首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的观察不同年龄对雷米芬太尼靶控输注(TCI)药代动力学模型参数的影响、分析靶浓度与实测浓度的差值并评价TCI系统的性能。方法60例上腹部手术患者随机分为A组(28岁-44岁,n=20),B组(45岁-64岁,n=30),C组(65岁-80岁,n=20)。全麻诱导设定丙泊酚血浆靶控浓度3 mg/L,雷米芬太尼7μg/L。意识消失后给予维库溴铵0.1 mg/kg气管插管后行机械通气。气管插管后丙泊酚的靶控浓度降至2.5 mg/L,雷米芬太尼靶控浓度维持不变。术中调节丙泊酚的量使BIS指数维持在45-55。TCI开始后5 min、10 min、20 min、40 min、60 min、80 min、100 min、120 min抽取动脉血检测雷米芬太尼血药浓度。采用执行误差(PE)的中位数(MDPE)、执行误差的绝对中位数(MDPAE)及摆动度(wobble)评价TCI系统的性能。结果三组患者各时点血浆雷米芬太尼浓度均明显低于靶浓度。输注后5 min、10 min,C组的血浆雷米芬太尼浓度显著高于A、B组,有统计学差异(P〈0.05),而其他各时段两组间无统计学差异(P〉0.05)。三组患者TCI系统偏离度(MDPE)在正常范围, MDAPE大于该范围,摆动度也较大。结论TCI时靶控浓度与实测血药浓度差异较大,老年人的药代动力学特征明显不同于青壮年,在国人使用雷米芬太尼TCI静脉麻醉时,应根据不同年龄设定靶控浓度。  相似文献   

2.
目的测定老年和成年患者依托咪酯诱导时雷米芬太尼抑制气管插管反应的半数有效血浆浓度(Cp50)。方法择期全麻手术患者40例,ASAⅠ或Ⅱ级,年龄19~80岁,体重指数20~30kg/m2,按年龄分为青壮年组(19~64岁)和老年组(65~80岁),每组20例。雷米芬太尼靶控输注5min后,静脉注射0.3mg/kg的依托咪酯,患者意识消失后给予罗库溴铵行气管插管。雷米芬太尼的血浆靶浓度按序贯法确定,相邻血浆靶浓度之间的比率为1.2。结果0.3mg/kg依托咪酯诱导时,老年组和青壮年组雷米芬太尼抑制气管插管的Cp50分别为4.11μg/L和3.37μg/L,95%可信区间分别为3.90~4.34μg/L和3.02~3.75μg/L。结论老年和青壮年患者在复合0.3mg/kg的依托咪酯行麻醉诱导时,雷米芬太尼抑制气管插管反应的Cp50分别为4.11g/L和3.37μg/L。  相似文献   

3.
目的 测定丙泊酚镇静深度下瑞芬太尼抑制不同年龄患者插管反应的半数有效血浆靶控浓度(Cp50)、半数有效实测浓度(Cm50)值、半数有效效应室浓度(EC50)值.方法 60例上腹部手术患者,男37例、女23例,年龄22岁~82岁,分为:青年组(n=20),22岁~44岁,中年组(n=20),45岁~64岁,老年组(n=20),65岁~82岁.所有患者靶控输注丙泊酚、调节丙泊酚靶控输注血浆浓度将脑电双频指数(bispectral index,BIS)目标值定为45~55,待BIS目标值稳定5 min,靶控输注瑞芬太尼.瑞芬太尼的血浆靶控浓度按序贯法确定,输注5 min给予维库溴铵0.1 mg/kg行气管插管,记录血流动力学变化和计算瑞芬太尼Cp50、Cm50、EC50值.结果 3组患者瑞芬太尼抑制插管反应的Cp50和95%CI分别是5.77 μg/L.,4.76 μg/L~7.01 μg/L;4.80 μg/L,3.56 μg/L~6.48 μg/L;4.06 μg,/L,3.52 μg,/L~4.92 μg/L.青年组与中年组、老年组差异有统计学意义(P<0.01),中年组与老年组差异有统计学意义(P<0.05).EC50和95%CI分别是5.90μg/L,4.47 μg/L~7.68 μg/L;4.60 μg/L,3.03 μg/L~5.90 μg/L;4.06 μg/L,2.97 μg/L~5.42 μg/L.青年组与中年组、老年组差异有统计学意义(P<0.05),中年组与老年组差异有统计学意义(P<0.01).Cm50和95%CI分别是4.25 μg/L,2.04 μg/L~6.47 μg/L;3.62 μg/L,1.70 μg/L~5.54 μg/L;3.09 μg/L,1.3μ/L~4.89 μg/L.青年组与老年组差异有统计学意义(P<0.01).3组患者在达到目标BIS值时丙泊酚靶控浓度分别为(3.6±0.6)mg/L、(3.4±0.8)mg/L、(2.7±0.8)mg/L,青年组与老年组差异有统计学意义(P<0.05).结论 丙泊酚复合瑞芬太尼用于抑制气管插管反应,在维持BIS值为45~55时,各年龄组之间的丙泊酚靶控输注血浆浓度、瑞芬太尼的Cp50、Cm50、EC50差异有统计学意义.  相似文献   

