首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current study was designed to investigate the rate of bone loss in distal radius and its association with baseline volumetric bone mineral density (BMD) and years since menopause (YSM) in peri- and postmenopausal women using precise and multislice peripheral quantitative computed tomography (pQCT; Densiscan 2000). Two hundred and five healthy Hong Kong Chinese perimenopausal (n = 26) and postmenopausal (n = 179) women within 10 years of the onset of menopause were recruited. Anthropometric parameters and menstrual status were also measured. The linear regression model derived from the baseline volumetric BMD revealed a significant and slightly better correlation with YSM than age, with a YSM-related annual decline of 2.56%, 1.82% and 0.65% in trabecular BMD (tBMD), integral BMD (iBMD) and cortical BMD (cBMD), respectively. Follow-up measurements after a time interval of 12 months showed that the rate of bone loss was higher than the annual decline in BMD calculated from the baseline BMD, with decreases of 2.89%, 2.16% 0.91% in tBMD, iBMD and cBMD, respectively. Baseline BMD was associated with age or YSM (r ranges from −0.283 to −0.502; p<0.001 in all cases), but no relationship was found between annual rate of bone loss and age or YSM. The rate of bone loss did not correlate with baseline volumetric BMD values or YSM after dividing the subjects into fast bone losers (with annual tBMD loss ≥3%), normal bone losers (with annual tBMD loss ≥ 1% but <3%) or slow bone losers (with annual tBMD loss <1%). The rate of bone loss was greater in both trabecular and cortical bone of postmenopausal women within the first 3 menopausal years but was only significant in the iBMD as compared with perimenopausal and postmenopausal women over 7 years after onset of menopause. The percentage distribution of slow and fast bone losers was not found to be associated with YSM. As a total of only 4 fracture cases were documented, the study could not provide conclusive information on whether perimenopausal and early postmenopausal baseline volumetric BMD or rate of bone loss determines the development of osteoporosis or fracture occurrence. Received: 12 November 2001 / Accepted: 18 July 2002  相似文献   

2.
The objective of this study was to examine the value of NTx, a urinary cross-linked N-telopeptides of type I collagen, as a marker of bone resorption. We assessed changes in pre- and postmenopausal bone resorption by evaluating the correlation of NTx with L2–4 bone mineral density (BMD) in a total of 1100 Japanese women, aged 19–80 years [272 premenopausal (45.2 ± 6.2 years) and 828 postmenopausal (59.5 ± 6.2 years)]. Postmenopausal women were divided into three groups based on the range of BMD (normal, osteopenic, and osteoporotic). Within each group, subjects were further segregated according to years since menopause (YSM). NTx values were then evaluated for each group. Our results showed that BMD was significantly decreased (P < 0.05) and NTx was significantly increased (P < 0.01) after menopause in age-matched analysis. Consistent with a previous report, NTx was inversely correlated with BMD for the entire cohort of study subjects (r =−0.299), although NTx correlated better with premenopausal than postmenopausal BMD (r =−0.240 versus r =−0.086). This may have been due to the fact that elevated values of NTx were exhibited over the entire range of BMD present in the postmenopausal women, suggesting that NTx might respond faster to the estrogen withdrawal than BMD. In all postmenopausal women, regardless of the range of BMD, the increase in NTx reached a peak within 5 YSM. After 11 YSM, however, NTx remained elevated in the osteoporotic group but it decreased in the osteopenic group, and showed no significant change in the group of postmenopausal women with normal BMD. These findings suggest that bone resorption is dramatically increased within 5 years after menopause but remains increased only in osteoporotic women. Received: 29 April 1997 / Accepted: 12 August 1997  相似文献   

