首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Treating hemodialysis patients to combat anemia corrects hemoglobin but exacerbates iron deficiency by utilizing iron stores. Patients needing iron should receive this by intravenous (i.v.) means. The Dialysis patients' Response to IV iron with Elevated ferritin (DRIVE) trial investigated the role of i.v. iron in anemic patients with high ferritin, low transferrin saturation, and adequate epoetin doses. We examined whether baseline iron and inflammation markers predict the response of hemoglobin to treatment. Patients (134) were randomized to no added iron or to i.v. ferric gluconate for eight consecutive hemodialysis sessions spanning 6 weeks with epoetin increased by 25% in both groups. The patients started with hemoglobin less than or equal to 11 g/dl, ferritin between 500 and 1200 ng/ml, and transferrin saturation of less than 25%. Significantly, patients with a reticulocyte hemoglobin content greater than or equal to 31.2 pg were over five times more likely to achieve a clinically significant increase in hemoglobin of greater than 2 g/dl. Lower reticulocyte hemoglobin contents did not preclude a response to i.v. iron. Significantly higher transferrin saturation or lower C-reactive protein but not ferritin or soluble transferrin receptor levels predicted a greater response; however their influence was not clinically significant in either group. We conclude that none of the studied markers is a good predictor of response to anemia treatment in this patient sub-population.  相似文献   

2.
Pediatric patients with end-stage renal disease undergoing hemodialysis (HD) frequently develop anemia. Administration of recombinant human erythropoietin (rHuEPO) is effective in managing this anemia, although the additional demand for iron often results in iron deficiency. In adult patients undergoing HD, intravenous (IV) iron administration is known to replenish iron stores more effectively than oral iron administration. Nevertheless, IV iron supplementation is underutilized in pediatric patients, possibly because of unproved safety in this population. This international, multicenter study investigated the safety and efficacy of two dosing regimens (1.5 mg kg–1 and 3.0 mg kg–1) of sodium ferric gluconate complex (SFGC) therapy, during eight consecutive HD sessions, in iron-deficient pediatric HD patients receiving concomitant rHuEPO therapy. Safety was evaluated in 66 patients and efficacy was evaluated in 56 patients. Significant increases from baseline were observed in both treatment groups 2 and 4 weeks after cessation of SFGC dosing for mean hemoglobin, hematocrit, transferrin saturation, serum ferritin, and reticulocyte hemoglobin content. Efficacy and safety profiles were comparable for 1.5 mg kg–1 and 3.0 mg kg–1 SFGC with no unexpected adverse events with either dose. Administration of SFGC was safe and efficacious in the pediatric HD population. Given the equivalent efficacy of the two doses, an initial dosing regimen of 1.5 mg kg–1 is recommended for pediatric HD patients.An erratum to this article can be found at The Ferrlecit Pediatric Study Group is a co-author of this paper  相似文献   

3.
The Dialysis Patients Response to IV Iron with Elevated Ferritin (DRIVE) study demonstrated the efficacy of intravenous ferric gluconate to improve hemoglobin levels in anemic hemodialysis patients who were receiving adequate epoetin doses and who had ferritin levels between 500 and 1200 ng/ml and transferrin saturation (TSAT) < or = 25%. The DRIVE-II study reported here was a 6-wk observational extension designed to investigate how ferric gluconate impacted epoetin dosage after DRIVE. During DRIVE-II, treating nephrologists and anemia managers adjusted doses of epoetin and intravenous iron as clinically indicated. By the end of observation, patients in the ferric gluconate group required significantly less epoetin than their DRIVE dose (mean change of -7527 +/- 18,021 IU/wk, P = 0.003), whereas the epoetin dose essentially did not change for patients in the control group (mean change of 649 +/- 19,987 IU/wk, P = 0.809). Mean hemoglobin, TSAT, and serum ferritin levels remained higher in the ferric gluconate group than in the control group (P = 0.062, P < 0.001, and P = 0.014, respectively). Over the entire 12-wk study period (DRIVE plus DRIVE-II), the control group experienced significantly more serious adverse events than the ferric gluconate group (incidence rate ratio = 1.73, P = 0.041). In conclusion, ferric gluconate maintains hemoglobin and allows lower epoetin doses in anemic hemodialysis patients with low TSAT and ferritin levels up to 1200 ng/ml.  相似文献   

