首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Interleukin-1beta (IL-1beta) is a major proinflammatory cytokine that is involved in many important cellular functions such as proliferation, differentiation, and activation of different cell types. Its mature form is released from the cells in response to various bacterial and viral infections, and it plays a significant role in host defense. Mycoplasma pneumoniae is a small bacterium without a cell wall that causes tracheobronchitis and atypical pneumonia in humans following attachment to respiratory epithelium, as well as extrapulmonary infections. Very little is known about the role of cytokines in pathogenesis or the response of target cells to M.pneumoniae attachment. The purpose of this study was to investigate the ability of M. pneumoniae to induce IL-1beta in human lung epithelial carcinoma A549 and in human monocytic U937 cell lines. Following M. pneumoniae infection, both IL-1beta mRNA and protein were induced in A549 cells vs. no induction in uninfected cells; however, the protein remained inside the A549 cells. Similarly, M. pneumoniae infection strongly increased mRNA and extracellular protein levels in U937 cells, which unlike A549 cells did exhibit baseline constitutive levels. De novo IL-1beta protein expression was verified by cycloheximide studies. M. pneumoniae infection did not affect constitutive caspase-1 mRNA or protein levels in either cell line. Reduced caspase-1 activity in A549 cell lysates suggests the presence of an endogenous caspase-1 inhibitory component in the A549 cells. These collective data confirm previous studies that show that M. pneumoniae is a potent inducer of cytokines following adherence to host target cells, and establish that IL-1beta release in response to M. pneumoniae infection is cell-type specific, thus emphasizing the importance of carefully considering multiple cell types in M. pneumoniae pathogenesis studies involving both immune cells and cytokine release patterns.  相似文献   

2.
Chlamydia pneumoniae is an obligate intracellular human pathogen that causes acute respiratory diseases such as pneumonia and bronchitis. Previous studies have established that C. pneumoniae can induce cytokines in mouse and/or human cells, but little information is available on the cytokine response of respiratory epithelial cells, a first line of infection. In this study, heparin treatment of C. pneumoniae significantly reduced its ability to induce interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) mRNA in human lung carcinoma cells, indicating that cytadherence is an important early stimulus for induction of proinflammatory mediators. Although the IL-8, gamma interferon, and TNF-alpha message was consistently induced by infection of A549 cells not treated with heparin, only an elevation of IL-8 protein was detected in A549 supernatants. A549 IL-beta and IL-6 mRNA and supernatant protein profiles were not significantly changed by infection. Heat or UV inactivation of C. pneumoniae only partially reduced the cytokine response, and inhibition of C. pneumoniae protein or DNA synthesis did not affect its ability to induce cytokine gene expression. To prevent stress-induced cytokine release by the A549 cells, centrifugation was not utilized for infection experiments. These experiments establish the importance of cytadherence in cytokine release by cells of respiratory epithelial origin and suggest that further work in the area of cytokine mediators is warranted to gain valuable pathogenic and therapeutic insights.  相似文献   

3.
R Arnold  B Humbert  H Werchau  H Gallati    W Knig 《Immunology》1994,82(1):126-133
The release of interleukin-8 (IL-8), interleukin-6 (IL-6) and the soluble forms of the tumour necrosis factor receptor (sTNF-R) from human pulmonary type II-like epithelial cells (A549) after respiratory syncytial virus (RSV) infection was analysed. RSV infection alone induced a time- and RSV dose-dependent IL-8 and IL-6 release from A549 cells. Furthermore, the soluble form of the TNF-RI was also secreted in a time- and RSV dose-dependent fashion. The soluble TNF-RII was not detected in the cell supernatant of infected epithelial cells. The effect of various cytokines [IL-1 alpha/beta, TNF-alpha/beta, IL-3, IL-6, interferon-gamma (IFN-gamma), transforming growth factor-beta 2 (TGF-beta 2)] and colony-stimulating factors [granulocyte (G)-CSF; granulocyte-macrophage (GM)-CSF] on the IL-8 release from A549 cells was also studied. Our data show that the proinflammatory cytokines IL-1 alpha/beta and TNF-alpha/beta induced an IL-8 release in non-infected A549 cells, and increased the IL-8 release of RSV-infected A549 cells synergistically. In addition, IL-3, G-CSF, IFN-gamma and TGF-beta 2, albeit at high concentrations, induced a low IL-8 release from non-infected A549 cells. The enhanced IL-8 secretion rates were accompanied with elevated cytoplasmic IL-8 mRNA steady state levels, as was shown by Northern blot analysis. Cellular co-culture experiments performed with A549 cells and polymorphonuclear granulocytes or peripheral blood mononuclear cells revealed that increased IL-8 amounts were secreted in the co-culture of non-infected as well as RSV-infected cells. The present study suggests a central role for the airway epithelium during RSV infection with regard to cytokine and cytokine receptor release, resulting in a recruitment and activation of inflammatory and immune effector cells. Our data also suggest that paracrine cytokine networks and cell-cell contact are involved in the regulation of IL-8 secretion within the microenvironment of the bronchial epithelium.  相似文献   