3.
Age Changes of Calcaneal Ultrasonometry in Healthy German Women   总被引:7,自引:0,他引:7  
This study assessed age changes in quantitative ultrasound sonometry (QUS) in a large sample of healthy German women. Speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI) of the calcaneus were measured in 1333 women (mean age 50.5 ± 11.5 years) using the Achilles ultrasonometer (Lunar Corp., Madison, WI, USA). The short-term precision in 31 adults was 0.2% for SOS, 1.2% for BUA, and 1.3% for SI. There was an overall decline of 15% for BUA, 4% for SOS, and 31% for SI between late adolescence and old age. In premenopausal women, BUA decreased only slightly (−3%), whereas postmenopausal women showed a significantly increased decline (−12%). In contrast, SOS continuously decreased from the age of 15; there was a decline of 2% from adolescence to the menopause; postmenopausal women showed a slightly larger decline (−2.5%). The SI of premenopausal women decreased by 10%, but the postmenopausal decline of almost 22% was significantly greater. SI values for premenopausal German women were comparable to those observed in the American Achilles reference population, but postmenopausal German women had significantly higher SI values of 7% due to a lower rate of aging loss. Received: 12 August 1998 / Accepted: 28 January 1999  相似文献   

4.
A study was made of 110 women: 35 healthy premenopausal, 40 healthy postmenopausal, and 35 women diagnosed as having postmenopausal osteoporosis. The postmenopausal women had similar ages and years since menopause (YSM). In all of the women, total bone mass was evaluated by dual-energy X-ray absorptiometry and metacarpal morphometry was evaluated by radiogrammetry on the second metacarpal of the nondominant hand, performed by computed radiography. An external metacarpal diameter of ≥7.4 mm was required as proof of having developed an adequate peak bone mass. The endosteal diameter, which is indicative of bone resorption in both groups of postmenopausal women, obtained in the postmenopausal groups was subtracted from the endosteal diameter obtained in the premenopausal group and the resulting figure was divided by the years since menopause to calculate the rate of cortical bone resorption/year for each group. The endosteal diameters values differed in the three groups studied (P < 0.0001): 3.2 ± 0.7 mm in the healthy premenopausal women; 3.9 ± 0.6 mm in the healthy postmenopausal women; and 4.7 ± 0.5 mm in the osteoporotic postmenopausal women. The rate of cortical bone resorption was 0.068 ± 0.002 mm/YSM (years since menopause) in the osteoporotic postmenopausal women and 0.033 ± 0.003 mm/YSM in the healthy postmenopausal women (P < 0.0001). These figures reflect the importance of bone resorption, as opposed to deficient bone formation, as a cause of osteoporosis. Received: 27 January 1995 / Accepted: 21 August 1996  相似文献   

5.
Cytokines such as interleukin-1 (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) can influence both bone resorption and bone formation. The objective of this cross-sectional study was to examine the relationship between cytokine production by peripheral blood mononuclear cells (PBMC) and bone mineral density (BMD); the annual rate of change in BMD was examined. Subjects participating in a randomized clinical trial entitled the Women's Healthy Lifestyle Project in Allegheny County, Pennsylvania were used. They included 50 healthy premenopausal women, aged 45–52 years, who had regular menses within the past 3 months and were not on replacement estrogens. Dual-energy X-ray absorptiometry measurements at the AP lumbar spine and femoral neck were made at baseline and at the first annual exam using a Hologic QDR 2000 densitometer. Cytokine production of IL-1β, IL-6, and TNF-α by PBMC was measured at the annual exam. The median values for stimulated cytokine production by PBMC were 3.92 ng/ml, 31.3 ng/ml, and 1.05 ng/ml, for IL-1β, IL-6, and TNF-α, respectively. There were modest correlations between cytokine production and cross-sectional BMD, ranging from r =−0.30 to r =−0.13. Trends of greater spinal bone loss were observed in women with ``high' (≥75th percentile) cytokine production of stimulated IL-1β and IL-6 (IL-1β: ``high' =−1.56% ± 0.70 versus ``low' (<75th percentile) =−0.56% ± 0.35, P= 0.21). In contrast, greater annual gains in femoral neck BMD were observed in those with high cytokine production of IL-1β and IL-6 (IL-1β: high = 3.39% ± 1.16 versus low =−0.85 ± 0.58, P= 0.002). There was no association between stimulated TNF production and annual change in BMD. In this population of healthy premenopausal women, the relationship between cytokine production by PBMC and the rate of change in BMD was significantly different for the lumbar spine and femoral neck, possibly reflecting differences in the proportion of trabecular and cortical bone at these sites. Received: 5 February 1997 / Accepted: 11 May 1998  相似文献   