4.
AIMS: Iron supplementation is necessary in children on hemodialysis, but the optimal protocol remains unknown. We studied the effects of changing our unit's protocol from oral iron with periodic doses of parenteral iron dextran to routine administration of parenteral sodium ferric gluconate on anemia and iron parameters. METHODS: We followed seven hemodialysis patients aged 15 20 years (mean 17 years). Hemoglobin, hematocrit, serum iron, transferrin saturation, ferritin, erythropoietin dose, total elemental iron dose and total iron cost for the six months prior to the protocol change were compared to the same variables during the six months following the change. RESULTS: There was no statistically significant difference between the doses of parenteral iron between the two protocols; however, the total dose of elemental iron administered in the oral iron plus iron dextran protocol was greater than in the sodium ferric gluconate protocol (19.6+/-13.1 (mean+/-SD) mg/kg/week versus 1.1+/-0.3 mg/kg/week; p = 0.03). Both protocols had equivalent efficacy with respect to hemoglobin, ferritin and other measures of iron stores. On the other hand, the costs of sodium ferric gluconate were significantly higher than those of oral iron plus intermittent iron dextran (157.75+/-45.94 $/patient/month versus 52.08+/-49.88 $/patient/month; p = 0.01). CONCLUSIONS: Routine administration of sodium ferric gluconate is equivalent if not superior to use of oral iron plus iron dextran for maintenance of iron stores in adolescents on hemodialysis, but more expensive.  相似文献   

5.
Few data exist to guide treatment of anemic hemodialysis patients with high ferritin and low transferrin saturation (TSAT). The Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) trial was designed to evaluate the efficacy of intravenous ferric gluconate in such patients. Inclusion criteria were hemoglobin or=225 IU/kg per wk or >or=22,500 IU/wk. Patients with known infections or recent significant blood loss were excluded. Participants (n=134) were randomly assigned to no iron (control) or to ferric gluconate 125 mg intravenously with eight consecutive hemodialysis sessions (intravenous iron). At randomization, epoetin was increased 25% in both groups; further dosage changes were prohibited. At 6 wk, hemoglobin increased significantly more (P=0.028) in the intravenous iron group (1.6 +/- 1.3 g/dl) than in the control group (1.1 +/- 1.4 g/dl). Hemoglobin response occurred faster (P=0.035) and more patients responded after intravenous iron than in the control group (P=0.041). Ferritin 800 ng/ml had no relationship to the magnitude or likelihood of responsiveness to intravenous iron relative to the control group. Similarly, the superiority of intravenous iron compared with no iron was similar whether baseline TSAT was above or below the study median of 19%. Ferritin decreased in control subjects (-174 +/- 225 ng/ml) and increased after intravenous iron (173 +/- 272 ng/ml; P<0.001). Intravenous iron resulted in a greater increase in TSAT than in control subjects (7.5 +/- 7.4 versus 1.8 +/- 5.2%; P<0.001). Reticulocyte hemoglobin content fell only in control subjects, suggesting worsening iron deficiency. Administration of ferric gluconate (125 mg for eight treatments) is superior to no iron therapy in anemic dialysis patients receiving adequate epoetin dosages and have a ferritin 500 to 1200 ng/ml and TSAT 相似文献   

