首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Event-related brain potentials (ERPs) were recorded from young (mean age = 24.1), middle-aged (48.7) and older (69.7) adults during a version of the oddball paradigm, in which 48 unique, unexpected novel stimuli were interspersed with equally rare instructed targets. As older relative to younger adults are thought to differ in their ability to inhibit the processing of task irrelevant information, we expected, based on previous work, that novel stimuli would retain their ‘novelty’ longer in older than in younger adults. To assess this, P3 amplitude and scalp topography elicited by novels and targets were analyzed as a function of stimulus number (n = 6) within the block and as a function of block number (n = 4). The results were in line with prediction: While the younger adults' P3 scalp distribution shifted from a relatively more frontal to a relatively more posterior focus as a function of novel number within the block, this was not evident in the scalp topographies of the older adults. Coupled with the older adults' elevated false alarm rates to novel stimuli, the data are consistent with a change in frontal lobe function with increases in age.  相似文献   

2.
The cortical generators of P3a and P3b: a LORETA study   总被引:1,自引:0,他引:1  
The P3 is probably the most well known component of the brain event-related potentials (ERPs). Using a three-tone oddball paradigm two different components can be identified: the P3b elicited by rare target stimuli and the P3a elicited by the presentation of rare non-target stimuli. Although the two components may partially overlap in time and space, they have a different scalp topography suggesting different neural generators. The present study is aimed at defining the scalp topography of the two P3 components by means of reference-independent methods and identifying their electrical cortical generators by using the low-resolution electromagnetic tomography (LORETA). ERPs were recorded during a three-tone oddball task in 32 healthy, right-handed university students. The scalp topography of the P3 components was assessed by means of the brain electrical microstates technique and their cortical sources were evaluated by LORETA. P3a and P3b showed different scalp topography and cortical sources. The P3a electrical field had a more anterior distribution as compared to the P3b and its generators were localized in cingulate, frontal and right parietal areas. P3b sources included bilateral frontal, parietal, limbic, cingulate and temporo-occipital regions. Differences in scalp topography and cortical sources suggest that the two components reflect different neural processes. Our findings on cortical generators are in line with the hypothesis that P3a reflects the automatic allocation of attention, while P3b is related to the effortful processing of task-relevant events.  相似文献   

3.
OBJECTIVE: Visual event-related brain potentials (ERPs) were elicited using a 3-stimulus oddball paradigm to assess the P3a with passive stimulus processing. METHODS: Young adults (n=12) were presented with a series of visual stimuli consisting of a solid circle standard stimulus (P=0.76) that was difficult to discriminate from a larger target circle (P=0.12), with a large square distractor stimulus (P=0.12) presented randomly in the series. Subjects were instructed in the passive condition to simply look at the stimuli and in the active condition to press a mouse key only to the target stimulus. ERPs were recorded from 15 scalp electrodes, with the amplitude and latency of the P300 from the distractor and target stimuli assessed. RESULTS: The P3a from the distractor stimulus was similar in amplitude, scalp topography, and peak latency across the passive and active task conditions. The P3b from the target stimulus demonstrated much smaller amplitude, highly altered scalp topography, and longer latency for the passive compared to active task conditions. CONCLUSIONS: The P3a can be obtained with visual stimuli in the 3-stimulus paradigm under passive viewing conditions. Theoretical implications and clinical applications are discussed.  相似文献   

4.
The relationship of task relevance and stimulus probability to P300 morphology, latency and distribution was assessed. Eight year olds and adults completed visual oddball tasks of recognition memory with frequent non-target (60%), infrequent target (20%), and infrequent novel (20%) stimuli. Stimuli consisted of 2 female faces posing neutral expressions, and 40 trial unique novel photographs depicting scenes, animals, objects or abstract patterns. Event-related potentials were recorded from 17 electrodes over frontal, central and parietal scalp, including lateral temporal sites. All stimuli elicited P300 responses at parietal electrodes, with the largest responses to the target stimuli (relevant and infrequent). The P300 responses of adults and children were morphologically dissimilar, with children showing broader peaks and latency shifts across electrodes. In addition, the eight year olds displayed a frontal negativity to novel stimuli which was absent in the responses of adult participants. Results suggest that different anatomical or functional circuitry may be involved in the processing of novelty for adults as compared to eight year olds.  相似文献   