4.
张睛  岳云 《临床麻醉学杂志》2008,24(12):1028-1030
目的探讨靶控输注(TCI)丙泊酚和雷米芬太尼的相互关系及对脑电双频指数(BIS)的影响。方法全身麻醉患者100例,根据丙泊酚不同血浆靶浓度随机均分为五组:P1.5组,1.5μg/ml;P2组,2μg/ml;P2.5组,2.5μg/ml;P3组,3μg/ml;P3.5组,3.5μg/ml。待血浆浓度和效应室浓度达到平衡后TCI雷米芬太尼,以血浆浓度0ng/ml为起点,每30秒增加0.3ng/ml,直至患者意识消失及对疼痛刺激(50Hz,80mA,0.25ms强直刺激)无体动反应。记录患者在不同丙泊酚血药浓度下意识消失时和对疼痛刺激无反应时雷米芬太尼的血浆浓度(Cp)和效应室浓度(EC)。结果意识消失时雷米芬太尼Cp50从P1.5组至P3.5组分别为5.0、3.0、2.1、1.2、0ng/ml;疼痛刺激无反应时雷米芬太尼Cp50从P1.5组至P3.5组分别为5.4、4.3、3.9、3.5、3.0ng/ml;疼痛刺激无反应时与意识消失时BIS值的差异无统计学意义。结论BIS值变化与丙泊酚血药浓度呈反比关系,雷米芬太尼对BIS值影响不大。BIS值50~60可以作为丙泊酚和雷米芬太尼静脉复合麻醉时监测意识消失的良好指标。  相似文献   

5.
丙泊酚复合雷米芬太尼行颅脑手术麻醉的血药浓度   总被引:1,自引:0,他引:1  
目的探讨丙泊酚复合雷米芬太尼行颅脑手术时两药合适的血浆药物浓度。方法60例择期颅内肿瘤手术患者,随机分为P4组(n=30)和P6组(n=30),所有患者均采用雷米芬太尼18μg·kg-1·h-1和丙泊酚12mg·kg-1·h-1恒速泵注麻醉诱导,根据需要补充丙泊酚0.5~1mg/kg保持脑电双频指数(BIS)低于60。P4组采用丙泊酚4mg·kg-1·h-1,P6组采用6mg·kg-1·h-1;复合雷米芬太尼10μg·kg-1·h-1维持麻醉。术中根据BIS的变化增加或减少丙泊酚的输入量,维持BIS在40~60。记录不同时点的BP、HR、BIS,记录各组丙泊酚的累积用量和血管活性药物的使用情况,测定血浆丙泊酚浓度。结果两组麻醉诱导平稳,无插管反应发生。麻醉中P4组BIS(49.70±2.75)显著高于P6组(45.80±3.82);P4组和P6组丙泊酚麻醉维持平均剂量分别为(4.43±0.42)和(5.77±0.38)mg.kg-1.h-1。P4组和P6组血丙泊酚浓度分别为(2.00±0.35)和(2.58±0.45)μg/ml。结论丙泊酚复合10μg·kg-1·h-1雷米芬太尼全凭静脉麻醉行颅脑手术,合适的血浆靶控浓度宜为(2.32±0.55)μg/ml。  相似文献   