4.
The gene expression and cytokine release of the proinflammatory cytokines interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) after infection of human epithelial cells (HEp-2 cells) and polymorphonuclear granulocytes (PMNs) were investigated by using isogenic pairs of Listeria monocytogenes and Yersinia enterocolitica strains. By polymerase chain reaction-assisted mRNA amplification and RNA dot blot analysis, we showed that PMNs and HEp-2 cells expressed enhanced levels of mRNA encoding IL-1 beta, IL-6, and TNF-alpha after bacterial infection. Concomitant with the enhanced mRNA level, an increased secretion rate of IL-1 beta, IL-6, and TNF-alpha from PMNs as assessed by enzyme-linked immunosorbent assay was observed. HEp-2 cells after infection also released IL-6 and TNF-alpha into the cell supernatant, while no IL-1 beta release was detected. Cellular coincubation experiments were carried out with Transwell chambers. Our studies revealed that the coculture of PMNs and HEp-2 cells led to an increased IL-1 beta and IL-6 release. In contrast, after infection with the invasive bacteria, reduced levels of TNF-alpha were measured. Our data show that PMNs secrete the proinflammatory cytokines IL-1 beta, IL-6, and TNF-alpha within some hours after infection with L. monocytogenes and Y. enterocolitica and that cellular interactions with epithelial cells alone via soluble mediators influence the net amount of released proinflammatory cytokines.  相似文献   

5.
Epithelial cells represent an important source of cytokines that may modulate the influx and functions of mononuclear phagocytes. The aim of our study was to characterize changes in the gene expression of selected cytokines in human macrophages co-cultured with respiratory epithelial cells. The A549 alveolar type II-like cell line was co-cultured with THP-1 cells (monocyte/macrophage cell line) in filter-separated mode to avoid their cell-cell contact. At different time-points (0, 4, 8, 12 and 24?h), the cells were harvested separately to evaluate their gene and protein expression (IL-1 beta, IL-6, IL-8, IL-10 and GM-CSF). Quantitative RT-PCR analysis showed prominent changes in the THP-1 cytokine gene expression induced by a co-culture with A549 cells. Fourfold upregulation of mRNA expression has been found in 12 genes and 4-fold downregulation in 5 genes as compared to the unstimulated control sample with a p value smaller than 0.05. The induction of inhibin beta A and IL-1 beta mRNA after 12?h and the expression of IL-1 alpha and GM-CSF mRNA after 24?h were the most prominent. When looking at the cytokine levels in culture supernatants, IL-1 beta and IL-8 were induced early (at 8?h) as compared to the release of IL-6 and GM-CSF (at 24?h). We conclude that respiratory epithelial cells constitutively regulate the cytokine gene expression of macrophages located in their environment and might further modulate the release of cytokines by posttranslational pathways.  相似文献   

6.
Epidemiologic and clinical evidence suggests that respiratory tract infection with Mycoplasma pneumoniae maybe implicated in the initiation and exacerbation of asthma. This study examines the incidence and frequency of M. pneumoniae infection in children and evaluates the serum cytokine profile and total immunoglobulin E (IgE) levels in a subgroup of patients with clinical presentation of either upper respiratory tract infections (URTI) or lower respiratory tract infections (LRTI). A total of 6986 serum samples were tested for specific IgM anti-M. pneumoniae, and a 4-year cyclical incidence of M. pneumoniae infection was confirmed; however; the peak age of highest incidence in the most recent epidemic fell to 3-4 years. A high incidence was also observed in the 6-7-year age group. Children presenting with LRTI, when compared with those patients presenting with URTI, had significantly higher serum levels of the proinflammatory cytokines, interleukin (IL)-1alpha, IL-6, the T-helper (Th)2-type cytokines, and IL-4 and IL-10. The Th1-type cytokines, IL-2 and IL-12, were within the normal range, whereas interferon-gamma levels were slightly raised. Total serum immunoglobulin E levels were significantly higher in the LRTI group (p < 0.02). Our findings support the emerging evidence that respiratory tract infection with Mycoplasma pneumoniae results in an increased proinflammatory and Th2-type cytokine response that may precede the initiation and exacerbation of asthma.  相似文献   

