首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Talman WT  Dragon DN 《Hypertension》2004,43(4):820-824
Because inhibition of neuronal nitric oxide synthase in the nucleus tractus solitarii blocks cardiovascular responses to activation of local glutamate receptors, and because glutamate is a neurotransmitter of baroreceptor afferent nerves, we sought to test the hypothesis that neuronal nitric oxide synthase inhibition would block baroreflex transmission and cause hypertension. We determined reflex heart rate responses to intravenous phenylephrine and sodium nitroprusside in 5 anesthetized rats before and after bilateral microinjection (100 nL) of the neuronal nitric oxide synthase inhibitor AR-R 17477 (7.5 nmol) into the nucleus tractus solitarii. The inhibitor significantly increased mean arterial pressure without affecting heart rate, and it significantly reduced the gain of the baroreflex. After administration of the inhibitor, reflex responses of heart rate to changes in mean arterial pressure were always less than those responses to the same, or less, change in mean arterial pressure in the same animal without administration of the inhibitor. Microinjection of saline (100 nL) bilaterally into the nucleus tractus solitarii did not lead to hypertension or change baroreflex responses. These data support the hypothesis and suggest that neuronal nitric oxide synthase is critical to transmission of baroreflex signals through the nucleus tractus solitarii.  相似文献   

2.
Electrical stimulation of a circumscribed region within the rostral part of the ventrolateral medulla elicits a large increase in arterial pressure accompanied by intense regional vasoconstriction. Microinjection of glutamate has established that the vasomotor effects are due to excitation of cell bodies rather than axons of passage within the ventrolateral region. Bilateral localized destruction of the same region results in a profound decrease in resting arterial pressure as well as virtual abolition of reflexes controlling sympathetic vasomotor activity. Neuroanatomical studies using the method of retrograde transport of horseradish peroxidase (HRP) have shown that this region contains a dense group of neurons projecting to the thoracolumbar spinal cord and receives major monosynaptic inputs from the nucleus tractus solitarius and parabrachial nucleus. There is some evidence that the spinally-projecting ventrolateral cells contain epinephrine. The anatomical and physiological evidence taken together indicate that the bulbospinal pathway originating from the ventrolateral cells plays a major role in the tonic and phasic regulation of arterial pressure.  相似文献   

3.
High salt intake has been shown to augment the sensitivity of rostral ventrolateral medulla (RVLM) sympathoexcitatory neurons. We examined the effects of 4 weeks of high dietary salt (8%) on the sensitivity of nucleus tractus solitarius (NTS) and caudal ventrolateral medulla (CVLM) in controlling RVLM. In chloralose-anesthetized Sprague-Dawley rats, high salt intake did not elevate baseline arterial pressure or heart rate (HR). In high-salt group, NTS, CVLM, and RVLM responses to glutamate were greater. NTS responses to acetylcholine or serotonin, which is independent of baroreflex, also were greater. Phenylephrine or nitroprusside (i.v.) elicited similar changes in arterial pressure and heart rate, the baroreflex sensitivity also was similar in both groups of rats. These results suggest that high salt intake augments the sensitivity of NTS and CVLM sending inhibitory input to RVLM. This presumably may inhibit the RVLM, thereby inhibiting the elevation of arterial pressure.  相似文献   

4.
Tagawa T  Dampney RA 《Hypertension》1999,34(6):1301-1307
Angiotensin II type 1 (AT(1)) receptors are located on pressor neurons in the rostral ventrolateral medulla, and their activation results in an increase in arterial pressure. However, the normal role of these AT(1) receptors in cardiovascular regulation is unknown. In this study, we tested the hypothesis that these receptors mediate synaptic excitation of rostral ventrolateral medullary pressor neurons in response to activation of the hypothalamic paraventricular nucleus. In anesthetized rats, microinjections of the gamma-aminobutyric acid receptor antagonist bicuculline were made into the paraventricular nucleus; this injection causes activation of the nucleus as a consequence of disinhibition. The pressor and sympathoexcitatory responses evoked by paraventricular nucleus activation were significantly reduced (by approximately 40% to 50%) after microinjection of the specific AT(1) receptor antagonists losartan or L-158,809 into the rostral ventrolateral medulla on the ipsilateral, but not contralateral, side. These responses were reduced to a similar degree after microinjections of the neuroinhibitory compound muscimol into the ipsilateral, but not contralateral, rostral ventrolateral medulla. However, bilateral microinjections of the glutamate receptor antagonist kynurenic acid into the rostral ventrolateral medulla had no effect on the responses evoked from the paraventricular nucleus. Conversely, bilateral microinjections of kynurenic acid into the rostral ventrolateral medulla virtually abolished the somatosympathoexcitatory reflex, whereas bilateral microinjections of losartan or L-158,809 had no effect on this reflex. The results indicate that excitatory synaptic inputs to pressor neurons in the rostral ventrolateral medulla arising from activation of the paraventricular nucleus are mediated predominantly by AT(1) receptors.  相似文献   