6.
目的研究靶控输注丙泊酚麻醉诱导时雷米芬太尼对老年人意识消失的影响。方法30名老年患者,随机分两组靶控输注雷米芬太尼4ng/ml组(R组)和生理盐水对照组(C组)。10min后同时靶控输注丙泊酚,效应浓度逐步上升(1,2,4μg/ml)。记录BIS、OAA/S、血液动力学变化、丙泊酚效应浓度及用量。结果OAA/S1分时,R组BIS值为62±18,C组为61±11。R组丙泊酚效应浓度为(1·1±0·4)μg/ml,C组为(2·0±0·4)μg/ml(P<0·05)。R组丙泊酚用量为(63±24)mg,C组为(141±34)mg(P<0·01)。结论雷米芬太尼能协同丙泊酚加强对老年人意识消失的作用。  相似文献   

7.
雷米芬太尼靶控输注在老年患者全麻诱导中的应用   总被引:1,自引:0,他引:1  
目的 比较雷米芬太尼不同血浆靶控浓度在老年患者全麻诱导中的应用.方法 老年患者(≥65岁,A组)和青壮年患者(<60岁,B组)各40例,每组又随机均分为四个亚组:A1、A2、A3、A4、B1、B2、B3、B4,分别输注雷米芬太尼靶控血浆浓度为1、2、3、4 ng/ml,5 min后开始靶控输注丙泊酚(血浆浓度2.5μg/ml),10 min后给维库溴铵0.1 mg/kg,2 min后行气管插管.记录各时刻患者的BP、HR、Grant气管插管评分、BIS及血管活性药物的使用及不良反应的发生情况.结果 A组相对于同浓度B组阿托品和麻黄碱的使用例数增多(P<0.05),A1、A2、A3组使用阿托品的例数少于A4组(P<0.05),A2、A3组使用硝酸甘油的例数分别少于B2、B3组(P<0.05),B2、B3组多于B4组(P<0.05).各浓度的雷米芬太尼均引起BIS的轻度下降,而雷米芬太尼输注后BP虽有轻度下降,但差异无统计学意义.插管评分,B1组明显高于其他亚组(P<0.05).相对于气管插管前即刻,气管插管后1 min与切皮后2 min各组BP均有上升,A3、A4和B4组BP上升、HR增快的幅度较小.结论 靶控输注雷米芬太尼与丙泊酚用于老年患者全麻诱导,两者靶控浓度分别为2~3 ng/ml和2.5μg/ml比较合理,诱导效果满意,且能维持血流动力学稳定.  相似文献   

8.
老年人丙泊酚效应室靶控浓度与脑电双频指数变化的关系   总被引:5,自引:2,他引:3  
目的探讨老年人靶控输注(TCI)丙泊酚时不同效应室靶控浓度与脑电双频指数(BIS)变化的关系,以及镇静和麻醉时效应室靶控浓度的适宜设置值。方法18例老年病人静脉TCI丙泊酚,血浆靶控浓度的设定从0·5μg/ml开始,当效应室靶控浓度上升到血浆靶控浓度水平时,将血浆靶控浓度调高0·5μg/ml,使丙泊酚血浆靶控浓度阶梯式上升,直到效应室靶控浓度达到3·5μg/ml。记录每个效应室靶控浓度水平时的MAP、HR、RR、SpO2、BIS值和Ramsay镇静评级,同时测定丙泊酚血药浓度。结果丙泊酚效应室靶控浓度与实测血药浓度呈高度直线相关(r=0·9982,P<0·01),预测误差中位数(MDPE)=5%,预测误差绝对值的中位数(MDAPE)=12·7%,摇摆率(Wobble)=12·0%。效应室靶控浓度与BIS值呈高度直线负相关(r=-0·9985,P<0·01),回归方程:BIS值=92·94-17·77×效应室靶控浓度值(R2=0·9771,P<0·01)。当效应室靶控浓度达到0·5μg/ml时,50%的病人镇静评级达到3级。效应室靶控浓度达到3·5μg/ml时,MAP的降幅达到基础值的34%,自主呼吸率稍有降低,吸氧条件下SpO2保持在95%以上。结论丙泊酚效应室靶控浓度与BIS值呈负相关,可以用其评估镇静深度。对于老年病人,丙泊酚效应室靶控浓度在0·5~1·0μg/ml时已获得临床镇静效果,2·0~2·5μg/ml时达到全麻诱导的要求。  相似文献   

