells in layer I receive slow-conducting MG fibers monosynaptically, and send their axons to layer II of the AI. Stellate cells and small pyramidal cells in layer II receive afferent inputs polysynaptically from the MG. Layer II pyramidal cells receive afferent inputs from the MG via AI neurons in layers I and III, and send their axons to layers V and VI. The axons of layer II stellate cells were distributed within layer II. Pyramidal cells which send their axons to the MG are located in layers V and VI, distributing their axon collaterals to layers III-VI of the AI. 相似文献
2.
Morphological features of layer V pyramidal neurons in the cat parietal cortex: an intracellular HRP study 总被引:1,自引:0,他引:1
Layer V pyramidal neurons in the cat parietal cortex (areas 5 and 7) were investigated with intracellular HRP staining. Antidromic responses were recorded intracellularly as well as extracellularly with pontine stimulation under Nembutal anesthesia. The relationship between the latency of antidromic responses and the morphology of HRP-stained neurons was analyzed. A total of 65 neurons were stained with HRP, and sixteen of these neurons were activated antidromically with pontine stimulation. Two distinct groups of layer V pyramidal neurons were detected morphologically by intracellular HRP staining; i.e., one (F type) consisted of neurons with relatively large somata (58.4 +/- 8.1 micron X 24.5 +/- 5.1 micron, N = 11) and aspiny or sparsely spinous apical dendrites, and the other (S type) consisted of neurons with smaller somata (44.6 +/- 7.6 micron X 19.3 +/- 3.9 micron, N = 22) and richly spinous apical dendrites. These two groups showed different electrophysiological properties; i.e., the former responded antidromically to pontine stimulation at a latency shorter than 1.5 ms (namely, with a conduction velocity faster than 18 m/second) and the latter responded at a latency longer than 1.5 ms. The two neuronal types in the parietal cortex corresponded respectively to fast and slow pyramidal tract neurons (PTNs) investigated in the sensorimotor cortex. Although their morphological features were almost similar to those of PTNs, the branching pattern of apical dendrites of the F-type pyramidal neuron seemed to be different from that of fast PTNs. In the parietal cortex, apical dendrites of F-type neurons showed rather frequent branching in layer I. This was similar to the pattern of branching in slow PTNs. Such a characteristic branching pattern suggested that, in the cat parietal cortex, layer V pyramidal neurons of both types are adapted to receive cerebellar inputs through the ventroanterior (VA) thalamic nucleus to the superficial cortical layers. 相似文献
3.
Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. 总被引:7,自引:0,他引:7
A U Larkman 《The Journal of comparative neurology》1991,306(2):332-343
The vast majority of excitatory synaptic inputs to neocortical pyramidal cells terminate on dendritic spines, which can thus serve as markers, visible by light microscopy, for the locations of these synapses. The aim of this study was to provide estimates of the total numbers and distributions of spines on the dendrites of individual pyramidal neurones from layers 2/3 and 5 of the visual cortex of the rat. High magnification camera lucida drawings were made of dendritic segments lying close to the plane of section and the number of spines per unit length of dendrite calculated for each. These spine densities were used to estimate the numbers of spines on the other dendritic segments and the results were entered to a computer program that calculated various statistics. Mean total numbers of spines per cell were 7,965 +/- 2,723 (S.D.) for layer 2/3 cells, 8,647 +/- 3,097 for slender layer 5 cells, and 14,932 +/- 3,371 for thick layer 5 cells; these figures are in good agreement with previous stereological estimates. For all cell classes, 70% or more of spines were located on the basal and apical oblique dendrites. The distribution of spines with respect to cortical layers was also explored. Most cells had most of their spines in the layer containing the soma, but there were differences within and between cell classes. Layer 2/3 cells showed a progressive reduction in the proportion of their spines in layers 1 and 2 with increasing depth of their soma in the cortex. Thick layer 5 cells had substantial contributions from layers 4, 3, 2, and especially layer 1. Slender layer 5 cells had small contributions from layers 6 and 4, but relatively few spines in layers 3 and 2. The distribution of spines with path distance from the soma was explored by estimating the numbers of spines contained within a series of concentric shells centred on the soma. All cells showed a rapid increase in the number of spines per shell for the proximal 100 micrograms or so, followed by a sharp decline to approximately 250 micrograms, beyond which the number remained relatively constant until the end of the terminal arbor. In each case, the majority of spines were located within a path length of 150 micrograms from the soma. 相似文献
4.
