首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU) in humans have not been well defined. We used the glucose-clamp technique to measure rates of whole-body and leg muscle glucose uptake in six healthy lean men during hyperinsulinemia (approximately 460 pM) to study IMGU and during somatostatin-induced insulinopenia to study NIMGU at four glucose levels (4.5, 9, 12, and 21 mM). To measure leg glucose uptake, the femoral artery and vein were catheterized, and blood flow was measured by thermodilution (leg glucose uptake = arteriovenous glucose difference [A-VG] x blood flow). With this approach, we found that, during hyperinsulinemia, both whole-body and leg glucose uptake increased in a curvilinear fashion at every glucose level, the highest glucose uptake values obtained being 139 +/- 17 mumol.kg-1.min-1 and 3656 +/- 931 mumol.min-1.leg-1, respectively. Leg blood flow increased twofold from 6.0 +/- 1.7 to 11.7 +/- 3.1 dl/min (P less than 0.01) over the range of glucose and was correlated with whole-body glucose uptake (r = 0.55, P less than 0.005). Leg muscle glucose extraction, independent of changes in blood flow, which is reflected by the A-VG, saturated over the range of glucose (1.28 +/- 0.12, 2.22 +/- 0.30, 2.92 +/- 0.42, 3.02 +/- 0.41 mM, NS between last 2 values) with a half-maximal effective glucose concentration (EG50) of 5.3 +/- 0.4 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM.   总被引:25,自引:0,他引:25  
M Laakso  S V Edelman  G Brechtel  A D Baron 《Diabetes》1992,41(9):1076-1083
Patients with non-insulin-dependent diabetes mellitus (NIDDM) exhibit decreased rates of skeletal muscle insulin-mediated glucose uptake (IMGU). Because IMGU is equal to the product of the arteriovenous glucose difference (AVG delta) across and blood flow (F) into muscle (IMGU = AVG delta x F), reduced tissue permeability (AVG delta) and/or glucose and insulin delivery (F) can potentially lead to decreased IMGU. The components of skeletal muscle IMGU were studied in six obese NIDDM subjects (103 +/- 9 kg) and compared with those previously determined in six lean (weight 68 +/- 3 kg), and six obese (94 +/- 3 kg) with normal glucose tolerance. The insulin dose-response curves for whole body and leg muscle IMGU were constructed using the combined euglycemic clamp and leg balance techniques during sequential insulin infusions (range of serum insulin 130-80,000 pmol/L). In lean, obese, and NIDDM subjects, whole body IMGU, femoral AVG delta, and leg IMGU increased in a dose-dependent fashion over the range of insulin with an ED50 of 400-500 pmol/L in lean, 1000-1200 pmol/L in obese, and 4000-7000 pmol/L in NIDDM subjects (P less than 0.01 lean vs. obese and NIDDM). In lean and obese subjects, maximally effective insulin concentrations increased leg blood flow approximately 2-fold from basal with an ED50 of 266 pmol/L and 957 pmol/L, respectively (P less than 0.01 lean vs. obese). In contrast, leg F did not increase from the basal value in NIDDM subjects (2.7 +/- 0.1 vs. 3.5 +/- 0.5 dl/min, NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Clerk LH  Vincent MA  Jahn LA  Liu Z  Lindner JR  Barrett EJ 《Diabetes》2006,55(5):1436-1442
We have previously shown that skeletal muscle capillaries are rapidly recruited by physiological doses of insulin in both humans and animals. This facilitates glucose and insulin delivery to muscle, thus augmenting glucose uptake. In obese rats, both insulin-mediated microvascular recruitment and glucose uptake are diminished; however, this action of insulin has not been studied in obese humans. Here we used contrast ultrasound to measure microvascular blood volume (MBV) (an index of microvascular recruitment) in the forearm flexor muscles of lean and obese adults before and after a 120-min euglycemic-hyperinsulinemic (1 mU . min(-1) . kg(-1)) clamp. We also measured brachial artery flow, fasting lipid profile, and anthropomorphic variables. Fasting plasma glucose (5.4 +/- 0.1 vs. 5.1 +/- 0.1 mmol/l, P = 0.05), insulin (79 +/- 11 vs. 38 +/- 6 pmol/l, P = 0.003), and percent body fat (44 +/- 2 vs. 25 +/- 2%, P = 0.001) were higher in the obese than the lean adults. After 2 h of insulin infusion, whole-body glucose infusion rate was significantly lower in the obese versus lean group (19.3 +/- 3.2 and 37.4 +/- 2.6 mumol . min(-1) . kg(-1) respectively, P < 0.001). Compared with baseline, insulin increased MBV in the lean (18.7 +/- 3.3 to 25.0 +/- 4.1, P = 0.019) but not in the obese group (20.4 +/- 3.6 to 18.8 +/- 3.8, NS). Insulin increased brachial artery diameter and flow in the lean but not in the obese group. We observed a significant, negative correlation between DeltaMBV and BMI (R = -0.482, P = 0.027) in response to insulin. In conclusion, obesity eliminated the insulin-stimulated muscle microvascular recruitment and increased brachial artery blood flow seen in lean individuals.  相似文献   