6.
An analysis of trabecular bone texture based on fractal mathematics, when applied to trabecular bone images on plain radiographs, can be considered as a reflection of trabecular bone microarchitecture. It has been shown to be able to distinguish postmenopausal osteoporosis cases from controls. This cross-sectional study was carried out to investigate the influence of age, time since menopause and hormone replacement therapy (HRT) on the fractal dimension of trabecular bone texture at the calcaneus in a sample of 537 healthy women. Fractal analysis of texture was performed on calcaneus radiographs and the result expressed as the Hmean parameter (H = 2–fractal dimension). Total hip, femoral neck and lumbar spine bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. There was a statistically significant Hmean parameter decrease with age (p<0.0001) but the degree of correlation was low (r=–0.2) compared with the correlation between age and BMD (r=–0.36 to –0.61 according to the BMD site). We found a weak but statistically significant correlation between time since menopause and Hmean (r=–0.14, p= 0.03) in the 241 postmenopausal women included in the study. Hmean was significantly lower in a group of postmenopausal women without HRT (n= 110) compared with a group of age-matched postmenopausal women with HRT (n = 110): respectively 0.683 ± 0.043 and 0.695 ± 0.038 (p= 0.03). In conclusion, this study suggests that there is a menopause- and age-related decrease in the Hmean parameter and that HRT interferes with the results of the fractal analysis of trabecular bone texture on calcaneus radiographs. Received: 2 March 2001 / Accepted: 2 October 2001  相似文献   

7.
Urinary excretion of cross-linked N-telopeptide of type I collagen (NTx) has been reported to be a specific marker of bone resorption [18]. We assessed a new immunoassay for NTx as an indicator of changes in bone resorption caused by spontaneous menopause and compared cross-sectionally the levels of urinary NTx, hydroxylysylpyridinoline (HP), lysylpyridinoline (LP), hydroxyproline (OH-Pr), other serum biochemical indices, and lumbar spine and proximal femur bone mineral density (BMD). Eighty-one Japanese women aged 22–77 participated in this study; 36 were premenopausal and 45 were postmenopausal. Urinary HP, LP, and NTx stayed at low levels in the premenopausal period and rose 21%, 30%, and 67% in the postmenopausal period, respectively. The rise in LP and NTx was statistically significant (P < 0.01), suggesting that NTx is mostly released from bone matrix when bone resorption is accelerated. When premenopausal women were divided into two age groups and postmenopausal women were divided into two groups according to years since menopause (YSM) there were significant differences in LP and NTx between women <4 YSM and women aged <40 and those women aged 41+ (P < 0.01 and P < 0.05, respectively). A significant 110% increase in urinary NTx and a 48% increase in urinary LP were observed in postmenopausal women compared with age-matched premenopausal women aged 45–55. All biochemical markers other than serum PTH correlated significantly with each other (r = 0.243–0.858, P < 0.05–0.0001). Urinary NTx inversely correlated with lumbar spine BMD. When postmenopausal women were divided into three groups, the correlation between bone resorption and formation markers in women 0-1 YSM was greater than in women 2–10 YSM and in women 11 + YSM, indicating that resorption and formation are coupled at the early postmenopausal period. We conclude that urinary NTx is responsive to changes in bone metabolism caused by estrogen deficiency and may be a more sensitive and specific marker than HP, LP, or OH-Pr in the early postmenopausal years. Received: 15 February 1995 / Accepted: 18 October 1996  相似文献   