7.
Induction of the proinflammatory cytokines interleukin-1 (IL-1) (alpha and beta), IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor alpha (TNF-alpha) in pulmonary alveolar macrophages (PAMs) was assessed following experimental infection with porcine reproductive and respiratory syndrome virus (PRRSV) and/or Mycoplasma hyopneumoniae by using in vivo and in vitro models. The in vivo model consisted of pigs infected with PRRSV and/or M. hyopneumoniae and necropsied at 10, 28, or 42 days postinfection. Pigs infected with both pathogens had a greater percentage of macroscopic lung lesions, increased clinical disease, and slower viral clearance than pigs infected with either pathogen alone. The pigs infected with both PRRSV and M. hyopneumoniae had significantly increased levels of mRNA for many proinflammatory cytokines in PAMs collected by bronchoalveolar lavage (BAL) at all necropsy dates compared to those in uninfected control pigs. Increased levels of IL-1beta, IL-8, IL-10, and TNF-alpha proteins in BAL fluid, as measured by enzyme-linked immunosorbent assay, confirmed the increased cytokine induction induced by the pathogens. An in vitro model consisted of M. hyopneumoniae-inoculated tracheal ring explants cultured with PRRSV-infected PAMs. PAMs were harvested at 6 or 15 h postinfection with either or both pathogens. The in vitro study detected increased IL-10 and IL-12 mRNA levels in PAMs infected with PRRSV at all time periods. In addition, IL-10 protein levels were significantly elevated in the culture supernatants in the presence of M. hyopneumoniae-inoculated tracheal ring explants. The increased production of proinflammatory cytokines in vivo and in vitro associated with concurrent M. hyopneumoniae and PRRSV infection may play a role in the increased rates of pneumonia associated with PRRSV infection. The increased levels of IL-10 may be a possible mechanism that PRRSV and M. hyopneumoniae use to exacerbate the severity and duration of pneumonia induced by PRRSV and modulate the respiratory immune response.  相似文献   

8.
9.
10.
11.
Respiratory syncytial virus (RSV) is one of the most important respiratory tract pathogens in infants and young children. The airway epithelial cells are the primary target cells for RSV infection. The airway epithelial layer is not only a physical barrier, but also plays a role in a synthesis of a variety of major inflammatory cytokines (IL-6, IL-8, GM-CSF etc.) as previously reported. Endothelin-1 (ET-1) is a potent bronchoconstrictor and vasoconstrictor factor, and involved in pathogenesis of various diseases of the respiratory tract. We hypothesized that RSV may induce the release of ET-1 from the bronchial epithelial cell line. No previous data is available regarding association between RSV infection and ET-1 release. We evaluated the effect of RSV with different concentrations of RSV (MOI 0.1, 1 and 3 pfu/cell) on bronchial epithelial cell line (A549) and measured the production of ET-1 at both protein and mRNA level. A549 cells were treated with different conditions by using LPS, heat-inactivated RSV, RSV or medium alone as control. We observed time-dependent ET-1 release by RSV-infected A549 cells at 4 h, 24 h and maximum at 72 h. ET-1 was expressed in unstimulated A549 cells and was further increased by RSV. RSV with concentration MOI 0.1 (pfu/cell) and LPS appeared to have strongest stimulation on production of ET-1. In addition, ET-1 mRNA was increased significantly by 16 h and decreased to relatively low-level at 24 h. These experiments suggested that airway epithelial cells might play a role in the local airway smooth muscle tone through the production of endothelin-1 during RSV infection.  相似文献   

12.
Mycoplasma pneumoniae can be divided into two main subtypes depending on the amino acid sequences of the P1 adhesin and the P65 protein, both located in the attachment organelle. Differences between these subtypes in infectivity, virulence and interaction with host cells have not been extensively studied. Using ELISA to measure released protein and real-time PCR to quantify mRNA, we have demonstrated that both M. pneumoniae subtypes significantly increased tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-8 (IL-8) at comparable levels in THP-1 cells over a 72 h period of time. However, subtype 2 induced a statistically significant increase (P<0.001) in the release of interleukin-1beta at 24 h post-infection compared to subtype 1. These data provide evidence that the induction of proinflammatory cytokine gene and protein expression by M. pneumoniae is not dependent on the infecting subtype.  相似文献   