4.
Lteif A  Vaishnava P  Baron AD  Mather KJ 《Diabetes》2007,56(3):728-734
The normal action of insulin to vasodilate and redistribute blood flow in support of skeletal muscle metabolism is impaired in insulin-resistant states. Increased endogenous endothelin contributes to endothelial dysfunction in obesity and diabetes. Here, we test the hypothesis that increased endogenous endothelin action also contributes to skeletal muscle insulin resistance via impairments in insulin-stimulated vasodilation. We studied nine lean and seven obese humans, measuring the metabolic and hemodynamic effects of insulin (300 mU . m(-2) . min(-1)) alone and during femoral artery infusion of BQ123 (an antagonist of type A endothelin receptors, 1 micromol/min). Endothelin antagonism augmented skeletal muscle responses to insulin in obese subjects through changes in both leg blood flow (LBF) and glucose extraction. Insulin-stimulated LBF was significantly increased in obese subjects only. These changes, combined with differential effects on glucose extraction, resulted in augmented insulin-stimulated leg glucose uptake in obese subjects (54.7 +/- 5.7 vs. 107.4 +/- 18.9 mg/min with BQ123), with no change in lean subjects (103.7 +/- 11.4 vs. 88.9 +/- 16.3, P = 0.04 comparing BQ123 across groups). BQ123 allowed augmented leg glucose extraction in obese subjects even in the face of NOS antagonism. These findings suggest that increased endogenous endothelin action contributes to insulin resistance in skeletal muscle of obese humans, likely through both vascular and tissue effects.  相似文献   

5.
Obese subjects exhibit a delay in insulin action and delivery of insulin to muscle interstitial fluid during glucose/insulin infusion. The aim of the present study was to follow the distribution of insulin to skeletal muscle after an oral glucose load in obese subjects. We conducted an oral glucose tolerance test (OGTT) in 10 lean and 10 obese subjects (BMI 23 +/- 0.6 vs. 33 +/- 1.2 kg/m(2); P < 0.001). Insulin measurements in muscle interstitial fluid were combined with forearm arteriovenous catheterization and blood flow measurements. In the obese group, interstitial insulin was significantly (35-55%) lower than plasma insulin (P < 0.05) during the 1st h after the OGTT, whereas in lean subjects, no significant difference was found between interstitial and plasma insulin levels during the same time period. The permeability surface area product for glucose, representing capillary recruitment, increased in the lean group (P < 0.05) but not in the obese group (NS). Obese subjects had a significantly higher plasma insulin level at 90-120 min after oral glucose (398 +/- 57 vs. 224 +/- 37 pmol/l in control subjects; P < 0.05). The significant gradient between plasma insulin and muscle interstitial insulin during the first hour after OGTT suggests a slow delivery of insulin in obese subjects. The hindered transcapillary transport of insulin may be attributable to a defect in insulin-mediated capillary recruitment.  相似文献   

6.
The effect and time course of free fatty acid (FFA) elevation on insulin-mediated vasodilation (IMV) and the relationship of FFA elevation to changes in insulin-mediated glucose uptake was studied. Two groups of lean insulin-sensitive subjects underwent euglycemic-hyperinsulinemic (40 mU x m(-2) x min(-1)) clamp studies with and without superimposed FFA elevation on 2 occasions approximately 4 weeks apart. Groups differed only by duration of FFA elevation, either short (2-4 h, n = 12) or long (8 h, n = 7). On both occasions, rates of whole-body glucose uptake were measured, and changes in leg blood flow (LBF) and femoral vein nitric oxide nitrite plus nitrate (NOx) flux in response to the clamps were determined. Short FFA infusion did not have any significant effect on the parameters of interest. In contrast, long FFA infusion decreased rates of whole-body glucose uptake from 47.7 +/-2.8 to 32.2 +/- 0.6 micromol x kg(-1) x min(-1) (P < 0.01), insulin-mediated increases in LBF from 66 +/- 8 to 37 +/- 7% (P < 0.05), and insulin-induced increases in NOx flux from 25 +/- 9 to 5 +/- 9% (P < 0.05). Importantly, throughout all groups, FFA-induced changes in whole-body glucose uptake correlated significantly with FFA-induced changes in insulin-mediated increases in LBF (r = 0.706, P < 0.001), which indicates coupling of metabolic and vascular effects. In a different protocol, short FFA elevation blunted the LBF response to NG-monomethyl-L-arginine (L-NMMA), which is an inhibitor of NO synthase. LBF in response to L-NMMA decreased by 17.3 +/- 2.4 and 9.0 +/- 1.4% in the groups without and with FFA elevation, respectively (P < 0.05), which indicates that FFA elevation interferes with shear stress-induced NO production. Thus, impairment of shear stress-induced vasodilation and IMV by FFA elevation occurs with different time courses, and impairment of IMV occurs only if glucose metabolism is concomitantly reduced. These findings suggest that NO production in response to the different stimuli may be mediated via different signaling pathways. FFA-induced reduction in NO production may contribute to the higher incidence of hypertension and macrovascular disease in insulin-resistant patients.  相似文献   