8.
Based on the hypothesis that the underlying osteoporotic mechanism of Colles' fracture in postmenopausal women is similar to that of other osteoporotic fractures, that is, cortical bone resorption as opposed to cancellous bone resorption, the rate of corticoendosteal bone loss was compared in 40 normal postmenopausal women [average age 68.4 ± 7.1 years; 20 ± 4 years since menopause (YSM)], in 35 postmenopausal women with Colles' fracture (age 69.4 ± 7.5 years, 22 ± 8 YSM), in 35 normal postmenopausal women with vertebral crush fracture (age 69.4 ± 7.5 years, 22 ± 8 YSM, and in 35 normal premenopausal women (age 36.1 ± 7.9 years). Radiogrammetry by digital radiography of the second metacarpal was used to measure external (ED) and internal (ID) diameter, cortical thickness (CCT), cortical area (CA), and the ratio of cortical area to total area (CA/TA). The ID values of the groups of postmenopausal women were subtracted from the ID value of the premenopausal women and the result was divided by YSM to obtain the rate of corticoendosteal resorption/year (ΔC), CA resorption year (ΔCA) and CA/TA resorption/year (ΔCA/TA). ID, ΔC, ΔCA, and ΔCA/TA all were larger in the postmenopausal women with Colles' and vertebral crush fractures than in the normal postmenopausal women (ANOVA: all P < 0.0001). ID, CCT, ΔC, CA, ΔCA, and ΔCA/TA did not differ between the two groups of postmenopausal women with fractures. ΔC was 87% greater in postmenopausal women with vertebral crush fracture and 116% greater in women with Colles' fracture than in normal postmenopausal women. These results indicate that the loss of cortical bone is an important factor in Colles' fracture in postmenopausal women. Received: 10 October 1996 / Accepted: 15 October 1997  相似文献   

9.
Three techniques of bone mass measurement were evaluated in the diagnosis of postmenopausal osteoporosis; the overlap in the measurements and the capacity for discriminating was determined among 51 postmenopausal normal (mean age 66.6 ± 8.4 years) and 42 postmenopausal osteoporotic women (mean age 68.5 ± 7.5 years). All bone mass was evaluated by total body bone mineral content (BMCTB), density (BMDTB), ultrasound bone velocity (UBV) in proximal phalanxes 2–5 of the nondominant hand (UBV = mean value of all ultrasound measurements), and peripheral quantitative computed tomography of the nondominant forearm (pQCT). BMCTB was found to be significantly better (P < 0.0001) for diagnosing postmenopausal osteoporosis than the other methods; both cortical and trabecular pQCT measurements were more discriminating than the corresponding UBV measurements (P < 0.001). T-score values in normals, subjects versus osteoporotic ones were BMCTB−1.15 ± 0.79 versus −3.17 ± 0.74; BMDTB−1.01 ± 0.97 versus −3.28 ± 0.81; UBV −1.51 ± 1.02 versus −2.34 ± 1.21; trabecular-pQCT −0.40 ± 0.72 versus −1.57 ± 0.37; cortical-pQCT −1.00 ± 0.87 versus −2.67 ± 0.53; and total-pQCT −0.65 ± 1.01 versus −2.34 ± 0.27, respectively. The overlap in values between the postmenopausal normal and postmenopausal osteoporotic groups was 50% with UBV, 6% with BMCTB, 9% with BMDTB, 25% with cortical pQCT, and 42% with trabecular pQCT. BMCTB, BMDTB, UBV, and pQCT correlated well with each other as measurements of bone mass, but BMCTB was more discriminating than the other measurements in the diagnosis of osteoporosis. Received: 7 June 1995 / Accepted: 21 May 1997  相似文献   

10.
Lateral Spine Densitometry in Obese Women   总被引:3,自引:0,他引:3  
The lateral (LAT) spine scan has been suggested as a more sensitive measure than posterior-anterior (PA) scanning for assessing age-related bone loss in normal-weight postmenopausal women. The measurement error of PA and LAT bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA) has also been shown to rise with incremental increases in fat and from large variance in fat thickness, respectively. The purpose of this cross-sectional study was to determine specific affects of obesity on paired PA and LAT lumbar (L2–L4) BMD and Z score (BMD of patient versus age-matched reference database) correlation in 30 obese postmenopausal women (mean BMI ± SD = 33.3 ± 4.06). The mean PA and LAT BMD ± SD were 0.946 ± 0.123 and 0.749 ± 0.134, respectively. The mean PA and LAT Z scores were −0.17 ± 1.15 and 0.80 ± 1.7. The correlation between PA and LAT BMD was significantly lower (r = 0.55; P < 0.05) than previously reported, and PA and LAT Z score correlation was (r = 0.57; P= 0.0016). After adjusting for body mass index (BMI), percent body fat, fat mass, and truncal fat by DXA, waist:hip ratio (WHR) and visceral and subcutaneous abdominal fat by computerized axial tomography (CT), PA and LAT Z score correlation increased to r = 0.62; P= 0.0065. In our subjects, the mean LAT Z score was 4.6 times higher than the mean AP Z, contrary to previous observations in normal-weight postmenopausal women. Our findings may be due to increased soft tissue composition and fat inhomogeneity in the LAT scanning field resulting in increased X-ray attenuation in obesity. Received: 22 July 1997 / Accepted: 26 January 1998  相似文献   