13.
The progression of murine mycoplasma pneumonia is dependent on T cells and other immune cells. The role of cytokines in immunity are complex, and identifying the network of cytokines produced after infection of mice is essential in dissecting the key cytokine cascades involved mycoplasma disease pathogenesis. In the present study, mRNA expression of 143 different cytokines, chemokines, or receptors were evaluated in lung tissues from both susceptible (BALB/c and C3H/HeN) and resistant (C57BL/6) mice after Mycoplasma pulmonis infection. To accomplish this, membrane-based cDNA microarrays were used to monitor changes mRNA expression in lungs. There was a clear association with disease susceptibility and development of cytokine mRNA expression. In addition to proinflammatory cytokines, mRNA expression of an anti-inflammatory cytokine, interleukin-10, increased with disease severity, suggesting an attempt to moderate the severity of the inflammatory response. Furthermore, it is clear that an array of chemokines produced in susceptible mice could contribute to the recruitment and maintenance of inflammatory cells at the site of disease. In support of this, there was an increase in macrophage inflammatory protein 1beta (MIP-1beta; CCL4) and monocyte chemoattractant protein 2 (MCP-2; CCL8) mRNA levels from mycoplasma-infected mice and a corresponding accumulation of CD4+ Th cells expressing the MIP-1beta/MCP-2 receptor, CCR5, in the lungs of mice. Furthermore, MIP-1beta- and MCP-2-producing cells and CD4+ T cells were found to be in close association in pulmonary lesions. Thus, there was a significant cytokine response associated with disease pathogenesis, and these studies provide important leads and insights into ongoing cytokine- and chemokine-mediated processes in this persistent inflammatory disease.  相似文献   

14.
Nontypeable Haemophilus influenzae (NTHi) causes repeated respiratory infections in patients with chronic lung diseases. These infections are characterized by a brisk inflammatory response which results in the accumulation of polymorphonucleated cells in the lungs and is dependent on the expression and secretion of proinflammatory cytokines. We hypothesize that multiple NTHi molecules, including lipooligosaccharide (LOS), mediate cellular interactions with respiratory epithelial cells, leading to the production of proinflammatory cytokines. To address this hypothesis, we exposed 9HTEo- human tracheal epithelial cells to NTHi and compared the resulting profiles of cytokine gene expression and secretion using multiprobe RNase protection assays and enzyme-linked immunosorbent assays (ELISA), respectively. Dose-response experiments demonstrated a maximum stimulation of most cytokines tested, using a ratio of 100 NTHi bacterial cells to 1 9HTEo- tracheal epithelial cell. Compared with purified LOS, NTHi bacterial cells stimulated 3.6- and 4.5-fold increases in epithelial cell expression of interleukin-8 (IL-8) and IL-6 genes, respectively. Similar results were seen with epithelial cell macrophage chemotactic protein 1, IL-1alpha, IL-1beta, and tumor necrosis factor alpha expression. Polymyxin B completely inhibited LOS stimulation but only partially reduced NTHi whole cell stimulation. Taken together, these results suggest that multiple bacterial molecules including LOS contribute to the NTHi stimulation of respiratory epithelial cell cytokine production. Moreover, no correlation was seen between NTHi adherence to epithelial cells mediated by hemagglutinating pili, Hia, HMW1, HMW2, and Hap and epithelial cytokine secretion. These data suggest that bacterial molecules beyond previously described NTHi cell surface adhesins and LOS play a role in the induction of proinflammatory cytokines from respiratory epithelial cells.  相似文献   