5.
Event-related brain potentials in response to novel sounds in dementia.   总被引:14,自引:0,他引:14  
OBJECTIVE: Non-target, deviant stimuli generate an earlier latency, front-central novelty P3, whereas correctly detected task-relevant stimuli generate a parietal maximal target P3. We examined whether the P3 component to novel stimuli is affected by dementing processes, and is therefore useful for distinguishing Alzheimer's type dementia (AD) from vascular dementia (VD). METHODS: We recorded ERPs to task-relevant stimuli (target P3) and novel task-irrelevant stimuli (novelty P3) in an auditory oddball task in AD (n = 16), VD (n = 16), and age-matched controls (n = 18). The amplitude, latency, and scalp topography of target and novelty P3 were compared among 3 groups using ANOVA. The relationship between P3 measures and intelligence scores were evaluated by correlation analysis. RESULTS: The amplitude, latency and scalp topography of the target P3 were comparably affected by both AD and VD. However, the amplitude of the novelty P3 was markedly reduced in VD, but not in AD, and the scalp topographics were different in the 3 groups. The amplitude was maximal at frontal sites in controls, at central sites in AD, and at parietal sites in VD. The target P3 latency was prolonged in both AD and VD, whereas the novelty P3 latency was only prolonged in VD. AD was discriminated satisfactorily from VD by using the novelty amplitude at Cz and the ratio of the amplitudes at Fz and Pz as independent variables. CONCLUSIONS: These results suggest that the response to novel stimuli is differentially affected by dementia with degenerative and vascular etiology.  相似文献   

6.
OBJECTIVE: The P300 event-related brain potential (ERP) was elicited with auditory and visual stimuli in a separate session of a 3 stimulus oddball paradigm, and the scalp topography was assessed with 15 electrode locations. METHODS: Target (0.10), standard (0.80), and infrequent non-target (0.10) stimuli in the auditory task were 2000, 1000 and 500 Hz tone, and in the visual task, 'X', 'O', and 'H', respectively. The stimuli were presented in a random series, once every 2 s, and participants responded only to the target (N = 12). RESULTS: Target stimuli elicited larger P300 components than non-target did in both stimulus modalities. For both target and non-target stimuli, P300 amplitude was larger and latency longer for the visual compared with the auditory stimulus. Analysis of normalized P300 amplitude data indicated that the target and non-target P300s from both modalities had identical topography. CONCLUSION: The findings suggest that both target and non-target stimuli in 3 stimulus oddball paradigm elicited the same type of P300 (P3b) for both stimulus modalities.  相似文献   

7.
The present study used event-related potentials (ERPs) to explore the effect of age on the neural correlates of monitoring processes involved in time-based prospective memory. In both younger and older adults, the addition of a time-based prospective memory task to an ongoing task led to a sustained ERP activity broadly distributed over the scalp. Older adults, however, did not exhibit the slow wave activity observed in younger adults over prefrontal regions, which is considered to be associated with retrieval mode. This finding indicates that age-related decline in intention maintenance might be one source of the impaired prospective memory performance displayed by older adults. An 'anterior shift' in scalp distribution of the P3 was observed in older adults, and was related to lower levels of accuracy in prospective memory performance. This relationship suggests that possible factors responsible for age-related decline in prospective memory performance include the decreased efficiency of executive/frontal functions as well as the reduced amount of resources available for the prospective memory task.  相似文献   

8.
OBJECTIVE: Mounting evidence suggests that the frontal lobes are particularly vulnerable to total sleep deprivation (TSD). Detection of novelty involves the frontal lobes. The presentation of rare, novel stimuli elicits an event-related potential (novel P3), which maximizes over anterior regions of the scalp. We hypothesized that TSD would impair novelty detection, resulting in a smaller novel P3 over the frontal region, with a topographic shift toward posterior areas. METHODS: An auditory novelty oddball task was administered to a TSD group after 36 h of waking and again following recovery sleep, and to a control group after 12 h of waking. EEG was recorded from Fz, Cz and Pz. RESULTS: A large anterior P3 was elicited in the control group. In the TSD group, this novel P3 was smaller at Fz. A later novel positivity appeared in parietal areas. The novel P3 returned to baseline levels and the late novel P3 was difficult to observe following recovery sleep. CONCLUSIONS: TSD appears to compromise the usual automatic detection of novelty probably due to frontal deactivation. Participants may compensate by relying on posterior brain mechanisms involving active memory comparison. The late novel P3 component may also reflect a secondary effortful attempt to encode and to categorize novel stimuli. SIGNIFICANCE: This study suggests that TSD may compromise cognitive functioning in different regions of the brain. The detection of novelty, probably mediated by the frontal lobes, is particularly at risk.  相似文献   