5.
Recent evidence indicates that corticotectal neurons belong to only one of the three morphological classes of pyramidal cells in layer V. The present study compares the dendritic morphology and axon collaterals of corticotectal, corticopontine, and layer V callosal neurons by using techniques based on the retrograde transport of horseradish peroxidase and fluorescent dyes as well as in vitro intracellular dye injections. Our results indicate that corticotectal and corticopontine neurons are located predominantly in the upper middle part of layer V. These neurons have medium to large somas with 5 or 6 primary basal dendrites and a single apical dendrite ascending to layer I. Approximately 60% of these cells send axon collaterals to both the superior colliculus and the pons. In contrast, callosal neurons form a heterogeneous group. In general, they have small pyramidal or ovoid cell bodies which give rise to 3 or 4 primary basal dendrites. Many cells have an apical dendrite that bifurcates and terminates in layer V or IV. We find that callosal neurons do not send an axon collateral to either the superior colliculus or the pons. We conclude that the corticotectal and corticopontine systems are similar in their intralaminar distribution, dendritic morphology, and pattern of axon collaterals, whereas the callosal system differs in these characteristics. 相似文献
6.
Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb 总被引:1,自引:0,他引:1
To determine the projection fields of intrabulbar axon collaterals, mitral, displaced mitral, and middle tufted cells in the rabbit olfactory bulb were stained by intracellular injection of HRP. The axon collaterals of mitral cells and displaced mitral cells were distributed exclusively within the granule cell layer (GrL). Those of middle tufted cells were distributed mostly in the GrL and on rare occasions in the mitral cell layer. None of these collaterals entered the external plexiform layer. Axon collaterals of mitral cells, emitted at the depths of the GrL, were distributed widely from the deep portion to the most superficial portion of the GrL. Collaterals of displaced mitral cells were also emitted in the deep part, but they tended to be distributed more superficially in the GrL than mitral cells. Collaterals of middle tufted cells were released and distributed superficially in the GrL. The axon collaterals of these principal cells typically extended for a longer distance than the secondary dendrites, and they sometimes formed bushlike terminal arborizations. The results indicate that the projection fields of the axon collaterals of principal cells are spatially separated from the dendritic projection fields. This suggests that the output of these principal cells through the collaterals has a functionally different role from the output through the dendrites. The observation that the three types of principal cells differ in the distribution pattern of their axon collaterals in the GrL suggests that there is a functional separation of the sublayers in the GrL. 相似文献
7.
8.
Intracellular recordings and morphological identification of neurons by using intracellular HRP staining were performed in the cat motor cortex. By cerebellar stimulation, stellate cells in layers II–III, pyramidal cells in layer III and fast pyramidal tract neurons (PTNs) were activated with short latency and fast rising EPSPs, while pyramidal cells in layer II and slow PTNs showed a wide range of latency and slow rising EPSPs. This difference may be related to activation through the deep and superficial thalamocortical projections. 相似文献
9.
The time of origin and the radial gradient of neurogenesis of cortico-collicular neurons have been studied in the rat visual area 17. We used a combined technique for the histochemical detection of the retrogradely transported horseradish peroxidase from the superior colliculus and the autoradiographic detection of the [3H]-thymidine administered during the gestational period. The cortico-collicular neurons of visual area 17 are located in layer V and are generated on gestational day (GD) 15 (59.78%), GD 16 (36.21%), and GD 17 (4.01%). This finding reveals that, for the cortico-collicular neuronal population, the birth date is well-correlated with the laminar position in the adult animal. To see whether the cortico-collicular neurons located at various radial levels of layer V are generated concurrently, or whether they follow an "inside-out" pattern of positioning, we divided layer V into three (upper, middle and lower) sublaminae. Most cortico-collicular neurons located in the lower two-thirds of layer V are generated on GD 15 (65%), whereas the neurons located in the upper third of the layer are generated both on GD 15 and GD 16 in almost equal proportions (52.53% and 44.39%, respectively). 相似文献
10.