15.
Cathepsins B and L are commonly expressed cysteine proteinases that play a major role in lysosomal bulk proteolysis, protein processing, matrix degradation, and tissue remodeling. Cathepsins are also implicated in tumor progression and metastasis, tissue injury, and inflammation. Cells at sites of inflammation often show upregulation and secretion of cathepsins. The regulation of cathepsin expression by inflammatory mediators is not well understood. The aims of this study were to investigate the effect of the cytokines interleukin-1 beta (IL-1 beta), IL-6, IL-10, transforming growth factor-beta 1 (TGF-beta 1), and hepatocyte growth factor (HGF) on expression of cathepsin B and cathepsin L mRNA (quantitative RT-PCR), on protein expression (ELISA, Western blot), and also on enzymatic activity of cathepsins B and L. Investigations were performed using the human lung epithelial cell line A-549. IL-6 was found to induce a concentration-dependent increase in mRNA expression, protein concentration, and enzymatic activity of cathepsin L. Cathepsin B mRNA and protein expression were not affected by IL-6. In contrast, TGF-beta 1 decreased the amount of cathepsin L mRNA and cathepsin B mRNA. At protein level, it was shown that TGF-beta 1 clearly reduced the concentration of cathepsin L but not cathepsin B. The cytokines IL-1 beta, IL-10, and HGF were found to exert no effect on cathepsin B and L expression. In conclusion, these results are the first to show that IL-6 and TGF-beta 1 have opposite effects on the regulation of expression of cathepsins B and L in A-549 human lung epithelial cells. The proinflammatory cytokine IL-6 induced an upregulation of cathepsin L, whereas TGF-beta 1 suppressed cathepsin B and L expression. Further studies are needed to clarify the mechanism that affects cathepsin B and L expression.  相似文献   

16.
Community-acquired pneumonia (CAP) is associated with high morbidity and mortality, and Streptococcus pneumoniae is the most prevalent causal pathogen identified in CAP. Impaired pulmonary host defense increases susceptibility to pneumococcal pneumonia. S. pneumoniae may up-regulate Toll-like receptor (TLR)-2 expression and activate TLR-2, contributing to pneumococcus-induced immune responses. In the current study, the course of severe murine pneumococcal pneumonia after pulmonary TLR-2-mediated immunostimulation with synthetic macrophage-activating lipopeptide-2 (MALP-2) was examined. Intratracheal MALP-2 application evoked enhanced proinflammatory cytokine and chemokine release, resulting in recruitment of polymorphonuclear neutrophils (PMN), macrophages, and lymphocytes into the alveolar space in WT, but not in TLR-2-deficient mice. In murine lungs as well as in human alveolar epithelial cells (A549), MALP-2 increased TLR-2 expression at both mRNA and protein level. Blood leukocyte numbers and populations remained unchanged. MALP-2 application 24 hours before intranasal pneumococcal infection resulted in increased levels of CCL5 associated with augmented leukocyte recruitment, and decreased levels of anti-inflammatory IL-10 in bronchoalveolar lavage fluid. Clinically, MALP-2-treated as compared with untreated mice showed increased survival, reduced hypothermia, and increased body weight. MALP-2 also reduced bacteremia and improved bacterial clearance in lung parenchyma, as examined by immunohistochemistry. In conclusion, pulmonary immunostimulation with MALP-2 before infection with S. pneumoniae improved local host defense and increased survival in murine pneumococcal pneumonia.  相似文献   

17.
The existence of intracellular rickettsiae requires entry, survival, and replication in the eukaryotic host cells and exit to initiate new infection. While endothelial cells are the preferred target cells for most pathogenic rickettsiae, infection of monocytes/macrophages may also contribute to the establishment of rickettsial infection and resulting pathogenesis. We initiated studies to characterize macrophage-Rickettsia akari and -Rickettsia typhi interactions and to determine how rickettsiae survive within phagocytic cells. Flow cytometry, microscopic analysis, and LDH release demonstrated that R. akari and R. typhi caused negligible cytotoxicity in mouse peritoneal macrophages as well as in macrophage-like cell line, P388D1. Host cells responded to rickettsial infection with increased secretion of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Furthermore, macrophage infection with R. akari and R. typhi resulted in differential synthesis and expression of IL-beta and IL-6, which may correlate with the existence of biological differences among these two closely related bacteria. In contrast, levels of gamma interferon (IFN-gamma), IL-10, and IL-12 in supernatants of infected P388D1 cells and mouse peritoneal macrophages did not change significantly during the course of infection and remained below the enzyme-linked immunosorbent assay cytokine detection limits. In addition, differential expression of cytokines was observed between R. akari- and R. typhi-infected macrophages, which may correlate with the biological differences among these closely related bacteria.  相似文献   