5.
Chan JY  Wang LL  Ou CC  Chan SH 《Hypertension》2003,42(1):103-109
We reported recently that an upregulation of the inducible nitric oxide synthase (iNOS) in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, is a crucial determinant for the elicitation of cardiovascular depression during experimental endotoxemia. The current study evaluated the hypothesis that a downregulation of the molecular synthesis and functional expression of angiotensin subtype 1 receptor (AT1R) in the RVLM is consequential to this upregulated iNOS. In adult Sprague-Dawley rats maintained under propofol anesthesia, intravenous administration of Escherichia coli lipopolysaccharide (15 mg/kg) elicited a reduction, followed by an augmentation and a secondary decrease in sympathetic vasomotor outflow, together with progressive hypotension and bradycardia. There was also a progressive increase in iNOS mRNA and protein level in the ventrolateral medulla. This was followed by a significant downregulation of both mRNA and protein levels of AT1R in the ventrolateral medulla, alongside reduced efficacy of angiotensin II (50 pmol) to induce an increase in systemic arterial pressure, heart rate, or sympathetic vasomotor outflow on unilateral microinjection into the RVLM. Pretreatment with microinjection of a selective iNOS inhibitor, S-methylisothiourea (250 pmol) bilaterally into the RVLM significantly reversed the reduction in both synthesis and activity of AT1R. We conclude that a downregulation of molecular synthesis and functional expression of AT1R in the ventrolateral medulla is consequential to the overproduction of NO through upregulation of iNOS in the RVLM and may underlie the cardiovascular depression that takes place during experimental endotoxemia.  相似文献   

6.
Angiotensin within the central nervous system appears to be important for the maintenance of hypertension in spontaneously hypertensive rats. This study addresses the hypothesis that blockade of AT1 receptors in the rostral ventrolateral medulla would decrease blood pressure in spontaneously hypertensive rats and that this tonically active AT1-mediated input to the rostral ventrolateral medulla arises from the hypothalamic paraventricular nucleus. Injection of the nonpeptide AT1 receptor antagonist valsartan bilaterally into the rostral ventrolateral medulla of choralose-anesthetized adult spontaneously hypertensive rats produced a dose-related decrease in mean arterial pressure, with a maximal effect of approximately 30 mm Hg. Inhibition of the paraventricular nucleus by local injection of muscimol elicited a similar response, which was inhibited by prior injection of valsartan into the rostral ventrolateral medulla. In contrast, in control Wistar-Kyoto rats, neither valsartan injected into the rostral ventrolateral medulla nor muscimol injected into the paraventricular nucleus had a substantial effect on arterial pressure. These data indicate that in spontaneously hypertensive rats but not in Wistar-Kyoto rats, rostral ventrolateral medulla vasomotor neurons are tonically excited by endogenous stimulation of AT1 receptors, and this input is apparently driven from the hypothalamus. These results suggest that the rostral ventrolateral medulla is one site that the brain renin-angiotensin system acts to maintain elevated blood pressure in spontaneously hypertensive rats.  相似文献   