John C. Anderson Rodney J. Douglas Kevan A. C. Martin J. Charmaine Nelson 《The Journal of comparative neurology》1994,341(1):16-24
Spiny stellate neurons of area 17 of the cat's visual cortex were physiologically characterised and injected intracellularly with horseradish peroxidase. Six neurons from sublamina 4A were selected. Five had the S-type of simple receptive fields; one had a complex receptive field. Their axons formed boutons mainly in layers 3 and 4. An electron microscopic examination of 45 boutons showed that each bouton formed one asymmetric synapse on average. Spines were the most frequent synaptic target (74%); dendritic shafts formed the remainder (26%). On the basis of ultrastructural characteristics, 8% of the target dendrites were characterised as originating from smooth γ-aminobutyrate-ergic (GABAergic) neurons. Thus the major output of spiny stellate neurons is to other spiny neurons, probably pyramidal neurons in layer 3 and spiny stellates in layer 4. 相似文献
11.
Response properties and morphological identification of neurons in the cat motor cortex 总被引:1,自引:0,他引:1
Intracellular recordings and morphological identification of neurons using intracellular HRP staining were performed in the cat motor cortex. By thalamic ventrolateral (VL) or cerebellar nucleus stimulation, pyramidal cells in layer III, fast pyramidal tract neurons (PTNs) and stellate cells in layers II and III were activated with short latency and fast rising EPSPs, while pyramidal cells in layer II and slow PTNs showed longer latency and slow rising EPSPs. This difference may be related to activation through the deep and superficial thalamocortical projections. Although pyramidal cells in layer VI did not respond orthodromically to VL or cerebellar stimulation, some of them proved to receive the recurrent action of PTNs because of the response to stimulation of the cerebral peduncle (CP). One aspinous stellate cell in layer III was activated by CP as well as VL stimulation. This cell was supposed to be an inhibitory interneuron responsible for both recurrent and VL-evoked inhibition. 相似文献
12.
The responses of 65 cells to electrical stimulation of the contralateral optic nerve were intracellularly recorded in the pigeon optic tectum by using micropipettes filled with a solution of horseradish peroxidase. Nineteen of them were successfully labeled. Microscopic examination of the filled cells shows that our sample includes six pyramidal, ten ganglion, two stellate, and one bipolar horizontal cells. Thus, pyramidal and ganglion neurons constitute the most numerous types of cells in our sample. Pyramidal cells were located in layer II but mostly in its non-retinorecipient part, and they had restricted ascending dendritic trees oriented orthogonal to the tectal lamination. Ganglion cells were located in layer III with one exception, which was in sublayer IIi. These cells had non-oriented dendritic trees which ramify over considerable distances. Terminal dendritic branches from a number of pyramidal and ganglion cells extended superficially well within the region of optic fibers termination. In our study, ganglion cells constituted the efferent tectal elements. Pyramidal cells responded to optic nerve stimulation with a pure EPSP, with an EPSP-IPSP sequence, or with a pure IPSP. Ganglion cells always exhibited an IPSP either alone or preceded by an EPSP. Stellate and bipolar cells responded with a pure EPSP. The study of the laminar distribution of labeled and non-labeled cells shows from surface to depth, a gradual increase in the number of cells responding with an EPSP-IPSP or with a pure IPSP and a gradual decrease in the number of those exhibiting a pure EPSP. The analysis of the sensitivity of EPSPs and IPSPs to high frequency optic nerve stimulation shows that monosynaptic as well as polysynaptic EPSPs can be recorded from cells in the non-retinorecipient tectal region, a number of ganglion and pyramidal cells receive a direct retinal excitatory input as their dendrites pass through the region of optic endings, most IPSPs are polysynaptic, some cells located in the retinorecipient region may receive direct retinal inhibitory connections. 相似文献
13.