9.
目的研究在靶控联合输注丙泊酚和雷米芬太尼时小波指数(wavelet index,WLI)监测麻醉深度的可行性。方法选择30例行腹腔镜胆囊切除或妇科腹腔镜手术的全麻患者。全麻诱导采用血浆浓度靶控输注丙泊酚,从1.5μg/ml开始,达到浓度后1min增加0.5μg/ml,最终达到4.0μg/ml,于切皮前5min开始靶控输注雷米芬太尼4.0ng/ml,至开始缝皮时停止靶控输注丙泊酚和雷米芬太尼。患者麻醉全程同时监测WLI和BIS值。结果随着诱导过程中靶控丙泊酚血浆浓度的增加,WLI和BIS值均呈下降趋势(P0.05),丙泊酚血浆靶浓度为0、1.5、4.0μg/ml时,WLI较BIS值明显升高(P0.01)。缝皮停药后WLI和BIS值均呈上升趋势(P0.05),与BIS值比较,停药后1~6minWLI明显升高(P0.01)。意识消失时WLI(57.8±6.7)和BIS值(57.7±5.7)差异无统计学意义。意识恢复时WLI(82.4±5.9)明显高于BIS值(76.3±5.5)(P0.01)。经Bland-Altman一致性分析,WLI和BIS在诱导和苏醒期间一致性在可接受范围内(偏差为-4.2,2SD为11.7%和-24.7%)。结论在靶控输注丙泊酚和雷米芬太尼进行全麻时,WLI具有和BIS相似的麻醉深度监测作用。  相似文献   

10.
不同麻醉深度指标在全麻镇静和镇痛监测中的比较   总被引:2,自引:0,他引:2  
目的评价脑电双频指数(BIS)和电刺激-循环反应在全麻镇静和镇痛监测中的价值。方法20例择期手术全麻病人,将丙泊酚血浆靶浓度依次设定为1、2、3、4和5μg/ml,记录每一靶浓度下的BIS、SBP、DBP和HR值。维持意识消失时的效应室靶浓度,给予一次60mA强直电刺激,随后将雷米芬太尼效应室靶浓度依次设定为1、2、3、4和5ng/ml,达到每一靶浓度后给予一次同样电刺激,计算每次电刺激前后各指标的变化值(△BIS、△SBP、△DBP和△HR)。结果丙泊酚靶浓度依次增加,BIS值依次减少(P<0.05),两者之间呈负相关(r=-0.789,P<0.01)。不同雷米芬太尼靶浓度时,电刺激均未引起BIS的变化,但引起SBP、DBP和HR增加(P<0.05或P<0.01)。随着雷米芬太尼靶浓度增加,△SBP、△DBP和△HR呈下降趋势。雷米芬太尼靶浓度与△SBP和△HR之间呈负相关(r=-0.386和-0.302,P<0.05)。结论BIS对镇静药浓度变化敏感,对疼痛刺激反应差,电刺激-循环反应能够灵敏地反映镇痛水平,所以麻醉深度监测应该针对不同成分进行多指标、多方法的综合监测。  相似文献   

11.
Life-threatening anaphylactoid reactions to propofol (Diprivan)   总被引:6,自引:0,他引:6  
Fourteen patients who had had a life-threatening reaction within a few minutes after receiving propofol (Diprivan) were investigated for anaphylaxis 4-6 weeks after the incident. Three kinds of immunologic tests were carried out: skin tests (prick tests and intradermal tests with the drugs used and Intralipid, the solvent for propofol), a leukocyte histamine release test, and a radioimmunoassay (RIA) of immunoglobulin E (IgE) against propofol and muscle relaxants, when they had been given with propofol. It had been previously shown that these were always negative in patients anesthetized with propofol without any complications. Thirteen of the 14 patients had at least one positive test supporting hypersensitivity to propofol; 2 patients had three tests positive; 4 had two tests positive; and 7 had one test positive. The skin tests with Intralipid were negative in 4 patients whose tests with propofol were positive. Two patients who had been given muscle relaxants at the same time as the propofol had positive IgE-RIA to both drugs. In one patient, results of all the tests remained negative, and the mechanism involved in the reaction remained unidentified. It is note-worthy that 9 patients of 14 had allergic histories that were known before the anesthetic (atopy; allergy to antibiotics, muscle relaxants, lidocaine, colloids) and that none of the patients had ever received propofol or Intralipid before. It is possible that the IgE that linked abnormally with the propofol had specific binding sites for the phenyl nucleus and the isopropyl groups, which are present in propofol and many other drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
Schramm BM  Orser BA 《Anesthesia and analgesia》2002,94(5):1237-40, table of contents
IMPLICATIONS: Neuroexcitatory movements associated with propofol anesthesia are well recognized. Here we report on the successful use of benztropine (2 mg) to abolish abnormal dystonic movements after propofol anesthesia. Forty-five case reports are reviewed, and a treatment strategy for abnormal movements during propofol anesthesia is provided.  相似文献   