7.
Tonic cardiovascular effects of angiotensin II in the ventrolateral medulla   总被引:2,自引:0,他引:2  
S Sasaki  R A Dampney 《Hypertension》1990,15(3):274-283
The rostral and caudal parts of the ventrolateral medulla play a major role in the control of blood pressure. Both regions contain a high density of receptor binding sites for angiotensin II, and it has been shown previously that microinjection of angiotensin II into the rostral ventrolateral medulla causes a rise in blood pressure. The aims of this study were to determine the cardiovascular effects of microinjection of angiotensin II and its specific antagonist [Sar1Thr8]angiotensin II into the caudal ventrolateral medulla and to characterize the regional vascular effects elicited by both compounds in the rostral ventrolateral medulla. Microinjections of angiotensin II (0.2-20 pmol) into histologically verified sites in the caudal ventrolateral medulla of anesthetized baroreceptor-denervated rabbits produced dose-dependent decreases in blood pressure and renal sympathetic nerve activity, whereas microinjection of [Sar1Thr8]angiotensin II (40 pmol) produced increases in these variables. In the rostral ventrolateral medulla, angiotensin II (0.02-20 pmol) elicited a dose-dependent increase in blood pressure, iliac vascular resistance, and renal sympathetic nerve activity, whereas [Sar1Thr8]angiotensin II (40 pmol) produced decreases in these variables. The effects on heart rate elicited by either compound in the rostral or caudal ventrolateral medulla were small but were in the same direction as the other cardiovascular variables. In contrast, angiotensin II had no detectable effect on sympathoexcitatory neurons within the rostral dorsomedial medulla, a region that lacks angiotensin II receptor binding sites. The results indicate that endogenous angiotensin II acts on specific receptors within the rostral and caudal parts of the ventrolateral medulla and has a tonic excitatory action on sympathoexcitatory and sympathoinhibitory neurons within these respective regions.  相似文献   

8.
Mayorov DN 《Hypertension》2005,45(5):901-906
Nitric oxide (NO) deficiency in the rostral ventrolateral medulla (RVLM) has been implicated in impaired baroreflex control in hypertensive and heart failure animals. However, the role of local NO in normal baroreflex regulation remains unclear. This study aimed to examine the role of NO in tonic and baroreflex control of blood pressure (BP) in the RVLM of conscious rabbits. Microinjections of NO donors, S-nitroso-N-acetylpenicillamine and sodium nitroprusside (5 to 20 nmol), or NO itself (20 to 200 pmol) into the RVLM dose-dependently increased BP. Bilateral microinjections of an NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol), its inactive enantiomer D-NAME, or soluble guanylate cyclase (sGC) inhibitors, 1-H-[1,2,4]oxadiaolo[4,3-a]quinoxalin-1-one (ODQ, 250 pmol) and methylene blue (10 nmol), into the RVLM did not affect resting BP, heart rate, or renal sympathetic nerve activity (RSNA). However, L-NAME, methylene blue, and ODQ decreased RSNA baroreflex gain by 42% to 55%, whereas D-NAME did not affect this reflex. Co-microinjections of L-NAME and superoxide scavenger tempol (20 nmol) decreased RSNA baroreflex gain by 37+/-8%. Microinjections of a neuronal NOS (nNOS) inhibitor, 7-nitroindazole (500 pmol), into the RVLM decreased RSNA baroreflex gain by 42+/-12%, without altering resting BP, heart rate, or RSNA. Local administration of inducible NOS (iNOS) inhibitors, S-methylisothiourea (0.25 nmol) and aminoguanidine (0.25 and 2.5 nmol), affected neither resting nor baroreflex parameters. These results suggest that nNOS-derived NO facilitates sympathetic baroreflex transmission in the RVLM at least in part via a sGC-dependent, superoxide-independent mechanism. However, local nNOS and iNOS play little role in the tonic support of BP in conscious rabbits.  相似文献   

9.
Cardiovascular responses to L-arginine and nitric oxide (NO) are augmented in the rostral ventrolateral medulla (RVLM) of spontaneously hypertensive rats (SHR), and the intravenous injection of superoxide dismutase (SOD) mimetic decreases the arterial pressure in these rats. In the present study, we examined whether the chronic central infusion of L-arginine or an SOD mimetic would reduce the blood pressure of SHR and alter responses to an NOS inhibitor or an NO donor in the RVLM. For this purpose, we administered L-arginine (SHR-Arg: 13.2 micromol/day, n=6), a stable membrane-permeable SOD mimetic, 4-hydroxy-2, 2,6,6-tetramethyl piperidine-1-oxyl (tempol) (SHR-Temp: 13.2 micromol/day, n=6), or vehicle (SHR-C: n=6) into the lateral ventricle of 12-week-old SHR for 2 weeks. When the rats reached 14 weeks of age, N(G)-nitro-L-arginine methyl ester (L-NAME: 10 nmol/50 nl) or NOC 18 (NO donor: 10 nmol/50 nl) was microinjected into the unilateral RVLM. Blood pressure did not decrease in any of the treatment groups (SHR-Arg: 209+/-4 mmHg, SHR-Temp: 210+/-6 mmHg, SHR-C: 197+/-6 mmHg). The microinjection of L-NAME into the RVLM induced a significant increase in the mean arterial pressure (MAP) (SHR-Arg: 10-4 mmHg, SHR-Temp: 12+/-4 mmHg, SHR-C: 11+/-3 mmHg), and the increases in MAP did not differ among the groups. The micro-injection of NOC 18 reduced MAP (SHR-Arg: -12+/-2 mmHg, SHR-Temp: -15+/-3 mmHg, SHR-C: -13+/-3 mmHg), and the depressor responses were comparable among groups. These results do not support the hypothesis that chronic L-arginine deficiency or the enhanced degeneration of NO by superoxide radicals in the central nervous system contributes to the maintenance of arterial pressure in SHR.  相似文献   