18.
Lubin FD  Segal M  McGee DW 《Immunology》2003,108(2):204-210
Epithelial cells (EC) from various tissues can produce important cytokines and chemokines when stimulated by proinflammatory cytokines. These EC also receive signals from cell surface integrins, like the alpha3beta1 integrin, which is important in cell migration and wound healing of epithelial monolayers. However, little is known of the effect of integrin signals on cytokine responses by EC. Colonic Caco-2 cells treated with an anti-alpha3 integrin antibody prior to stimulation with the proinflammatory cytokine interleukin (IL)-1 yielded suppressed levels of mRNA and secreted IL-6, IL-8 and monocyte chemoattractant protein-1 as compared to cells treated with normal mouse immunoglobulin G. Lung A549 cells also showed a similar suppression of cytokine secretion. Likewise, treatment of the Caco-2 cells with the same antibody suppressed tumour necrosis factor-alpha-stimulated IL-6 secretion. Fab fragments of the anti-alpha3 integrin antibody did not induce the suppressive effect but did block the suppressive effect of the whole antibody suggesting that the effect of the antibody required cross-linking of the integrins. Finally, culture of the Caco-2 cells on laminin type 5 (the major ligand for this integrin) yielded depressed levels of IL-1-induced IL-6 secretion as compared to cells on laminin type 1. These data are the first indication that the alpha3beta1 integrin may cause a suppression of cytokine responses by EC which may be important in regulating the capacity of EC to respond during inflammation or wound healing.  相似文献   

19.
Induction of the proinflammatory cytokines interleukin-1 (IL-1) (α and β), IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor alpha (TNF-α) in pulmonary alveolar macrophages (PAMs) was assessed following experimental infection with porcine reproductive and respiratory syndrome virus (PRRSV) and/or Mycoplasma hyopneumoniae by using in vivo and in vitro models. The in vivo model consisted of pigs infected with PRRSV and/or M. hyopneumoniae and necropsied at 10, 28, or 42 days postinfection. Pigs infected with both pathogens had a greater percentage of macroscopic lung lesions, increased clinical disease, and slower viral clearance than pigs infected with either pathogen alone. The pigs infected with both PRRSV and M. hyopneumoniae had significantly increased levels of mRNA for many proinflammatory cytokines in PAMs collected by bronchoalveolar lavage (BAL) at all necropsy dates compared to those in uninfected control pigs. Increased levels of IL-1β, IL-8, IL-10, and TNF-α proteins in BAL fluid, as measured by enzyme-linked immunosorbent assay, confirmed the increased cytokine induction induced by the pathogens. An in vitro model consisted of M. hyopneumoniae-inoculated tracheal ring explants cultured with PRRSV-infected PAMs. PAMs were harvested at 6 or 15 h postinfection with either or both pathogens. The in vitro study detected increased IL-10 and IL-12 mRNA levels in PAMs infected with PRRSV at all time periods. In addition, IL-10 protein levels were significantly elevated in the culture supernatants in the presence of M. hyopneumoniae-inoculated tracheal ring explants. The increased production of proinflammatory cytokines in vivo and in vitro associated with concurrent M. hyopneumoniae and PRRSV infection may play a role in the increased rates of pneumonia associated with PRRSV infection. The increased levels of IL-10 may be a possible mechanism that PRRSV and M. hyopneumoniae use to exacerbate the severity and duration of pneumonia induced by PRRSV and modulate the respiratory immune response.  相似文献   

20.
The cytokine profile associated with either a T helper 1 (Th1) or Th2 response in a porcine respiratory disease model was assessed by measuring IL-12, IL-10 and IFN-gamma using RT-PCR and ELISA, respectively. IL-10, IL-12, and IFN-gamma levels in pulmonary alveolar macrophages and bronchial lavage fluid were increased in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV), Mycoplasma hyopneumoniae, or both pathogens. At 10 days post-infection (DPI), both IL-10 and IL-12 mRNA levels were increased in both groups infected with PRRSV. The IL-12 levels were increased in pigs infected with both pathogens and IFN-gamma protein levels were increased in pigs infected with PRRSV alone and only numerically increased in the dual infection. At 28 DPI, IL-12 mRNA levels and IL-10 protein levels were increased in all infected groups. The mRNA level of IL-12 remained elevated in the group infected with both pathogens at 42 DPI. Production of IFN-gamma did not appear to be closely correlated with elimination of virus from the respiratory tract. However, when the virus existed in the lung, the local IFN-gamma production appeared to increase. Although IL-12 mRNA levels were significantly elevated in the pigs infected with both pathogens, the increased protein levels of IL-12 may compromise the immune system's ability to clear PRRSV from the lung. This could explain the prolonged presence of PRRSV, IFN-gamma production and the increased pneumonia observed in the lungs of dual-infected pigs. The increased levels of cytokines associated with both Th1 and Th2 responses in the respiratory tract of pigs infected with PRRSV and M. hyopneumoniae provides valuable information on the pathogenesis of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号