Layers 5 and 6 of primate primary visual cortex (V1) harbor morphologically diverse cell groups that have corticocortical and corticosubcortical projections. Layer 6 middle temporal area (MT)-projecting neurons are particularly interesting, as they are the only deep-layer cortical neurons that provide both corticocortical feedforward inputs (to area MT) and corticosubcortical feedback projections (to superior colliculus [SC]) (Fries et al. [1985] Exp Brain Res 58:613-616). However, due to limitations in anatomical tracing techniques, little is known about the detailed morphologies of these cells. We therefore applied a genetically modified rabies virus as a retrograde tracer to fill the dendrites of projection neurons with green fluorescent protein (GFP) (Wickersham et al. [2007] Nat Methods 4:47-49). We injected virus into SC or area MT of macaque monkeys and examined labeled cells in V1. Two-thirds of labeled neurons following SC injections were found in layer 5, consisting of "tall-tufted" and "nontufted" cells; the remaining cells were layer 6 "nontufted." Area MT injections labeled neurons in layers 4B and 6, as previously described (Shipp and Zeki [1989] Eur J Neurosci 1:309-332). The layer 6 neurons projecting to MT were remarkably similar to the layer 6 SC-projecting neurons. In contrast to the dense and focused dendritic arbors of layer 5 "tall-tufted" pyramids, all "nontufted" cells had sparse, but unusually long basal dendrites. The nontufted cells closely resemble Meynert cells (le Gros Clark [1942] J Anat 76:369-376; Winfield et al. [1983] Proc R Soc Lond B Biol Sci 217:129-139), but the full in vivo reconstructions presented here show that their basal dendrites can extend much further (up to 1.2 mm) and are less asymmetric than inferred from Golgi reconstructions. 相似文献
14.
We quantified the morphology of over 350 pyramidal neurons with identified ipsilateral corticocortical projections to the primary (V1) and middle temporal (MT) visual areas of the marmoset monkey, following intracellular injection of Lucifer Yellow into retrogradely labelled cells. Paralleling the results of studies in which randomly sampled pyramidal cells were injected, we found that the size of the basal dendritic tree of connectionally identified cells differed between cortical areas, as did the branching complexity and spine density. We found no systematic relationship between dendritic tree structure and axon target or length. Instead, the size of the basal dendritic tree increased roughly in relation to increasing distance from the occipital pole, irrespective of the length of the connection or the cortical layer in which the neurons were located. For example, cells in the second visual area had some of the smallest and least complex dendritic trees irrespective of whether they projected to V1 or MT, while those in the dorsolateral area (DL) were among the largest and most complex. We also observed that systematic differences in spine number were more marked among V1-projecting cells than MT-projecting cells. These data demonstrate that the previously documented systematic differences in pyramidal cell morphology between areas cannot simply be attributed to variable proportions of neurons projecting to different targets, in the various areas. Moreover, they suggest that mechanisms intrinsic to the area in which neurons are located are strong determinants of basal dendritic field structure. 相似文献
15.
B A McGuire C D Gilbert P K Rivlin T N Wiesel 《The Journal of comparative neurology》1991,305(3):370-392
Pyramidal neurons within the cerebral cortex are known to make long-range horizontal connections via an extensive axonal collateral system. The synaptic characteristics and specificities of these connections were studied at the ultrastructural level. Two superficial layer pyramidal cells in the primate striate cortex were labeled by intracellular injections with horseradish peroxidase (HRP) and their axon terminals were subsequently examined with the technique of electron microscopic (EM) serial reconstruction. At the light microscopic level both cells showed the characteristic pattern of widespread, clustered axon collaterals. We examined collateral clusters located near the dendritic field (proximal) and approximately 0.5 mm away (distal). The synapses were of the asymmetric/round vesicle variety (type I), and were therefore presumably excitatory. Three-quarters of the postsynaptic targets were the dendritic spines of other pyramidal cells. A few of the axodendritic synapses were with the shafts of pyramidal cells, bringing the proportion of pyramidal cell targets to 80%. The remaining labeled endings were made with the dendritic shafts of smooth stellate cells, which are presumed to be (GABA)ergic inhibitory cells. On the basis of serial reconstruction of a few of these cells and their dendrites, a likely candidate for one target inhibitory cell is the small-medium basket cell. Taken together, this pattern of outputs suggests a mixture of postsynaptic effects mediated by consequence the horizontal connections may well be the substrate for the variety of influences observed between the receptive field center and its surround. 相似文献
16.