7.
Insulin-mediated hemodynamic effects in muscle were assessed in relation to insulin resistance in obese and lean Zucker rats. Whole-body glucose infusion rate (GIR), femoral blood flow (FBF), hindleg glucose extraction (HGE), hindleg glucose uptake (HGU), 2-deoxyglucose (DG) uptake into muscles of the lower leg (R(g)), and metabolism of infused 1-methylxanthine (1-MX) to measure capillary recruitment were determined for isogylcemic (4.8 +/- 0.2 mmol/l, lean; 11.7 +/- 0.6 mmol/l, obese) insulin-clamped (20 mU. min(-1). kg(-1) x 2 h) and saline-infused control anesthetized age-matched (20 weeks) lean and obese animals. Obese rats (445 +/- 5 g) were less responsive to insulin than lean animals (322 +/- 4 g) for GIR (7.7 +/- 1.4 vs. 22.2 +/- 1.1 mg. min(-1). kg(-1), respectively), and when compared with saline-infused controls there was no increase due to insulin by obese rats in FBF, HGE, HGU, and R(g) of soleus, plantaris, red gastrocnemius, white gastrocnemius, extensor digitorum longus (EDL), or tibialis muscles. In contrast, lean animals showed marked increases due to insulin in FBF (5.3-fold), HGE (5-fold), HGU (8-fold), and R(g) ( approximately 5.6-fold). Basal (saline) hindleg 1-MX metabolism was 1.5-fold higher in lean than in obese Zucker rats, and insulin increased in only that of the lean. Hindleg 1-MX metabolism in the obese decreased slightly in response to insulin, thus postinsulin lean was 2.6-fold that of the postinsulin obese. We conclude that muscle insulin resistance of obese Zucker rats is accompanied by impaired hemodynamic responses to insulin, including capillary recruitment and FBF.  相似文献   