10.
Superoxide has been shown to be an important intracellular mediator of actions of angiotensin II. Recently, we found that blockade of angiotensin II type-1 receptors in the rostral ventrolateral medulla (RVLM) abrogated the pressor effect of emotional stress in rabbits. In the present study, we examined the influence of superoxide dismutase mimetics, tempol and tiron, in RVLM on cardiovascular stress response in conscious rabbits. Air-jet stress evoked a sustained increase in blood pressure (+14+/-2 mm Hg), tachycardia (+52+/-7 bpm), and renal sympathoactivation (+58+/-8%). Bilateral microinjections of tempol or tiron (20 nmol) into RVLM did not alter resting cardiovascular parameters, but attenuated the pressor, sympathetic, and tachycardiac response to stress by 40% to 55%. By contrast, 3-carbamoylproxyl, which is structurally close to tempol but has a lower superoxide scavenging activity, did not alter the stress response. Neither tempol nor tiron altered the sympathoexcitatory response to glutamate microinjections into RVLM or to baroreceptor unloading. Microinjections of nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 10 nmol) into RVLM did not affect the stress response. Coinjections of tempol and L-NAME decreased the pressor response to stress by 35+/-3%. Tempol attenuated the pressor response to microinjection of angiotensin II into RVLM by 59+/-15%, whereas L-NAME did not alter this response. These results suggest that superoxide dismutase mimetics in RVLM attenuate, partially via a nitric oxide-independent mechanism, the pressor effect of emotional stress in rabbits. Together with our previous studies, these results also indicate that superoxide is a key mediator of excitatory actions of angiotensin II in RVLM during acute stress.  相似文献   

11.
Chan JY  Wang LL  Chao YM  Chan SH 《Hypertension》2003,41(3):563-570
We demonstrated recently that a significant reduction in both the molecular synthesis and functional expression of inducible nitric oxide synthase (iNOS) in the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor outflow, underlies the augmented sympathetic vasomotor tone during hypertension. This study further evaluated the hypothesis that this downregulation of basal iNOS at the RVLM during hypertension is innate. In adult spontaneously hypertensive rats (SHR) treated for 4 weeks with the antihypertensive captopril to normalize elevated blood pressure or in young prehypertensive SHR, the significantly lower iNOS mRNA and protein levels at the ventrolateral medulla under basal conditions or on activation by microinjection bilaterally into the RVLM of lipopolysaccharide (10 ng) remained unaltered. The retarded efficacy of lipopolysaccharide (10 ng) to elicit cardiovascular depression (hypotension, bradycardia, and reduction in sympathetic vasomotor tone) also persevered in captopril-treated adult or young normotensive SHR. On the other hand, compared with Wistar-Kyoto normotensive rats, the magnitude of cardiovascular depression induced in adult SHR by local administration into the RVLM of the NO precursor l-arginine (40 nmol) was significantly smaller. In addition, microinjection bilaterally into the RVLM of a selective iNOS inhibitor, aminoguanidine (125 or 250 pmol), was discernibly less efficacious in unmasking hypertension, tachycardia, and the increase in sympathetic vasomotor tone in adult SHR. We conclude that a predisposed reduction in molecular synthesis and functional expression of basal iNOS in the RVLM is associated with the sympathetic vasomotor overactivity during hypertension.  相似文献   