6.
BACKGROUND: The diagnosis of iron deficiency using the current commonly used tests is usually difficult in hemodialysis patients. Soluble transferrin receptor (sTfR) has caught the attention of physicians recently as regards its use as a parameter for the evaluation of iron status. This study was conducted in order to evaluate the correlation of serum soluble transferrin receptor (sTfR) concentration with hematological parameters and iron profiles, in the role of identifying iron deficiency among dialysis patients. METHODS: Seventy-three patients having received chronic hemodialysis and stable maintenance recombinant human erythropoietin (rHuEPO) therapy were included. Iron, total iron-binding capacity, ferritin and sTfR were measured in the first week. Following this, these patients began to receive intravenous iron dextran (2 mg/kg/week) for 4 weeks. The hematocrit (Hct), hemoglobin (Hb) levels and reticulocyte counts were evaluated weekly. At the beginning of fifth week, the sTfR level was measured again. Patients were classified as belonging to one of the following groups: serum ferritin < 100 microg/L - absolute iron-deficient group; initial ferritin level > or = 100 microg/L with an increase in hemoglobin of greater than 1 g/dL at the end of the study occult iron deficiency group; others - non iron-deficient group. RESULTS: Seventy-one patients completed the study. The concentration of sTfR was positively correlated with Hct, Hb and reticulocyte index at the beginning (r = 0.236, p = 0.047; r = 0.257, p = 0.04; r = 0.401, p < 0.01, respectively) and at the end of the study (r = 0.384, p < 0.01; r = 0.338, p < 0.01; r = 0.427, p < 0.001, respectively). After 4 weeks of iron and rHuEPO therapy, the sTfR concentration increased, rather than declined, from 21.85 +/- 8.06 nM to 23.76 +/- 7.42 nM (p = 0.04) and the change was positively correlated with the changes in Hct, Hb and reticulocyte index. The administered rHuEPO doses did not differbetween the iron deficiency group (absolute deficiency, n = 3; occult deficiency, n = 10) and non-iron deficiency group (n = 58). The sTfR levels failed to identify the occult iron deficiency group because there was no difference between occult iron-deficient and non-iron-deficient patients (24.73 +/- 9.09 nM versus 21.60 +/- 7.89 nM, p = 0.34). Instead, transferrin saturation (TS) could be a differential marker between the 2 groups (19.0 +/- 10.9% versus 30.1 +/- 12.7%, p = 0.012). CONCLUSION: The serum sTfR concentration is indeed an appropriate marker for erythropoiesis. The erythropoitic effect of administered rHuEPO could mask the effect of iron status on the sTfR concentration. This might make the sTfR concentration no longer an appropriate index to identify the presence of occult iron deficiency. Thus, TS and ferritin currently remain better methods for the evaluation of iron status in rHuEPO-treated chronic hemodialysis patients.  相似文献   

7.
Use of recombinant human erythropoietin in patients with end-stage renal disease has highlighted iron deficiency as the major cause of resistant anemia. The current mainstay of intravenous (i.v.) iron replacement therapy, iron dextran, has been shown in prior studies to have a risk of serious life-threatening anaphylaxis of just under 1 per 100 patients exposed. The current study assessed the safety profile of an alternative i.v. iron, sodium ferric gluconate complex in sucrose (Ferrlecit), as compared with iron dextrans. Sodium ferric gluconate complex in sucrose, a unique chemical preparation, has been in use since 1959, principally in Europe, at a rate of approximately 2.7 million i.v. doses per year (1992 to 1996) in Germany and Italy alone. For iron dextran, usage in the United States was comparable--principally renal hemodialysis--and estimated from market sources at 3.0 million doses per year (1995). From 1976 to 1996, there were 74 allergic adverse events reported for sodium ferric gluconate complex in sucrose to the World Health Organization (WHO), German Health Bureau, and the manufacturer (all combined). For the years 1992 to 1996, sodium ferric gluconate complex in sucrose had an allergy event reporting rate of 3.3 allergy episodes per million doses per year compared with a similar rate of 8.7 reported allergy events per million doses per year for iron dextran in the United States in 1995. Case fatalities for sodium ferric gluconate complex in sucrose and iron dextran within these reports were then compared. For sodium ferric gluconate complex in sucrose, there were no reports of deaths over the entire period (1976 to 1996). However, for iron dextrans, there were 31 fatalities among 196 allergy/anaphylaxis cases reported in the United States between 1976 and 1996, yielding a case-fatality rate of 15.8%. These data show that sodium ferric gluconate complex in sucrose, when compared with iron dextrans in comparably sized patient usage populations with similar total rates of reporting of allergic events, has a significantly lower reported mortality rate (P < 0.001). Thus, the data justify usage of sodium ferric gluconate complex in sucrose as the safer iron replacement therapeutic agent.  相似文献   