8.
Skeletal muscle insulin resistance in obese patients with non-insulin-dependent diabetes mellitus (NIDDM) is characterized by decreased glucose uptake. Although reduced glycogen synthesis is thought to be the predominant cause for this deficit, studies supporting this notion often have been conducted at supraphysiological insulin concentrations in which glucose storage is the overwhelming pathway of glucose disposal. However, at lower, more physiological insulin concentrations, decreased muscle glucose oxidation could play a significant role. This study was undertaken to determine whether, under euglycemic conditions, insulin resistance for leg muscle glucose uptake in NIDDM patients is due primarily to decreased glucose storage or to oxidation. The leg balance technique and leg indirect calorimetry were used under steady-state euglycemic conditions to estimate muscle glucose uptake, storage, and oxidation in eight moderately obese NIDDM patients and eight matched-control subjects. Leg muscle biopsies also were performed to determine whether alterations in muscle pyruvate dehydrogenase or glycogen synthase activities could explain defects in glucose oxidation or storage. At insulin concentrations of approximately 500-600 pM, leg glucose uptake, oxidation, and storage in the NIDDM group (2.03 +/- 0.42, 1.00 +/- 0.13, 0.66 +/- 0.36 mumol.min-1.100 ml-1) were significantly lower (P less than 0.05) than rates in control subjects (5.14 +/- 0.64, 1.92 +/- 0.17, 2.80 +/- 0.54). Pyruvate dehydrogenase and glycogen synthase activities were also decreased, consistent with the in vivo metabolic defects. The average deficit in leg glucose uptake in NIDDM was 3.11 +/- 0.42 mumol.min-1.100 ml-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In obesity, impaired glucose tolerance (IGT), non-insulin-dependent diabetes mellitus (NIDDM), and gestational diabetes mellitus (GDM), defects in glucose transport system activity, contribute to insulin resistance in target tissues. In adipocytes from obese and NIDDM patients, we found that pretranslational suppression of the insulin-responsive GLUT4 glucose transporter isoform is a major cause of cellular insulin resistance; however, whether this process is operative in skeletal muscle is not clear. To address this issue, we performed percutaneous biopsies of the vastus lateralis in lean and obese control subjects and in obese patients with IGT and NIDDM and open biopsies of the rectus abdominis at cesarian section in lean and obese gravidas and gravidas with GDM. GLUT4 was measured in total postnuclear membrane fractions from both muscles by immunoblot analyses. The maximally insulin-stimulated rate of in vivo glucose disposal, assessed with euglycemic glucose clamps, decreased 26% in obesity and 74% in NIDDM, reflecting diminished glucose uptake by muscle. However, in vastus lateralis, relative amounts of GLUT4 per milligram membrane protein were similar (NS) among lean (1.0 +/- 0.2) and obese (1.5 +/- 0.3) subjects and patients with IGT (1.4 +/- 0.2) and NIDDM (1.2 +/- 0.2). GLUT4 content was also unchanged when levels were normalized per wet weight, per total protein, and per DNA as an index of cell number. Levels of GLUT4 mRNA were similarly not affected by obesity, IGT, or NIDDM whether normalized per RNA or for the amount of an unrelated constitutive mRNA species. Because muscle fibers (types I and II) exhibit different capacities for insulin-mediated glucose uptake, we tested whether a change in fiber composition could cause insulin resistance without altering overall levels of GLUT4. However, we found that quantities of fiber-specific isoenzymes (phopholamban and types I and II Ca(2+)-ATPase) were similar in all subject groups. In rectus abdominis, GLUT4 content was similar in the lean, obese, and GDM gravidas whether normalized per milligram membrane protein (relative levels were 1.0 +/- 0.2, 1.3 +/- 0.1, and 1.0 +/- 0.2, respectively) or per wet weight, total protein, and DNA. We conclude that in human disease states characterized by insulin resistance, i.e., obesity, IGT, NIDDM, and GDM, GLUT4 gene expression is normal in vastus lateralis or rectus abdominis. To the extent that these muscles are representative of total muscle mass, insulin resistance in skeletal muscle may involve impaired GLUT4 function or translocation and not transporter depletion as observed in adipose tissue.  相似文献   

10.
Insulin and glucose delivery (muscle perfusion) can modulate insulin-mediated glucose uptake. This study was undertaken to determine 1) to what extent insulin sensitivity modulates the effect of perfusion on glucose uptake and 2) whether this effect is achieved via capillary recruitment. We measured glucose disposal rates (GDRs) and leg muscle glucose uptake (LGU) in subjects exhibiting a wide range of insulin sensitivity, after 4 h of steady-state (SS) euglycemic hyperinsulinemia (>6,000 pmol/l) and subsequently after raising the rate of leg blood flow (LBF) 2-fold with a superimposed intrafemoral artery infusion of methacholine chloride (Mch), an endothelium-dependent vasodilator. LBF was determined by thermodilution: LGU = arteriovenous glucose difference (AVGdelta) x LBF. As a result of the 114+/-12% increase in LBF induced by Mch, the AVGdelta decreased 32+/-4%, and overall rates of LGU increased 40+/-5% (P < 0.05). We found a positive relationship between the Mch-modulated increase in LGU and insulin sensitivity (GDR) (r = 0.60, P < 0.02), suggesting that the most insulin-sensitive subjects had the greatest enhancement of LGU in response to augmentation of muscle perfusion. In separate groups of subjects, we also examined the relationship between muscle perfusion rate and glucose extraction (AVGdelta). Perfusion was either pharmacologically enhanced with Mch or reduced by intra-arterial infusion of the nitric oxide inhibitor N(G)-monomethyl-L-arginine during SS euglycemic hyperinsulinemia. Over the range of LBF, changes in AVGdelta were smaller than expected based on the noncapillary recruitment model of Renkin. Together, the data indicate that 1) muscle perfusion becomes more rate limiting to glucose uptake as insulin sensitivity increases and 2) insulin-mediated increments in muscle perfusion are accompanied by capillary recruitment. Thus, insulin-stimulated glucose uptake displays both permeability- and perfusion-limited glucose exchange properties.  相似文献   