12.
Angiotensin type 1A (AT(1A)) receptors are expressed within the rostral ventrolateral medulla, and microinjections of angiotensin II into this region increase sympathetic vasomotor tone. To determine the effect of sustained increases in AT(1A) receptor density or activity in rostral ventrolateral medulla, we used radiotelemetry to monitor blood pressure in conscious rats before and after bilateral microinjection into the rostral ventrolateral medulla of adenoviruses encoding the wild-type AT(1A) receptor or a constitutively active version of the receptor (Asn111Gly, [N111G]AT(1A)). The constitutively active receptor signals in the absence of angiotensin II. Adenovirus-directed receptor expression was extensively characterized both in vitro and in vivo. We established that adenoviral infection was limited to the rostral ventrolateral medulla and that receptor expression was sustained for > or =10 days; we also observed that adenoviral transgene expression occurs in glia, with no transgene expression observed in neurons of the rostral ventrolateral medulla. Rats receiving the wild-type AT(1A) receptor showed no change in blood pressure, whereas animals receiving the [N111G]AT(1A) receptor displayed an increase in blood pressure that persisted for 3 to 4 days before returning to basal levels. These data indicate that increased AT(1A) receptor activity (not just overexpression) is a primary determinant of efferent drive from rostral ventrolateral medulla and reveal counterregulatory processes that moderate AT(1A) receptor actions at this crucial relay point. More importantly, they imply that constitutive receptor signaling in glia of the rostral ventrolateral medulla can modulate the activity of adjacent neurons to change blood pressure.  相似文献   

13.
The central nervous system plays a key role in the regulation of cardiovascular function, and alterations in the central neural mechanisms that control blood pressure may underlie the vast majority of cases of primary hypertension. The well-studied baroreceptor reflex powerfully regulates arterial pressure, though its involvement in the pathogenesis of chronic hypertension is likely to be only of minor importance. Supraspinal maintenance of sympathetic vasomotor outflow appears to emanate from neurons in the rostral ventrolateral medulla, and the tonic drive exerted on sympathetic vasomotor activity by the rostral ventrolateral medulla appears to be increased in several animal models of hypertension. In particular, the excitation of the rostral ventrolateral medulla by excitatory amino acid neurotransmitters and by stimulation of AT1 angiotensin receptors appears to be increased in experimental hypertension. The current data support the view that neurogenic hypertension is mediated by increased excitatory drive of rostral ventrolateral medulla sympathoexcitatory neurons.  相似文献   

14.
In this study, we examine the role of NO located in the rostral ventrolateral medulla (RVLM) in the control of blood pressure and the activity of the sympathetic nervous system. To determine the effect of an increase in NO production in the RVLM on blood pressure in conscious rats, adenovirus vectors encoding either endothelial NO synthase (AdeNOS) or beta-galactosidase (Adbetagal) were transfected into the bilateral RVLM. The local expression of endothelial NO synthase (eNOS) protein in the RVLM was confirmed by immunohistochemical staining for the eNOS protein and by Western blot analysis. Mean arterial blood pressure (MAP) and heart rate, which were monitored using a radio-telemetry system, were significantly decreased in the AdeNOS-treated group from day 5 to day 10 after the gene transfer. Urinary norepinephrine excretion was decreased on day 7 after the gene transfer in the AdeNOS-treated group. Microinjection of either N(G)-monomethyl-L-arginine (L-NMMA) or bicuculine, a gamma-amino butyric acid (GABA) receptor antagonist, into the RVLM at day 7 after the gene transfer increased MAP to significantly greater levels in the AdeNOS-treated group. However, microinjection of kynurenic acid into the RVLM on day 7 after the gene transfer did not alter MAP levels in either group. GABA and glutamate levels in the RVLM, when measured by in vivo microdialysis, were significantly increased in the AdeNOS-treated group. These results suggest that the increase in NO production caused by the overexpression of eNOS in the bilateral RVLM decreases blood pressure, heart rate, and sympathetic nerve activity in conscious rats. Furthermore, these responses may be mediated by an increased release of GABA in the RVLM.  相似文献   