8.
BACKGROUND: It is unknown whether intravenous iron or oral iron repletion alone can correct anemia associated with chronic kidney disease (CKD). We conducted a randomized multicenter controlled trial in adult anemic, iron-deficient non-dialysis CKD (ND-CKD) patients (>or=stage 3) not receiving erythropoiesis-stimulating agents (ESAs). METHODS: The participants were randomized to receive either a sodium ferric gluconate complex (intravenous iron) 250 mg i.v. weekly x 4 or ferrous sulfate (oral iron) 325 mg t.i.d. x 42 days. Hemoglobin (Hgb), ferritin and transferrin saturation (TSAT) were measured serially, and the Kidney Disease Quality of Life (KDQoL) questionnaire was administered on days 1 and 43. The primary outcome variable was change from baseline (CFB) to endpoint in Hgb values. RESULTS: Seventy-five patients were analyzed (intravenous iron n = 36, oral iron n = 39). CFB in Hgb was similar in the two groups (intravenous iron 0.4 g/dl vs. oral iron 0.2 g/dl, p = n.s.). However, the increase in Hgb was only significant with intravenous iron (p < 0.01). In comparison to oral iron, intravenous iron achieved greater improvements in ferritin (232.0 +/- 160.8 vs. 55.9 +/- 236.2 ng/ml, p < 0.001) and TSAT (8.3 +/- 7.5 vs. 2.9 +/- 8.8%, p = 0.007). Intravenous iron caused greater improvements in KDQoL scores than oral iron (p < 0.05). The most common side effect reported with intravenous iron was hypotension, while constipation was more common with oral iron. CONCLUSIONS: Oral and intravenous iron similarly increase Hgb in anemic iron-depleted ND-CKD patients not receiving ESAs. Although in comparison to oral iron, intravenous iron may result in a more rapid repletion of iron stores and greater improvement in quality of life, it exposes the patients to a greater risk of adverse effects and increases inconvenience and cost.  相似文献   

9.
BACKGROUND: The evaluation of iron status in dialysis patients provides information essential to the planning of adequate recombinant human erythropoietin (rHuEPO) treatment. Iron status of the patients can be determined from the recently available measurement of content of reticulocyte hemoglobin (CHr). METHODS: In this study, to clarify the accuracy of CHr in diagnosing iron deficiency in hemodialysis (HD) patients, we initially compared CHr with such conventional iron parameters as serum ferritin levels, transferrin saturation and serum soluble transferrin receptor levels. Secondly, we investigated the changes in CHr during iron supplementation for iron-deficient patients to determine whether this marker is a prospective and reliable indicator of iron sufficiency. The participants in this study were 149 hemodialysis (HD) patients and 53 age-matched healthy subjects. Iron deficiency was defined as having a TSAT of less than 20% and serum ferritin of less than 100 ng/ml. Conventional parameters of red blood cells and CHr were measured by an ADVIA120 autoanalyzer. RESULTS: Mean CHr was 32.3 +/- 2.2 pg in the patients undergoing hemodialysis treatment. CHr significantly correlated with iron parameters in the dialysis patients. Logistic regression analysis was performed to determine the relationship between CHr and each outcome measure, and CHr was the significant multivariate predictor of iron deficiency. Iron supplements given to the patients with low CHr and hematocrit (Hct) significantly increased Hct, resulting in a decrease in the weekly dosage of rHuEPO. CONCLUSIONS: CHr, measured simultaneously with Hct, is a sensitive and specific marker of iron status in dialysis patients.  相似文献   