16.
ObjectiveThis study was conducted to compare two techniques of sedation for obese patients undergoing ERCP, using either ketofol or fentanyl–propofol as regards propofol consumption, recovery time, patients’ satisfaction, and sedation-related adverse events.Materials and methodsTwo hundred obese patients were randomly allocated to one of two groups; ketamine/propofol (ketofol) group KP (n = 100) or fentanyl/propofol group FP (n = 100). The level of sedation was adjusted to achieve a Ramsay Sedation Scale (RSS) score of 5.ResultsTotal dose of propofol consumed was significantly higher in group FP compared with group KP (97.08 ± 23.31 mg and 57.71 ± 16.97) mg. Recovery time was slightly longer in group KP compared with group FP (11.19 ± 2.59 min and 9.43 ± 1.23 min, respectively), time needed to achieve Aldrete Recovery Scale Score of 9 was comparable in both groups, and sedation-related side effects as hypotension, bradycardia, apnea, and reduction of SpO2 were more significant in the FP group.In conclusionKetamine/propofol combination 1:4 provided better sedation quality than fentanyl/propofol combination with less side effects and can be safely used for sedating obese patients undergoing ERCP.  相似文献   

17.
The hemodynamic effects of propofol (3 mg/kg) during anesthetic management of 10 patients undergoing minor urologic procedures were evaluated by noninvasive thoracic electrical bioimpedance method. Cardiac output, cardiac index, systolic and diastolic arterial blood pressures and EVI/TFI (an index of myocardial function) decreased significantly in ten minutes from starting of propofol injection, while the heart rate remained unchanged.  相似文献   

18.
BACKGROUND: Hypertriglyceridaemia is the main cause of therapeutic failure during propofol use in long-term sedated mechanically ventilated patients. Propofol 60 mg ml(-1) has been developed to reduce fat and volume load for the critically ill patient. The purpose of the study was to compare the effectiveness of sedation, achievability of effective concentrations and the effects on serum lipid concentrations of propofol 60 mg ml(-1) vs. propofol 10 mg ml(-1) for long-term sedation in critically ill patients. METHODS: In this randomized, open, prospective study, 20 critically ill, mechanically ventilated patients who required sedation for a minimum of 48 h received propofol 60 mg ml(-1) or propofol 10 mg ml(-1) in doses as required during 2-5 days. RESULTS: No differences between propofol 60 mg ml(-1) and propofol 10 mg ml(-1) were observed in the effectiveness of sedation using the Ramsay Sedation score and the Subjective Sedation score, nor in relation to the propofol concentrations. Between the two groups, there were no significant differences in the daily propofol dose, number of daily infusion rate adjustments or need for additional sedatives. Mean serum triglyceride concentrations were higher in the propofol 10 mg ml(-1) group compared with the propofol 60 mg ml(-1) group [5.26 (3.19) vs. 3.22 (2.05) mmol l(-1), P > 0.05][mean (SD)]. Patients in the propofol 10 mg ml(-1) group received more fat from the propofol infusion than from the propofol 60 mg ml(-1) group [53.2 (29.6) vs. 10.0 (4.7) % compared with fat from nutrition, respectively]. A significant relationship was observed between the daily total fat dose and the serum triglyceride concentration (r2 = 0.32, P < 0.001), whereas there was no significant correlation between the daily propofol dose and the serum triglyceride concentration. CONCLUSION: Propofol 60 mg ml(-1) is a useful alternative to propofol 10 mg ml(-1) for the long-term sedation of critically ill patients. Sedation with propofol 60 mg ml(-1) reduces fat and volume load by 83%, which reduces the risk of hypertriglyceridaemia.  相似文献   

19.
20.
Editor—We read with interest the study by Iannuzzi andcolleagues1 regarding the correlation between propofol effect-siteconcentration and the bispectral index (BIS). In their article,the authors noted that the higher effect-site concentrationsthey obtained were because of the achievement of steady stateconditions and the pharmacokinetic model used. We constructed a graph (Fig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号