15.
DiBona GF  Jones SY 《Hypertension》2001,37(4):1114-1123
To determine the effects of physiological alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity (RSNA) and its arterial baroreflex regulation, angiotensin II type 1 receptor antagonists were microinjected into the rostral ventrolateral medulla of anesthetized rats consuming a low, normal, or high sodium diet that were instrumented for simultaneous measurement of arterial pressure and RSNA. Plasma renin activity was increased in rats fed a low sodium diet and decreased in those fed a high sodium diet. Losartan (50, 100, and 200 pmol) decreased heart rate and RSNA (but not mean arterial pressure) dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a high sodium diet. Candesartan (1, 2, and 10 pmol) decreased mean arterial pressure, heart rate, and RSNA dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a normal or high sodium diet. [D-Ala(7)]Angiotensin-(1-7) (100, 200, and 1000 pmol) did not affect mean arterial pressure, heart rate, or RSNA in rats fed either a low or a high sodium diet. In rats fed a low sodium diet, candesartan reset the arterial baroreflex control of RSNA to a lower level of arterial pressure, and in rats with congestive heart failure, candesartan increased the arterial baroreflex gain of RSNA. Physiological alterations in the endogenous activity of the renin-angiotensin system influence the bradycardic, vasodepressor, and renal sympathoinhibitory responses to rostral ventrolateral medulla injection of antagonists to angiotensin II type 1 receptors but not to angiotensin-(1-7) receptors.  相似文献   

16.
We previously demonstrated that the overexpression of endothelial nitric oxide synthase (eNOS) in the rostral ventrolateral medulla (RVLM) decreases blood pressure, heart rate (HR), and sympathetic nerve activity and that these effects are enhanced in stroke-prone spontaneously hypertensive rats (SHRSP). The aim of this study was to determine if an increase in NO production in the RVLM caused by the overexpression of eNOS improves the impaired baroreflex control of HR in SHRSP. We transfected adenovirus vectors encoding eNOS (AdeNOS) into the RVLM of SHRSP or Wistar-Kyoto rats (WKY). Mean arterial pressure and HR were measured by a radio-telemetry system in the conscious state. Reflex changes in HR were elicited by intravenous infusion of either phenylephrine, sodium nitroprusside, or hydralazine at day 7 after the gene transfer. The maximum gain of the baroreflex control of HR was significantly decreased in SHRSP compared with WKY. Overexpression of eNOS in the RVLM of SHRSP improved the impaired maximum gain of the baroreflex control of HR. After treatment with atropine, the maximum gain was still significantly greater in SHRSP in the AdeNOS-transfected group than in the nontransfected group, although it was decreased in both groups. In contrast, after treatment with metoprolol, the maximum gain did not differ between the two groups. These results indicate that an increase in NO production in the RVLM improves the impaired baroreflex control of HR in SHRSP and that these effects may have resulted from a cardiac sympathoinhibitory effect of NO in the RVLM of SHRSP.  相似文献   

17.
Salusin β is a newly identified bioactive peptide, which shows peripheral hypotensive, mitogenic and proatherosclerotic effects. The present study was undertaken to investigate the role of salusin β within the nucleus tractus solitarii (NTS) and the underlying mechanism in regulating blood pressure and heart rate (HR) in spontaneously hypertensive rats (SHR). Our results showed that bilateral or unilateral microinjection of salusin β (0.4–40 pmol) into the NTS in SHR decreased mean arterial pressure and HR in a dose-dependent manner. Bilateral microinjection of salusin β (4 pmol) within NTS improved baroreflex sensitivity functions in SHR. Pretreatment with glutamate receptors antagonist kynurenic acid (5 nmol) into the NTS in SHR did not alter the salusin β (4 pmol) induced hypotension and bradycardia. Likewise, bilateral vagotomy also did not alter the salusin β (4 pmol) induced hypotension and bradycardia. However, pretreatment with GABAA receptors agonist muscimol (100 pmol) within the rostral ventrolateral medulla (RVLM) in SHR almost completely abolished the hypotension and bradycardia evoked by intra-NTS salusin β (4 pmol). Our findings suggested that microinjection of salusin β into the NTS produced hypotension and bradycardia, as well as improved baroreflex sensitivity functions, via inhibiting the activities of presympathetic neurons in the RVLM in SHR.  相似文献   