11.
We tested the hypothesis that insulin has effects on large artery stiffness in addition to its slow vasodilatory effect on resistance vessels in skeletal muscle, and whether such an effect might be altered in obesity. Eight nonobese (aged 25 +/- 1 years, BMI 22.7 +/- 0.4 kg/m2) and eight obese (aged 27 +/- 2 years, BMI 30.6 +/- 0.9 kg/m2) men were studied under normoglycemic-hyperinsulinemic (sequential 2-h insulin infusions of 1 [step 1] and 2 [step 2] mU x kg(-1) x min(-1)) conditions, and another seven men participated in a saline control study. Central aortic pressure waves were synthesized from those recorded in the periphery using applanation tonometry and a validated reverse transfer function every 30 min. This allowed determination of augmentation (the pressure difference between early and late systolic pressure peaks) and the augmentation index (augmentation divided by pulse pressure), a measure of arterial stiffness. Whole-body glucose uptake was reduced by 48 (step 1) and 41% (step 2) (P < 0.01) in the obese subjects versus the nonobese subjects. Basal forearm blood flow averaged 2.5 +/- 0.2 and 2.6 +/- 0.2 ml x dl(-1) x min(-1) in the obese and nonobese subjects, respectively (NS). Insulin induced a significant increase in forearm blood flow after 2.5 h (3.6 +/- 0.4 ml x dl(-1) x min(-1), P < 0.05 vs. basal) in the nonobese subjects and after 4 h in the obese subjects (3.2 +/- 0.2, P < 0.05). In contrast to these slow changes in peripheral blood flow, augmentation and the augmentation index decreased significantly in the nonobese subjects after 1 h (-3.0 +/- 1.6 mmHg and -10.0 +/- 5.4%, respectively, P < 0.001 vs. basal), but remained unchanged until 3 h in the obese subjects. Percent fat (r = 0.86, P < 0.0001) and whole-body glucose uptake (r = -0.72, P < 0.01) correlated with the change in the augmentation index by insulin. These data demonstrate temporal dissociation in insulin's vascular actions. Insulin's effect to decrease arterial stiffness in nonobese subjects (a decrease in wave reflection) is observed under physiological conditions and precedes a slow vasodilatory effect in the periphery. In the obese subjects, insulin's normal effect to decrease central wave reflection is severely blunted. The degree of impairment in this novel vascular action of insulin is closely correlated with the degree of obesity and insulin action on glucose uptake.  相似文献   

12.
In patients with type 2 diabetes, a strong correlation between accumulation of intramuscular triclycerides (TGs) and insulin resistance has been found. The aim of the present study was to determine whether there is a causal relation between intramuscular TG accumulation and insulin sensitivity. Therefore, in mice with muscle-specific overexpression of human lipoprotein lipase (LPL) and control mice, muscle TG content was measured in combination with glucose uptake in vivo, under hyperinsulinemic-euglycemic conditions. Overexpression of LPL in muscle resulted in accumulation of TGs in skeletal muscle (85.5 +/- 33.3 vs. 25.7 +/- 23.1 micromol/g tissue in LPL and control mice, respectively; P < 0.05). During the hyperinsulinemic clamp study, there were no differences in plasma glucose, insulin, and FFA concentrations between the two groups. Moreover, whole-body, as well as skeletal muscle, insulin-mediated glucose uptake did not differ between LPL-overexpressing and wild-type mice. Surprisingly, whole-body glucose oxidation was decreased by approximately 60% (P < 0.05), whereas nonoxidative glucose disposal was increased by approximately 50% (P < 0.05) in LPL-overexpressing versus control mice. In conclusion, overexpression of human LPL in muscle increases intramuscular TG accumulation, but does not affect whole-body or muscle-specific insulin-mediated uptake, findings that argue against a simple causal relation between intramuscular TG content and insulin resistance.  相似文献   