10.
Harmankaya O  Eran A 《Renal failure》2002,24(2):245-247
We conducted a prospective study to determine the effect of intravenous low-dose iron administration in chronic hemodialysis patients treated with recombinant human erythropoietin (rHuEPO). Sixteen hemodialysis patients (8 males and 8 females; mean age 63.1+/-9.8 years) on maintenance rHuEPO therapy were included in the study. Patients with <100 ng/ml of ferritin received 50 mg iron during every hemodialysis session. Patients with 100-200 ng/ml of ferritin were given 50 mg iron fortnightly. Iron was not supplemented in patients with ferritin levels >200 ng/ml. Mean hematocrit, serum iron levels and transferrin saturations were significantly higher at 6 and 12 months. There was a significant reduction in weekly rHuEPO doses between the start and the 6th and 12th months. Our study shows intravenous iron administration of 100 mg/month may be sufficient to achieve a satisfactory iron status in dialysis patients on maintenance rHuEPO therapy.  相似文献   

11.
Intravenous iron therapy is recommended for children and adults who receive hemodialysis (HD) and recombinant human erythropoietin (rHuEPO). However, limited information exists on the use of any maintenance IV iron regimen in children. Therefore, we conducted a prospective, multicenter, open-label trial of maintenance therapy with sodium ferric gluconate complex (SFGC) in iron-replete pediatric HD patients receiving rHuEPO. Patients received SFGC weekly at an initial dose of 1.0 mg kg−1 week−1, not to exceed 125 mg. Doses could be adjusted based on iron indices. Twenty-three patients (mean age: 13.2±2.39 years) were enrolled and received at least one dose of SFGC, while twelve patients completed the study. After 12 weeks of treatment, the mean SFGC dose delivered was 1.0 mg/kg. Mean TSAT and serum ferritin levels remained within NKF-K/DOQI target ranges and the mean Hgb level remained unchanged from baseline. No unexpected or unusual safety risks were associated with SFGC use. In summary, this experience provides evidence for the safety and efficacy of intravenous SFGC and supports the recommendation that the maintenance SFGC starting dose should be 1.0 mg/kg, not to exceed 125 mg, with subsequent adjustments made according to TSAT and/or serum ferritin levels.  相似文献   

12.
Intravenous iron treatment in hemodialysis patients improves the response to recombinant human erythropoietin (rHuEPO) and facilitates achievement of targets for hemoglobin and hematocrit. Excessive treatment, however, could expose patients to risks related to iron overload and oxidative stress. Therefore international treatment guidelines generally recommend that intravenous iron be discontinued when serum ferritin is greater than 500-1000 ng/ml. In this article we explore the relevant issues that inform the decisions as to what levels of serum ferritin are used as the upper limit for treatment. We conclude that the current published literature is inadequate for developing evidence-based guidelines. Clinical judgment is critical to properly weigh the risks and benefits of intravenous iron treatment in the context of the individual patient.  相似文献   

13.
14.
BACKGROUND: Provision of adequate iron to support erythropoiesis in patients with chronic kidney disease (CKD) is time consuming and may present adherence problems for patients in the outpatient setting. We studied an accelerated regimen of high-dose intravenous iron sucrose therapy in a cohort of iron-deficient, anemic CKD patients. METHODS: Intravenous iron sucrose 500 mg was infused over three hours on two consecutive days in 107 CKD patients (glomerular filtration rate, 32.3 +/- 19.6 mL/min/1.73m2, baseline hemoglobin 10.2 +/- 1.7 g/dL). Iron indices (transferrin saturation, ferritin) were measured at baseline and at two and seven days after completion of the iron regimen. Blood pressures were monitored immediately prior to, and hourly throughout the iron sucrose infusions. RESULTS: Transferrin saturation and serum ferritin increased from 18.5 +/- 8.5% and 177 +/- 123.8 ng/mL at baseline to 40.2 +/- 22.3% and 811 +/- 294.1 ng/mL in 102 evaluated patients (P < 0.015). In 55 patients with additional measurements at 7 days post-dosing, the transferrin saturation and ferritin had fallen to 26.3 +/- 10.6% and 691 +/- 261.8 ng/mL (P < 0.015 compared to two days' post-dose). Blood pressure rose slightly, but not significantly, throughout the infusions, and altering the infusion rate was not necessary. Two patients had seven adverse events that were considered related to iron sucrose. CONCLUSION: An accelerated regimen of high-dose intravenous iron sucrose therapy in CKD patients is safe and effective in restoring iron stores, and may potentially save time and improve patient adherence.  相似文献   