18.
OBJECTIVE: Magnesium sulfate (MgSO4) is widely used for the treatment of eclampsia. However, effects of Mg2+ in central cardiovascular regulation remain unclear. In the present study, the role of Mg2+ on cardiovascular regulation in the rostral ventrolateral medulla (RVLM) of rats was examined. METHODS: Adult male Wistar rats were anesthetized with urethane, and artificially ventilated. The ventral surface of the medulla was exposed, and the RVLM was identified by microinjection (50 nl) of l-glutamate (l-Glu; 2 nmol). Then, MgSO4 (1, 3, 10 nmol, n = 7 for each dose) and magnesium chloride (MgCl2; 10 nmol, n = 7) were microinjected into the RVLM. l-Glu (2 nmol), N-methyl-D-aspartate (NMDA; 20 pmol), alpha-amino-3-hydroxy-5-methyl isoxazole-4-propionic acid (AMPA; 5 pmol) and (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD, metabotropic glutamate receptor agonist; 1 nmol] were also microinjected with or without pretreatment of MgSO4 (10 nmol; n = 7 for each drug). RESULTS: MgSO4 dose-dependently decreased mean arterial pressure (MAP) and heart rate (HR). The high dose of MgSO4 (10 nmol) significantly decreased MAP and HR (-25 +/- 4 mmHg and -43 +/- 6 bpm). Similarly, MgCl2 decreased MAP and HR (-27 +/- 4 mmHg and -30 +/- 6 bpm). The pressor response evoked by NMDA or (1S,3R)-ACPD was significantly attenuated by the pretreatment with MgSO4. In contrast, pressor response caused by l-Glu or AMPA was not affected by pretreatment with MgSO4. CONCLUSIONS: These results suggest that Mg2+ has an inhibitory role on the RVLM neurons, and inhibits cardiovascular responses induced by NMDA and metabotropic glutamate receptor agonists.  相似文献   

19.
Stimulation of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla decreases the blood pressure via sympathoinhibition. However, alteration of receptor responses in genetically hypertensive rats remains unclear. We examined cardiovascular responses of α2-adrenoceptor/I1-imidazoline receptor agonist and antagonists microinjected into the rostral ventrolateral medulla of conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Injection of 2-nmol clonidine—an α2-adrenoceptor/I1-imidazoline receptor agonist—unilaterally into the rostral ventrolateral medulla decreased the blood pressure, heart rate, and renal sympathetic nerve activity; the responses were significantly enhanced in spontaneously hypertensive rats than in Wistar Kyoto rats. Co-injection of 2-nmol 2-methoxyidazoxan (a selective α2-adrenoceptor antagonist) or 2-nmol efaroxan (an I1-receptor antagonist) with 2 nmol of clonidine attenuated the hypotensive and bradycardic effects of clonidine-only injection. Injection of 2-methoxyidazoxan alone increased the blood pressure and heart rate in spontaneously hypertensive rats, but not in Wistar Kyoto rats. These results suggest enhanced responsiveness of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats.  相似文献   

20.
OBJECTIVE: To examine whether chronic oral treatment with an angiotensin-converting enzyme inhibitor imidapril and an angiotensin II type 1 receptor antagonist TCV-116 would alter the response to angiotensin II in the rostral ventrolateral medulla. METHODS: Twelve-week-old spontaneously hypertensive rats (SHR) were treated with imidapril (20 mg/kg per day, n = 7), TCV-116 (5 mg/kg per day, n = 8) or vehicle (n = 8) for 4 weeks. Wistar- Kyoto rats (WKY) (n = 8) served as normotensive controls. At 16 weeks of age, angiotensin II (100 pmol) was microinjected into the rostral ventrolateral medulla of anaesthetized rats. RESULTS: Blood pressure decreased significantly in the rats treated with either imidapril or TCV-116. Pressor responses to angiotensin II microinjected into the rostral ventrolateral medulla were comparable in the untreated SHR, the imidapril-treated SHR and WKY (12 +/- 2, 15 +/- 4 and 10 +/- 1 mmHg, respectively), but were abolished in SHR treated with TCV-116 (0 +/- 2 mmHg, P< 0.01). Angiotensin-converting enzyme activity in the brain stem was significantly lower in SHR treated with imidapril (0.70 +/- 0.06 nmol/mg per h), but significantly higher in SHR treated with TCV-116 (1.62 +/- 0.04 nmol/mg per h) than in the untreated SHR (1.37 +/- 0.05 nmol/mg per h). CONCLUSIONS: Chronic oral treatment with imidapril and TCV-116 may have divergent influences on the renin-angiotensin system within the brain stem. TCV-116, but not imidapril, abolishes the pressor effect of angiotensin II in the rostral ventrolateral medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号