11.
Quantitative ultrasound (QUS) is emerging as a simple, inexpensive and noninvasive method for assessing bone quality and assessing fracture risk. We assessed the usefulness of a contact calcaneal ultrasonometer by studying normal premenopausal women (group I, n= 53), normal postmenopausal women (group II, n= 198), and osteoporotic women without (group III, n= 141) and with vertebral fractures (group IV, n= 53). The osteoporotic subjects had a T-score of the spine or hip neck bone mineral density (BMD) <−2.5 based on the local Chinese peak young mean values. When compared with postmenopausal controls, mean broadband ultrasound attenuation (BUA), speed of sound (SOS), and quantitative ultrasound index (QUI) were 26%, 2.1% and 25% lower in women with vertebral fractures (p all <0.005). The correlation coefficients between QUS parameters and BMD of the spine and hip ranged between 0.4 and 0.5. The ability of the QUS to discriminate between patients groups was determined based on the mean value of normal premenopausal women in group I. The mean T-score for women with fractures was −2.87 ± 1.02 for BUA, −2.54 ± 0.79 for SOS, −3.17 ± 0.70 for QUI, −2.65 ± 0.86 for L2–4 BMD and −2.53 ± 0.66 for hip neck BMD. After adjustment for age and body mass index, the odds ratio of vertebral fracture was 1.71 (95% CI 1.2–2.6) for each 1 SD reduction in BUA, 2.72 (1.3–5.3) for SOS, 2.58 (1.4–4.6) for QUI, 2.33 (1.6–3.3) for L2–4 BMD, 2.09 (1.37–3.20) for femoral neck BMD and 1.88 (1.34–2.92) for total hip BMD. The association between the QUS parameters and vertebral fracture risk persisted even adjustment for BMD. The area under the receiver operating characteristic curve for BUA for vertebral fracture was 0.92, for SOS, QUI, L2–4 BMD and femoral neck BMD was 0.95, and for total hip was 0.91. Received: 7 January 1999 / Accepted: 18 May 1999  相似文献   

12.
To determine the effects of menopause on bone loss in different parts of the skeleton, bone mineral density (BMD) values were measured longitudinally in 85 healthy women. BMD values included the lumbar spine measured by dual-energy X-ray absorptiometry (DXA) and quantitative CT (QCT) and the distal and midradius measured by DXA obtained over 5 years. BMD at the calcaneus was measured using DXA for 3 years, and the BMD values of the distal metaphyses and diaphyses of radius and tibia were measured using peripheral QCT (pQCT) for 4 years. The subjects were 19 premenopausal, 17 perimenopausal, 12 early postmenopausal and 38 late postmenopausal women with the respective average ages of 39.1 ± 7.1 (SD), 51.9 ± 2.9, 55.8 ± 1.8 and 61.9 ± 3.9 years at the start of measurement. Average years since menopause were 1.4 ± 1.8, 3.3 ± 1.3 and 12.7 ± 5.3 years, respectively. In the perimenopausal group, the annual rate of bone loss for lumbar trabecular bone measured by QCT, and for the calcaneus, and metaphyseal trabecular bone at the radius and tibia by pQCT were higher than the respective values in the premenopausal group. These values in the late postmenopausal group became significantly lower compared with those in the perimenopausal group, coming down to the level of the premenopausal group. While the annual rates of bone loss at the tibial diaphysis in the perimenopausal group were also higher than those in the premenopausal group, the values at the radial diaphysis by DXA or pQCT did not differ significantly. The reductions in the annual rates of bone loss with the passage of time after menopause were not marked in these cortical bone dominated sites. These data indicated that the annual rates of bone loss at trabecular bone dominated sites were accelerated in both axial and appendicular skeletons. Diaphyseal cortical bone, however, seemed to be less sensitive to estrogen withdrawal. Other factors, such as genetics and calcium/vitamin D metabolism, would also affect the age-dependent bone loss at the cortical bone dominated sites after menopause. Received: 30 October 1998 / Accepted: 6 April 1999  相似文献   