9.
Event-related potentials (ERPs) to task-relevant target and task-irrelevant novel stimuli were recorded in a somatosensory discrimination task. Subjects pressed a button to mechanical taps of the fifth finger (targets, P = 0.12), randomly interposed in sequences of taps to the second finger (standards, P = 0.76). Two types of infrequent novel stimuli were delivered; one was a mechanical tap to the third or fourth finger (tactile novels, P = 0.06), another was an electric shock at the wrist (shock novels, P = 0.06). Correctly detected targets generated a parietal maximal P300 (P3b, latency 335 msec). Shock novels generated a central maximal P300 with a shorter peak latency (298 msec) than the P3b. Tactile novels generated a P300 with a scalp distribution comparable to the shock novels. Unlike the P3b, P300 amplitude to both the shock and tactile novel stimuli habituated by 20-30% across the first several stimulus presentations. These results indicate that, similar to the auditory and visual modality, task-irrelevant novel somatosensory stimuli generate a novelty P300 ERP. Differences in scalp distribution, latency and habituation characteristics suggest that the novelty P300 may have contributions from intracranial generators independent from target P300 sources.  相似文献   

10.
Schizophrenia is characterised by marked disturbances of attention and information processing. Patients experience difficulty focusing on relevant cues and avoiding distraction by irrelevant stimuli. Event-related potential recordings indicate an amplitude reduction in the P3a component elicited by involuntary orienting to task-irrelevant, infrequent novel stimuli presented during auditory oddball detection in patients with schizophrenia. The goal of the present study was to elucidate the functional abnormality underlying the disturbed orienting to novel stimuli in schizophrenia. Twenty-eight stable, partially remitted, medicated patients with schizophrenia and 28 healthy control participants completed a novelty oddball variant during event-related fMRI. Relative to healthy participants, patients with schizophrenia were characterised by underactivity during novel stimulus processing in the right amygdala-hippocampus, within paralimbic cortex in the rostral anterior cingulate and posterior cingulate cortices and the right frontal operculum, and in association cortex at the right temporo-parietal-occipital junction, bilateral intraparietal sulcus, and bilateral dorsal frontal cortex. Subcortically, relative hypoactivation during novelty processing was apparent in the cerebellum, thalamus, and basal ganglia. These results suggest that patients less efficiently reorient processing resources away from the ongoing task of detecting and responding to the task-relevant target stimuli. In addition, trend results suggest that patients experienced increased distraction by novel stimuli.  相似文献   

11.
Brain responses to a subject's own name uttered by a familiar voice   总被引:2,自引:0,他引:2  
Hearing one's own first name automatically elicits a robust electrophysiological response, even in conditions of reduced consciousness like sleep. In a search for objective clues to superior cognitive functions in comatose patients, we looked for an optimal auditory stimulation paradigm mobilizing a large population of neurons. Our hypothesis was that wider ERPs would be obtained in response to the subject's own name (SON) when a familiar person uttered it. In 15 healthy awake volunteers, we tested a passive oddball paradigm with three different novels presented with the same probability (P = 0.02): SON uttered by a familiar voice (FV) or by an unknown voice (NFV) and a non-vocal stimulus (NV) which preserved most of the physical characteristics of SON FV. ERP (32 electrodes) and scalp current density (SCD) maps were analyzed. SON appeared to generate more robust responses related to involuntary attention switching (MMN/N2b, novelty P3) than NV. When uttered by a familiar person, the SON elicited larger response amplitudes in the late phase of novelty P3 (after 300 ms). Most important differences were found in the late slow waves where two components could be temporally and spatially dissociated. A larger parietal component for FV than for NFV suggested deeper high-level processing, even if the subjects were not required to explicitly differentiate or recognize the voices. This passive protocol could therefore provide a valuable tool for clinicians to test residual superior cognitive functions in uncooperative patients.  相似文献   