13.
Clustering of classical cardiovascular risk factors is insufficient to account for the excess coronary artery disease (CAD) of patients with diabetes, and chronic hyperglycemia and insulin resistance (IR) are obvious culprits. Whole-body and skeletal muscle IR is characteristic of patients with type 2 diabetes, but whether it extends to the normally contracting cardiac muscle is controversial. We investigated whether type 2 diabetes is associated with myocardial IR independent of CAD in a case-control series (n = 55) of male nondiabetic and diabetic (type 2 and type 1) patients with or without angiographically documented CAD. Baseline blood flow ((15)O-water) and insulin-stimulated glucose uptake ((18)F-fluoro-deoxyglucose) during euglycemic (5.6 mmol/l), physiological hyperinsulinemia (40 mU x min(-1) x m(-2) insulin clamp) were measured by positron emission tomography in skeletal muscle and normally contracting myocardium. Skeletal muscle glucose uptake was reduced in association with both CAD and type 2 diabetes. In regions with normal baseline perfusion, insulin-mediated myocardial glucose uptake was reduced in non-CAD type 2 diabetic (0.36 +/- 0.14 micro mol x min(-1). g(-1)) and nondiabetic CAD patients (0.44 +/- 0.15 micro mol x min(- 1) x g(-1)) in comparison with healthy control subjects (0.61 +/- 0.08) or with non-CAD type 1 diabetic patients (0.80 +/- 0.13; P < 0.001 for both CAD and diabetes). Neither basal skeletal muscle nor basal myocardial blood flow differed across groups; both skeletal muscle and myocardial IR were directly related to whole-body IR. We conclude that type 2 diabetes is specifically associated with myocardial IR that is independent of and nonadditive with angiographic CAD and proportional to skeletal muscle and whole-body IR.  相似文献   

14.
It has been proposed that insulin-mediated changes in muscle perfusion modulate insulin-mediated glucose uptake. However, the putative effects of insulin on the microcirculation that permit such modulation have not been studied in humans. We examined the effects of systemic hyperinsulinemia on skin microvascular function in eight healthy nondiabetic subjects. In addition, the effects of locally administered insulin on skin blood flow were assessed in 10 healthy subjects. During a hyperinsulinemic clamp, we measured leg blood flow with venous occlusion plethysmography, skin capillary density with capillaroscopy, endothelium-(in)dependent vasodilatation of skin microcirculation with iontophoresis of acetylcholine and sodium nitroprusside combined with laser Doppler fluxmetry, and skin vasomotion by Fourier analysis of microcirculatory blood flow. To exclude nonspecific changes in the hemodynamic variables, a time-volume control study was performed. Insulin iontophoresis was used to study the local effects of insulin on skin blood flow. Compared to the control study, systemic hyperinsulinemia caused an increase in leg blood flow (-0.54 +/- 0.93 vs. 1.97 +/- 1.1 ml. min(-1). dl(-1); P < 0.01), an increase in the number of perfused capillaries in the resting state (-3.7 +/- 3.0 vs. 3.4 +/- 1.4 per mm(2); P < 0.001) and during postocclusive reactive hyperemia (-0.8 +/- 2.2 vs. 5.1 +/- 3.7 per mm(2); P < 0.001), an augmentation of the vasodilatation caused by acetylcholine (722 +/- 206 vs. 989 +/- 495%; P < 0.05) and sodium nitroprusside (618 +/- 159 vs. 788 +/- 276%; P < 0.05), and a change in vasomotion by increasing the relative contribution of the 0.01- to 0.02-Hz and 0.4- to 1.6-Hz spectral components (P < 0.05). Compared to the control substance, locally administered insulin caused a rapid increase ( approximately 13.5 min) in skin microcirculatory blood flow (34.4 +/- 42.5 vs. 82.8 +/- 85.7%; P < 0.05). In conclusion, systemic hyperinsulinemia in skin 1) induces recruitment of capillaries, 2) augments nitric oxide-mediated vasodilatation, and 3) influences vasomotion. In addition, locally administered insulin 4) induces a rapid increase in total skin blood flow, independent of systemic effects.  相似文献   