In addition to the horizontal bands of myelinated axons that produce the line of Gennari and the inner band of Baillarger, the macaque primary visual cortex contains prominent vertical bundles of myelinated axons. In tangential sections through layer IVC, these axon bundles are regularly arranged. They have a mean center-to-center spacing of about 23 μm, and each one contains an average of 34 (S.D. ± 13) myelinated axons. These bundles seem to be largely composed of efferent fibers, because in material in which pyramidal cells have been labelled in layer II/III and in layers IVA and IVB the axons of these neurons descend towards the white matter in bundles. However, it is doubtful whether all of the descending myelinated axons from the superficial layers emerge from the cortex, since counts show that the bundles contain maximum numbers of myelinated axons at the level of layer IVC, and that in layers V and VI their number is reduced by about 30%. Perhaps some of the axons enter the line of Baillarger, in layer V. When the bundles of myelinated axons and the clusters of apical dendrites of the layer V pyramidal cells are visualized simultaneously within layer IVC in electron microscopic preparations, it is apparent that their center-to-center spacing is similar, namely, about 23 μm and that a bundle of axons has a cluster of apical dendrites lying adjacent to it. Because of this association, and because axons from layer III pyramidal cells have been shown to enter the bundles, it is suggested that the myelinated axon bundles contain the efferent axons from the projection neurons in the individual pyramidal cell modules. However, in addition to the myelinated axons, the bundles contain unmyelinated axons, so that they also probably serve as the conduits for axons forming connections between layers. It is proposed that the pyramidal cell modules are the basic, functional neuronal units of the visual cortex, and since the neurons within a particular module can be expected to have slightly different inputs and response properties from those in neighboring modules, the individual axon bundles that emerge from each module would be expected to carry a unique set of efferent information. © 1996 Wiley-Liss, Inc. 相似文献
17.
W. B. Spatz R.-B. Illing D. M. Vogt Weisenhorn 《The Journal of comparative neurology》1994,339(4):519-534
The anatomical distributions of the mitochondrial enzyme cytochrome oxidase (CO) and of the calcium binding protein parvalbumin (PV) were studied in the striate cortex of adult and neonate New World monkeys (Callithrix jacchus). In the adult marmoset, both proteins were found in laminar arrangements similar to those described for the macaque monkey, with prominent bands of PV-like immunoreactive (PV-LI) puncta in layers IV and IIIb, and fairly evenly distributed PV-LI nonpyramidal neurons. Furthermore, the pattern of CO activity in area 17 of the neonate marmoset was almost identical to the CO pattern described in neonate macaque and squirrel monkeys. It came, therefore, as a surprise to find that the adult pattern of PV-like immunoreactivity (PV-LI) in the marmoset striate cortex arises from a neonatal pattern strikingly different from that seen in any developmental stage of the macaque, or in any other mammal studied so far. In the deep layers IV through VI of the neonate marmoset, a large number of PV-LI neurons was stained in bandlike patterns, their number in layers IV and V exceeding the number of PV-LI neurons present in these layers of the adult marmoset area 17. Staining of layers IV and VI was restricted to area 17 and involved nonpyramidal cells and their exceeding the number of PV-LI neurons present in these layers of the adult marmoset area 17. Staining of layers IV and VI was restricted to area 17 and involved nonpyramidal cells and their processes. The stained band of layer V, in contrast, continued throughout most of the neocortex. In area 17, an estimated 10 to 20% of the stained cells in layer V exhibited pyramidal shapes. The findings show that the expression of PV by visual cortical cells occurs before birth and suggest that the comparatively early onset of PV expression is not dependent on the onset of textured vision. The exuberant number of stained cells in some layers, and particularly the staining of pyramidal cells, in the neonate marmoset, suggest that a considerable number of cells possesses the stainability for PV-LI only transiently, i.e., in the marmoset, these cells have a specific demand for parvalbumin during this phase of their development. © 1994 Wiley-Liss, Inc. 相似文献
18.