15.
Intravenous ascorbic acid administration (IVAA) could override recombinant human erythropoietin (rHuEPO) resistance in hemodialysis patients with iron overload. We investigated the hematopoietic response to IVAA in iron-overloaded hemodialysis patients. We included 36 patients whose ferritin levels were higher than 500 microg/L and who needed more than 100 U/kg/week of rHuEPO. The study included an initial phase (500 mg IVAA twice weekly was administered to all of the patients for 8 weeks) and a maintenance phase (patient groups were formed; Group 1 received IVAA 500 mg/week for 8 weeks and Group 2 received no therapy). We observed a significant increase in hematocrit and transferrin saturation and a decrease in the percentage of hypochromic red cells and ferritin levels at the end of the initial phase. The total weekly-required rHuEpo dose and rHuEpo/hemoglobin also fell significantly after the initial phase. The response remained stable in patient groups during the maintenance phase. In 6 nonresponders, the hypochromic red cells were <10%. In conclusion, IVAA effectively overrides rHuEPO resistance in iron-overloaded hemodialysis patients.  相似文献   

16.
BACKGROUND: There is growing interest to use ascorbic acid as adjuvant therapy for patients with recombinant human erythropoietin-hyporesponsiveness (rHuEpo). Several clinical studies showed the beneficial effect of ascorbic acid treatment on hematologic parameters in rHuEpo-treated hemodialysis patients with elevated or even normal iron stores. However, whether ascorbic acid directly affects stability and cellular metabolism of intravenous iron preparations (IVI) is not well understood. METHODS: The preparations for testing were iron sucrose (Venofer), ferric gluconate (Ferrlecit), and iron dextran (INFeD). HepG2-cells were used to investigate effects of ascorbic acid on iron bioavailability for the intracellular labile iron pool (LIP) from IVI by using the fluorescent calcein-assay, and cellular ferritin content was measured by enzyme-linked immunosorbent assay (ELISA). Transferrin-chelatable iron was assessed by fluorescent-apotransferrin, and cell toxicity was assayed by neutral red cytotoxicity test. RESULTS: The effects of vitamin C on different preparations do not reflect their known chemical stability (i.e., iron dextran >iron sucrose >ferric gluconate). Effects of ascorbic acid on the increase of the intracellular LIP, as well as on increasing mobilization to transferrin in serum, were limited to iron sucrose. Ascorbic acid did not increase cell toxicity and the amount of low molecular weight iron in serum. CONCLUSION: We conclude that corrected ascorbic acid levels in hemodialysis (HD) patients could increase the amount of bioavailable iron from iron sucrose, but not from other classes of IVI. Vitamin C administration could therefore result in a lower need of iron sucrose to correct anemia.  相似文献   

17.
Intravenous infusion of sodium ferric gluconate (Ferrlecit) has been reported to be effective and safe in pediatric and adult hemodialysis patients with iron depletion. We sought to expand on the previous studies by treating 13 consecutive pediatric renal failure and renal transplant patients with sodium ferric gluconate doses that were higher than previously reported. Efficacy was defined as: (1) an increase in hematocrit of ≥3 vol% with no change or a decrease in erythropoietin dose or (2) a stable hematocrit with a decrease of ≥25% in the erythropoietin, 2 weeks to 2 months after sodium ferric gluconate infusion. Two dosing strategies were employed: (1) high dose, where single dose sodium ferric gluconate (mg) ≈ calculated iron deficit, and (2) sodium ferric gluconate, 62.5 mg/dose for children <40 kg, 125 mg/dose for children >40 kg, infused on eight consecutive hemodialysis runs. There was only one self-limited adverse reaction in 60 doses. Three patients with previous adverse reactions to iron dextran tolerated sodium ferric gluconate without adverse effect. Sodium ferric gluconate was efficacious in eight out of ten patients that received a cumulative dose >5 mg/kg. The mean hematocrit increased 30.3±7.8 to 36.4±4.4 vol% (P=0.04) and the mean erythropoietin dose decreased 251.5±149.1 to 100.7±113.0 units/kg/week (P=0.02). Although sodium ferric gluconate appears to be effective and safe at the doses used, multicenter, prospective pharmacokinetic and clinical trials of sodium ferric gluconate should be conducted in children. Received: 29 February 2000 / Revised: 20 June 2000 / Accepted: 27 June 2000  相似文献   