15.
Hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM) stimulates peripheral glucose uptake, which tends to compensate for impaired insulin-mediated glucose uptake. The metabolic fate of glucose and suppression of fat oxidation may differ, however, when glucose uptake is stimulated primarily by insulin or hyperglycemia. To address this issue, three hyperinsulinemic glucose-clamp studies were performed in combination with indirect calorimetry in seven nonobese subjects with NIDDM. In the first two experiments, when glucose uptake was matched at approximately 8 mg.kg-1 fat-free mass (FFM).min-1 with primarily hyperinsulinemia (1350 +/- 445 pM) or hyperglycemia (20.8 +/- 1.8 mM), identical rates of glucose oxidation (3.21 +/- 0.29 and 3.10 +/- 0.23 mg.kg-1 FFM.min-1, NS) and nonoxidative glucose metabolism (5.19 +/- 0.75 and 5.46 +/- 0.61 mg.kg-1 FFM.min-1, NS) were achieved. When glucose uptake was increased further to 11.11 +/- 0.36 mg.kg-1 FFM.min-1 with less insulin (625 +/- 70 pM) and hyperglycemia, glucose oxidation (3.85 +/- 0.26 mg.kg-1 FFM.min-1) and nonoxidative glucose metabolism (7.26 +/- 0.51 mg.kg-1 FFM.min-1) rose significantly (both P less than 0.05 from matched studies at lower rates of glucose uptake). During all glucose-clamp studies, free fatty acids were comparably suppressed by 40-46% (all P less than 0.005 vs. basal values), whereas fat oxidation was suppressed by 70-80% (all P less than 0.005 vs. basal values). A strong negative correlation was observed between rates of glucose and fat oxidation (r = -0.88, P less than 0.001) when all studies were combined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Insulin and exercise have been shown to activate glucose transport at least in part via different signaling pathways. However, it is unknown whether insulin resistance is associated with a defect in the ability of an acute bout of exercise to enhance muscle glucose uptake in vivo. We compared the abilities of insulin and isometric exercise to stimulate muscle blood flow and glucose uptake in 12 men with type 1 diabetes (age 24 +/- 1 years, BMI 23.0 +/- 0.4 kg/m(2)) and in 11 age- and weight-matched nondiabetic men (age 25 +/- 1 years, BMI 22.3 +/- 0.6 kg/m(2)) during euglycemic hyperinsulinemia (1 mU. kg(-1). min(-1) insulin infusion for 150 min). One-legged exercise was performed at an intensity of 10% of maximal isometric force for 105 min (range 45-150). Rates of muscle blood flow, oxygen consumption, and glucose uptake were quantitated simultaneously in both legs using [(15)O]water, [(15)O]oxygen, [(18)F]-2-fluoro-2-deoxy-D-glucose, and positron emission tomography. Resting rates of oxygen consumption were similar during hyperinsulinemia between the groups (2.4 +/- 0.3 vs. 2.0 +/- 0.5 ml. kg(-1) muscle. min(-1); normal subjects versus patients with type 1 diabetes, NS), and exercise increased oxygen consumption similarly in both groups (25.3 +/- 4.3 vs. 20.1 +/- 3.0 ml. kg(-1) muscle. min(-1), respectively, NS). Rates of insulin-stimulated muscle blood flow and the increments in muscle blood flow induced by exercise were also similar in normal subjects (129 +/- 14 ml. kg(-1). min(-1)) and in patients with type 1 diabetes (115 +/- 12 ml. kg(-1). min(-1)). The patients with type 1 diabetes exhibited resistance to both insulin stimulation of glucose uptake (34 +/- 6 vs. 76 +/- 9 micromol. kg(-1) muscle. min(-1), P < 0.001) and also to the exercise-induced increment in glucose uptake (82 +/- 15 vs. 162 +/- 29 micromol. kg(-1) muscle. min(-1), P < 0.05). We conclude that the ability of exercise to increase insulin-stimulated glucose uptake in vivo is blunted in patients with insulin-resistant type 1 diabetes compared with normal subjects. This could be caused by either separate or common defects in exercise- and insulin-stimulated pathways.  相似文献   

17.
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. The effects of these identical AICAR and insulin infusion rates were then examined in the obese Zucker rats. AICAR infusion increased muscle AMPK activity more than fivefold (P < 0.01 vs. control and insulin) in both lean and obese rats. Plasma triglycerides, fatty acid concentrations, and glycerol turnover, as assessed by [2-13C]glycerol, were all decreased in both lean and obese rats infused with AICAR (P < 0.05 vs. basal), whereas insulin had no effect on these parameters in the obese rats. Endogenous glucose production rates, measured by [U-13C]glucose, were suppressed by >50% during AICAR and insulin infusions in both lean and obese rats (P < 0.05 vs. basal). In lean rats, rates of whole-body glucose disposal increased by more than two-fold (P < 0.05 vs. basal) during both AICAR and insulin infusion; [3H]2-deoxy-D-glucose transport activity increased to a similar extent, by >2.2-fold (both P < 0.05 vs. control), in both soleus and red gastrocnemius muscles of lean rats infused with either AICAR or insulin. In the obese Zucker rats, neither AICAR nor insulin stimulated whole-body glucose disposal or soleus muscle glucose transport activity. However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.  相似文献   