13.
A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 ± 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1–2% and 3–6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r 2= 33.7%, P < 0.0037), I.Th (r 2= 26.6%, P < 0.0118), I.Sp (r 2= 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (− 0.52%/year), I.Th (−0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure. Received: 11 March 1996 / Accepted: 9 July 1996  相似文献   

14.
The objectives of this work was to (1) study the bone mineral density (BMD) of the lumbar spine, total skeleton, and body composition in patients with primary biliary cirrhosis (PBC) and (2) evaluate the risk factors (premature menopause, stages of the disease, hyperbilirubinemia) and bone and liver biochemical parameters for the development of osteoporosis. We studied 23 women with a compatible diagnosis of PBC. The BMD and body composition were evaluated by X-ray absorptiometry (Lunar DPX-L). The average age of the population was 56.7 ± 10.2 years. The BMD of the lumbar spine and of the total skeleton was 1.3 SDs below the normal population matched for sex and age. In the total skeleton, the legs were the most severely affected area (Z score −1.5). The body composition showed no significant difference compared with the normal population. The BMD of 56% of the patients was less than −2.5 SDs from the average normal young values. Patients with a history of vertebral fractures had diminished mineral density of the lumbar spine, as did those who had had no fractures. Of the risk factors studied, patients with premature menopause had a lower bone mass compared with patients with normal menopausal age (Z score of the total skeleton was −2.1 ± 1.8 versus −1.1 ± 1.0) but the difference did not reach statistical significance. The bone mass was not affected in patients with regular menstrual cycles. There were no statistically significant differences in high levels of bilirubin, advanced stages of the disease, or the biochemical variables studied. It is concluded that patients with primary biliary cirrhosis present diminished cortical and trabecular bone mass, whereas body composition was unaffected. Premature hormone deficit, possibly triggered by the chronic hepatic pathology, is a contributing factor to the osteoporosis in this population. Received: 21 October 1997 / Accepted: 5 March 1998  相似文献   

15.
Spinal Trabecular Bone Loss and Fracture in American and Japanese Women   总被引:7,自引:0,他引:7  
This study examined trabecular bone mineral density (BMD) in Japanese women with and without spinal fracture, and compared the results to American women with and without fracture. The quantitative computed tomography (QCT) systems used at the University of California, San Francisco (UCSF) and at Nagasaki University were cross-calibrated. Normative BMD was assessed with the K2HPO4 liquid phantom in 538 Americans aged 20–85 years, and with the B-MAS200 phantom in 577 Japanese aged 20–83 years. These BMD were adjusted for use with the Image Analysis solid phantom using the result of cross-calibration. The trabecular BMD in 111 postmenopausal American women (55 with fracture), and in 185 postmenopausal Japanese women (67 with fracture) were compared for investigation of the difference in BMD values relative to fracture status. The absolute BMD values in Japanese were lower than those in Americans, and the differences were greater with advancing age. The magnitude of the BMD difference was 8.6, 20.5, 38.1 mg/cm3 in women aged 20–24 years, 40–44 years, 60–64 years, respectively. In premenopausal women, BMD began to decrease at the age of 20 in Japanese, whereas the peak bone mass was maintained until the age of 35 in the American women. In immediate postmenopausal women, BMD significantly decreased in both populations. In later postmenopausal women, BMD significantly decreased with age in the Japanese women but decreased less rapidly in the American women. The aging decrease of BMD was 1.4% and 2.2% per year in the later postmenopausal American and Japanese women, respectively. The fracture threshold is considered to be lower in Japanese women. However, the BMD difference between American and Japanese women with fracture was similar to that without fracture. The Z-scores of fracture subjects versus controls were 2.9 in American and 1.8 in Japanese women. In conclusion, Japanese women were found to have a lower BMD and lower fracture threshold than American women. The significant decrease of spinal trabecular BMD in late postmenopause is potentially responsible for the higher prevalence of spinal fracture in Japanese women. Received: 18 December 1995 / Accepted: 23 September 1996  相似文献   