In the developing neocortex, pyramidal neurons use molecular cues to form axonal arbors selectively in the correct layers. Despite the utility of mice for molecular and genetic studies, little work has been done on the development of layer-specific axonal arborizations of pyramidal neurons in mice. We intracellularly labeled and reconstructed the axons of layer 2/3 and layer 5 pyramidal neurons in slices of primary somatosensory cortex from C57Bl6 mice on postnatal days 7-21. For all neurons studied, the development of the axonal arborizations in mice follows a pattern similar to that seen in other species; laminar specificity of the earliest axonal branches is similar to that of mature animals. At P7, pyramidal neurons are very simple, having only a main descending axon and few primary branches. Between P7 and P10, there is a large increase in the total number of axonal branches, and axons continue to increase in complexity and total length from P10 to P21. Unlike observations in ferrets, cats, and monkeys, two types of layer 2/3 pyramidal neurons are present in both mature and developing mice; cells in superficial layer 2/3 lack axonal arbors in layer 4, and cells close to the layer 4 border have substantial axonal arbors within layer 4. We also describe axonal and dendritic arborization patterns of three pyramidal cell types in layer 5. The axons of tall-tufted layer 5 pyramidal neurons arborize almost exclusively within deep layers while tall-simple, and short layer 5 pyramidal neurons also project axons to superficial layers. 相似文献
19.
Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb 总被引:6,自引:0,他引:6
To determine the dendritic fields, mitral, displaced mitral, middle tufted, and granule cells in the rabbit olfactory bulb were stained by intracellular injection of HRP. The secondary dendrites of mitral cells were distributed mostly in the inner half of the external plexiform layer (EPL). Those of displaced mitral cells extended mainly into the middle and superficial sublayers in the EPL. The secondary dendrites of middle tufted cells were distributed mostly in the superficial portion of the EPL. Mitral cells extended their secondary dendrites in virtually all directions within a plane tangential to the mitral cell layer (MCL) and thus had a disklike projection field with a radius of about 850 microns. Displaced mitral cells had similar dendritic projection fields in the tangential plane but with somewhat distorted shapes. The secondary dendrites of middle tufted cells had a tendency to extend in particular directions. From the projection pattern of the gemmules on the peripheral processes, granule cells were classified into three types. Type I granule cells had gemmules both in the superficial and in the deep sublayers of the EPL. The peripheral processes of Type II granule cells were confined to the deep half of the EPL. The gemmules of Type III granule cells ere distributed in the superficial half of the EPL. The differing dendritic ramification among mitral, displaced mitral, and middle tufted cells suggests the separation of the dendrodendritic synaptic interactions with granule cells in different sublayers in the EPL. It also suggests a functional separation of the sublayers of the EPL. 相似文献
20.
We studied the terminal patterns of single, physiologically identified geniculocortical axons in the striate cortex of the tree shrew by using intracellular recording and labeling methods. Axons were classified by their response to the onset (ON-center) or offset (OFF-center) of a light stimulus presented to the ipsilateral or contralateral eye. Then, we attempted to penetrate each axon for labeling with horseradish peroxidase. We recovered 23 axons and studied 16 of these in detail. Light microscopic reconstructions of these axons revealed several distinct terminal patterns within cortical layer IV. ON-center axons had terminal arbors that ended mainly in the upper part of layer IV (IVa), while OFF-center axons ended in the lower part of layer IV (IVb). Within layers IVa and IVb, axons driven by the ipsilateral eye and those driven by the contralateral eye had overlapping distributions. However, their terminal arbors differed in size, in shape, and in the number of boutons. Compared with contralateral eye arbors, ipsilateral eye axons were on average three times larger in lateral extent (925 microns vs. 325 microns), spread over four times the surface area (0.13 mm2 vs. 0.03 mm2), and supported one and one-half times as many terminal boutons (1,647 vs. 1,086). The ipsilateral eye axons had more boutons at the edges of layer IV (i.e., the upper part of layer IVa and the lower part of layer IVb), while those from the contralateral eye axons were more evenly distributed. These results show that each functional class of geniculocortical fiber has a different laminar and areal arrangement of boutons and we consider the significance of these differences for visual cortical function. 相似文献