18.
To evaluate the relative impact of abdominal obesity and newly diagnosed type 2 diabetes on insulin action in skeletal muscle and fat tissue, we studied 61 men with (n = 31) or without (n = 30) diabetes, subgrouped into abdominally obese or nonobese according to the waist circumference. Adipose tissue depots were quantified by magnetic resonance imaging, and regional glucose uptake was measured using 2-[(18)F]fluoro-2-deoxyglucose/positron emission tomography during euglycemic hyperinsulinemia. Across groups, glucose uptake per unit tissue weight was higher in visceral (20.5 +/- 1.4 micromol . min(-1) . kg(-1)) than in abdominal (9.8 +/- 0.9 micromol min(-1) . kg(-1), P < 0.001) or femoral (12.3 +/- 0.6 micromol . min(-1) . kg(-1), P < 0.001) subcutaneous tissue and approximately 40% lower than in skeletal muscle (33.1 +/- 2.5 micromol . min(-1) . kg(-1), P < 0.0001). Abdominal obesity was associated with a marked reduction in glucose uptake per unit tissue weight in all fat depots and in skeletal muscle (P < 0.001 for all regions). Recent type 2 diabetes per se had little additional effect. In both intra-abdominal adipose (r = -0.73, P < 0.0001) and skeletal muscle (r = -0.53, P < 0.0001) tissue, glucose uptake was reciprocally related to intra-abdominal fat mass in a curvilinear fashion. When regional glucose uptake was multiplied by tissue mass, total glucose uptake per fat depot was similar irrespective of abdominal obesity or type 2 diabetes, and its contribution to whole-body glucose uptake increased by approximately 40% in obese nondiabetic and nonobese diabetic men and was doubled in obese diabetic subjects. We conclude that 1) in abdominal obesity, insulin-stimulated glucose uptake rate is markedly reduced in skeletal muscle and in all fat depots; 2) in target tissues, this reduction is reciprocally (and nonlinearly) related to the amount of intra-abdominal fat; 3) mild, recent diabetes adds little insulin resistance to that caused by abdominal obesity; and 4) despite fat insulin resistance, an expanded fat mass (especially subcutaneous) provides a sink for glucose, resulting in a compensatory attenuation of insulin resistance at the whole-body level in men.  相似文献   

19.
The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus can be extrapolated to whole-body muscle glucose metabolism. An alternative method to assess whole-body muscle glycogen synthesis is the use of [3-(3)H]glucose. In the present study, we compared this method to the MRS technique, which is a well-validated technique for measuring muscle glycogen synthesis. Muscle glycogen synthesis was measured in the gastrocnemius muscle of six lean healthy subjects by MRS and by the isotope method during a hyperinsulinemic-euglycemic clamp. Mean muscle glycogen synthesis as measured by the isotope method was 115 +/- 26 micromol x kg(-1) muscle x min(-1) vs. 178 +/- 72 micromol x kg(-1) muscle x min(-1) (P = 0.03) measured by MRS. Glycogen synthesis rates measured by MRS exceeded 100% of glucose uptake in three of the six subjects. We conclude that glycogen synthesis rates measured in gastrocnemius muscle cannot be extrapolated to whole-body muscle glycogen synthesis.  相似文献   

20.
Obesity is a frequent cause of insulin resistance and poses a major risk for diabetes. Abnormal fat deposition within skeletal muscle has been identified as a mechanism of obesity-associated insulin resistance. We tested the hypothesis that dietary lipid deprivation may selectively deplete intramyocellular lipids, thereby reversing insulin resistance. Whole-body insulin sensitivity (by the insulin clamp technique), intramyocellular lipids (by quantitative histochemistry on quadriceps muscle biopsies), muscle insulin action (as the expression of Glut4 glucose transporters), and postprandial lipemia were measured in 20 morbidly obese patients (BMI = 49 +/- 8 [mean +/- SD] kg x m(-2)) and 7 nonobese control subjects. Patients were restudied 6 months later after biliopancreatic diversion (BPD; n = 8), an operation that induces predominant lipid malabsorption, or hypocaloric diet (n = 9). At 6 months, BPD had caused the loss of 33 +/- 10 kg through lipid malabsorption (documented by a flat postprandial triglyceride profile). Despite an attained BMI still in the obese range (39 +/- 8 kg x m(-2)), insulin resistance (23 +/- 3 micromol/min per kg of fat-free mass; P < 0.001 vs. 53 +/- 13 of control subjects) was fully reversed (52 +/- 11 micromol/min per kg of fat-free mass; NS versus control subjects). In parallel with this change, intramyocellular-but not perivascular or interfibrillar-lipid accumulation decreased (1.63 +/- 1.06 to 0.22 +/- 0.44 score units; P < 0.01; NS vs. 0.07 +/- 0.19 of control subjects), Glut4 expression was restored, and circulating leptin concentrations were normalized. In the diet group, a weight loss of 14 +/- 12 kg was accompanied by very modest changes in insulin sensitivity and intramyocellular lipid contents. We conclude that lipid deprivation selectively depletes intramyocellular lipid stores and induces a normal metabolic state (in terms of insulin-mediated whole-body glucose disposal, intracellular insulin signaling, and circulating leptin levels) despite a persistent excess of total body fat mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号