16.
Association of BST B1 restriction fragment length polymorphism (RFLP) of the parathyroid hormone (PTH) gene with bone mineral density (BMD) was examined in 383 healthy postmenopausal women in Japan who were unrelated. The RFLP was represented as B or b, the capital letter signifying the presence of and the small letter the absence of restriction site for BST B1. The frequency of each genotype—BB, Bb, and bb—was 82.5%, 16.7%, and 0.8%, respectively. When we statistically compared age, years after menopause, body height, and body weight between the BB genotype and the Bb genotype groups, there was no significant difference between the groups. However, the lumbar BMD and the score of BMD adjusted for age and body weight (Z score) were significantly lower in the group of genotype Bb than in the BB: 0.859 ± 0.019 g/cm2 versus 0.925 ± 0.011 (mean ± SE, P= 0.01) and −0.412 ± 0.138 versus 0.067 ± 0.082 (mean ± SE, P= 0.01). In addition, the Z score of total body BMD in the Bb genotype group was lower than that in the BB group. Comparison of serum and urinary biochemical bone metabolic markers suggested that the subjects with Bb genotype might be in a relatively higher state of bone turnover than those with BB genotype. These results suggest that the polymorphism in the PTH gene would be a useful genetic marker for lower BMD and the susceptibility for osteoporosis. Received: 19 March 1998 / Accepted: 24 June 1998  相似文献   

17.
Most published studies on the role of muscle strength in the maintenance of bone mineral density (BMD) focused on the relationship between specific muscle groups and adjacent bones, mostly in young and premenopausal women. This study examined the influence of grip strength on BMD of the metacarpal index in postmenopausal Japanese women. Subjects included 1168 postmenopausal women aged 40–70 years. BMD measurement was done with computed X-ray densitometry (CXD) by analyzing X-ray films of the right second metacarpal index. Grip strength was measured in both the dominant and nondominant hands using a squeeze dynamometer. Grip strength (r = 0.2474; P= 0.0001) and age (r =−0.5443; P= 0.0001) significantly correlated positively and negatively, respectively, with BMD. Physical activity (r = 0.1318; P= 0.0001) also correlated positively with BMD. Breastfeeding (r =−0.1658; P= 0.0001), however, correlated negatively with BMD. Subjects with a history of regular physical activity had higher grip strengths and BMD, than those with no physical activity. Adjustment for age, physical activity, calcium intake, BMI, breastfeeding, testing site, and menopausal type indicated a significant (P for trend = 0.0013) positive association of grip strength with BMD. Subjects with stronger grip strengths had a decreased risk for low BMD. Received: 24 February 1998 / Accepted: 7 August 1998  相似文献   

18.
Calcidiol and PTH Levels in Women Attending an Osteoporosis Program   总被引:8,自引:0,他引:8  
We performed a retrospective study of 237 patients attending a specialty osteoporosis practice. Secondary causes for reduced bone mineral density (BMD) were evaluated in 196 postmenopausal women and 41 premenopausal women; mean age was 56 ± 13.8 years (mean ± SD). BMD was measured by dual-energy X-ray absorptiometry (DXA) (QDR 1000W/2000 Hologic). Levels of intact parathyroid hormone (iPTH), calcidiol [25(OH)D], thyroid-stimulating hormone, and 24-hour urinary calcium were measured, and serum and urine protein (SPEP and UPEP) electrophoresis were performed. Overall, 16% of our patients had 25(OH)D levels <15 ng/ml, the lowest acceptable vitamin D level without a concomitant rise in iPTH levels. Among the osteoporotic patients (T score <−2.5 SD), 17% had 25(OH)D levels <15 ng/ml and 7% <10 ng/ml. Among the osteopenic patients (−2.5 < T < −1.0 SD), 11% had 25(OH)D levels <15 ng/ml. Seventeen percent of patients with Z score ≤−1.0 SD (low range normal value) had 25(OH)D levels <15 ng/ml. Low 25(OH)D levels were inversely related to high iPTH values (r = 0.30, P < 0.0001). Hypercalciuria was present in 15% of our patients, elevations of PTH levels (>65 pg/ml, upper normal limit of assay) were present in 11.5%, and hyperthyroidism in 4%. A 25(OH)D level of <25 ng/ml in women (n = 86) with no known secondary causes of low BMD was associated with an iPTH level above 49 pg/ml. The measurement of 25(OH)D levels is recommended in the evaluation of secondary causes for reduced BMD. Supplementation with vitamin D appears needed to keep 25(OH)D above 25 ng/ml, the level required to prevent increments in iPTH levels. Received: 9 February 1998 / Accepted: 1 October 1998  相似文献   