18.
The prevalence of iron deficiency and its contribution to the anemia of end stage renal disease has been extensively studied, but much less is known about the role of iron deficiency in the pathogenesis of the anemia of chronic kidney disease in predialysis patients. All new hemodialysis patients entering a single hemodialysis unit between July 1999 and April 2002 were included in the study. The admission laboratory tests and the Health Care Financing Administration (HCFA) 2728 form were examined to determine the prevalence of erythropoietin use, anemia (Hb < 11 g/dl), and iron deficiency (ferritin < 100 ng/ml and transferrin saturation % < 20%). In a second part of the study, the effect of intravenous iron gluconate replacement in patients with stage III & IV chronic kidney disease was examined. Anemia was present in 68% of all patients starting hemodialysis. Iron deficiency was a common feature occurring in 29% of patients taking erythropoietin (49% of all patients) and 26% of patients without erythropoietin (51% of all patients). Following the administration of intravenous iron gluconate to four patients, there was a significant rise in hemoglobin levels from 10.6 ± 0.19 to 11.7 ± g/dl (p = 0.02). Conclusion: Iron deficiency is common in predialysis patients. Replenishing iron stores in anemic patients with chronic kidney disease significantly increases hemoglobin levels and should be considered as an integral part of the therapy for treating anemia in the predialysis population.  相似文献   

19.
Adequate body iron stores are crucial to assuring rapid and complete response to recombinant human erythropoietin (rHuEPO). In the present study, markers of iron storage were examined in 27 patients with normochromic, normocytic anemia undergoing acute rHuEPO (150 to 300 U/kg t.i.w.) treatment for anemia. We calculated projected iron needed for new hemoglobin synthesis from the difference between initial and target hemoglobin concentrations, initial iron reserves available from initial serum ferritin levels, and net projected surplus or deficit from the difference between needs and reserves. Of 22 patients predicted to develop iron deficiency (mean projected deficit 268 +/- 70 mg), 20 developed evidence of exhausted iron stores (transferrin %sat less than 16 or ferritin less than 30 micrograms/liter) before reaching target hemoglobin; two predicted to become deficient (projected deficit less than 100 mg) did not; and all five predicted to avoid iron deficiency (mean projected surplus 177 +/- 20 mg) remained iron replete. During acute rHuEPO therapy net body iron balance remained neutral in patients receiving no iron supplements and increased 5 mg/kg in patients prescribed oral ferrous sulfate. However, in patients given iron dextran i.v. less than 60% of elemental iron administered became measurable as iron stores or usable for hemoglobin synthesis.  相似文献   

20.
Intravenous iron treatment in hemodialysis patients improves response to recombinant human erythropoietin and facilitates achievement of targets for hemoglobin and hematocrit. Excessive treatment, however, could expose patients to risks related to iron overload and oxidative stress. Therefore, international treatment guidelines generally recommend that intravenous (i.v.) iron be discontinued when serum ferritin is >500-1,000 ng/ml. In the current review, relevant issues that inform decisions as to what levels of serum ferritin should be used as the upper limit for treatment are considered. A conclusion is reached that the current published literature is inadequate for developing evidence-based guidelines on this issue. Instead, clinical judgment is critical to properly weigh risks and benefits of i.v. iron treatment, and to determine whether iron treatment is appropriate for a given patient with higher levels of iron tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号