19.
The oophorectomized (OOX) rat has been proposed as a good model of postmenopausal osteroporosis in women. The aim of this study was to compare the effect of OOX in 6-month-old rats to the effects of menopause in women with respect to bone mass, the renal handling of calcium and phosphorus, and calcitropic hormones. To more closely replicate the human situation the rats were pair fed a 0.1% calcium diet. Thirty four, 6-month-old rats were randomized to sham operation or OOX. Whole body and regional bone density was performed at baseline and 6 weeks postoperation. Blood and 24-hour urine samples were obtained at baseline, 1, 3, and 6 weeks and assayed for various biochemical variables, parathyroid hormone (PTH), and calcitriol. The OOX rats lost significantly more bone than the sham-operated rats (change in global bone mineral density, sham −1.7 ± 2.0%, OOX −3.9 ± 2.6%, P < 0.001). In the OOX animals, an increase in the 24-hour urine calcium was observed at 1 and 3 weeks, which had returned to sham-operated levels by 6 weeks. In the whole group, the increase in urine calcium at 1 week was negatively correlated with the change in bone mass at 6 weeks (r =−0.39, P= 0.029). OOX resulted in an increased filtered load of calcium and phosphorus. There was an increase in the maximal renal tubular reabsorption of phosphorus (TmP-GFR) but no clear change in renal calcium handling. Neither calcitriol nor parathyroid hormone showed a significant change as a result of OOX. As in postmenopausal women, following oophorectomy in the rat, there was significant generalized bone loss and a negative calcium balance. This was associated with an initial rise in urine calcium due to a rise in the filtered calcium load; plasma phosphorus and TmP-GFR also rose. The rat model may differ from postmenopausal bone loss in that the initial rise in urine calcium was not present at later time points as occurs in natural menopause in women. Calcitropic hormone levels did not change. This study has shown that the 6-month-old OOX rat fed a 0.1% calcium diet has many similarities of calcium and phosphorus homeostasis to that seen at menopause in women. Received: 14 August, 1995 / Accepted: 8 March 1996  相似文献   

20.
Quantitative ultrasound (QUS) is used for prediction for risks of osteoporotic fractures at various skeletal sites, irrespective of weight-bearing or non-weight-bearing skeletons. In the current study, we investigated the correlation between calcaneal QUS measurements (BUA, VOS, and Soundness) and volumetric trabecular, cortical, and its integral bone mineral density (tBMD, cBMD, and iBMD) using peripheral quantitative computed tomography (pQCT) of the weight-bearing distal tibia and non-weight-bearing distal radius in 198 healthy Chinese women between 40 and 62 years of age. Results showed that BUA, VOS, and Soundness measured by calcaneal QUS were significantly correlated with tBMD, cBMD, and iBMD of both distal tibia and distal radius (r = 0.210–0.447; all P < 0.01). The correlation coefficients of all the individual parameters between calcaneus and distal tibia were correspondingly higher (r = 0.214–0.447; all P < 0.01) than that of distal radius (r = 0.210–0.368; all P < 0.01). QUS Soundness showed the highest correlation (r = 0.447; P < 0.01) with tBMD of distal tibia when comparing with all other parameters between these two measurement devices. Stronger within-device correlations (r = 0.640–0.764; all P < 0.01) were found in pQCT measurements between distal tibia and radius. In addition, the largest and significant age-related decline was found in tBMD of the distal radius measured by pQCT and Soundness of the QUS measurement in the postmenopausal group. In conclusion, heel QUS measurement demonstrated slightly better correlation with trabecular bone of the weight-bearing skeleton than that of the non-weight-bearing skeleton measured by pQCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号