12.
This study concerns the question of how task modification affects the frequency occurrence of event-related potentials (ERP) inside the active cortical areas. In 13 candidates for epilepsy surgery, 156 sites in the temporal (74), frontal (73), and parietal (9) cortices were recorded by means of depth and subdural electrodes. Four modifications of the somatosensory evoked P3-like potentials were performed; (i) an oddball paradigm with silent counting of target stimuli (P3c); (ii) an oddball paradigm with a hand movement in response to target stimuli (P3m); (iii) an S1-S2 paradigm, ERP in the P300 time window after the S2 stimulus, with silent counting of target stimuli (S2c), and (iv) an S1-S2 paradigm with a hand movement in response to target stimuli (S2m). In comparing the oddball paradigms with the S1-S2 (contingent negative variation, CNV) paradigms, four regions emerge that are significantly linked with the oddball P3; the prefrontal cortex, the cingulate, the amygdalo-hippocampal complex, and the lateral temporal cortex. A prominent role of the cingulate and the fronto-orbital cortex in the cognitive processing of movement was supported when tasks with identical cognitive loads but different required responses were compared. Even relatively simple cognitive tasks activate many cortical regions. The investigated areas were activated in all tests; however, small regions in each field were active or inactive in relation to the nature of the task. The study indicates a variable and task-dependent internal organization of a highly complex and widely distributed system of active cortical areas.  相似文献   

13.
BACKGROUND: This study investigated attentional allocation in 39 Vietnam combat veterans, 25 with and 14 without posttraumatic stress disorder, assessing P300 amplitudes and latencies during both three-tone and novelty "oddball" tasks. METHODS: The three-tone oddball task consisted of three stimuli: frequent tones (85%), rare target tones (7.5%), and rare distractor tones (7.5%). The novelty oddball task was identical to the three-tone task except that the rare distractor tones were replaced with nonrepeating novel sounds (7.5%). RESULTS: Combat veterans with posttraumatic stress disorder showed significant P300 amplitude enhancements at frontal sites in response to distracting stimuli during the novelty but not during the three-tone oddball tasks. There were no amplitude differences in target tones during either task. CONCLUSIONS: The data suggest that combat veterans with posttraumatic stress disorder demonstrate P300 responses consistent with a heightened orientation response to novel, distracting stimuli. This finding is consistent both with the clinical presentation of the disorder and with theoretical notions that individuals with posttraumatic stress disorder demonstrate information-processing biases towards vague or potentially threatening stimuli.  相似文献   

14.
The purpose of the study was to assess the relationship between the P3a/P3b brain potentials, cortical thickness, and cognitive function in aging. Thirty-five younger and 37 older healthy participants completed a visual three-stimuli oddball ERP (event-related potential)-paradigm, a battery of neuropsychological tests, and MRI scans. Groups with short vs. long latency, and low vs. high amplitude, were compared on a point by point basis across the entire cortical mantle. In the young, thickness was only weakly related to P3. In the elderly, P3a amplitude effects were found in parietal areas, the temporoparietal junction, and parts of the posterior cingulate cortex. P3b latency was especially related to cortical thickness in large frontal regions. Path models with the whole sample pooled together were constructed, demonstrating that cortical thickness in the temporoparietal cortex predicted P3a amplitude, which in turn predicted executive function, and that thickness in orbitofrontal cortex predicted P3b latency, which in turn predicted fluid function. When age was included in the model, the relationship between P3 and cognitive function vanished, while the relationship between regional cortical thickness and P3 remained. It is concluded that thickness in specific cortical areas correlates with scalp recorded P3a/P3b in elderly, and that these relationships differentially mediate higher cognitive function.  相似文献   

15.
Despite the accumulated knowledge on moral decision-making in the early stages of development, empirical evidence is still limited in the old-aged adults. The current study contributes to unveil the neural correlates of judgments of moral transgressions as a function of aging, by examining the temporal dynamics of neural activation elicited by intentional and accidental harmful actions in three groups of healthy participants: young adults (18–35), adults (40–55), and older adults (60–75). Older adults were slower and less accurate in rating intentionality, compared to the younger groups. In ERP analysis, the older group showed increased P2 amplitude, which was predicted by poorer performance on neuropsychological tests. Reduced amplitudes were found on critical ERP components to moral cognition (N2 and LPP), namely while processing intentional harmful scenarios. Older adults seem to allocate more attentional resources (P2) to the task, probably to compensate the age-related decline in executive functioning, while younger groups show a pronounced negativity while detecting harm (N2) and increased neural activation to encode the intentions behind the acts (LPP).  相似文献   

16.
Abnormal hemodynamics in schizophrenia during an auditory oddball task.   总被引:6,自引:0,他引:6  
BACKGROUND: Schizophrenia is a heterogeneous disorder characterized by diffuse brain abnormalities that affect many facets of cognitive function. One replicated finding in schizophrenia is abnormalities in the neural systems associated with processing salient stimuli in the context of oddball tasks. This deficit in the processing of salience stimuli might be related to abnormalities in orienting, attention, and memory processes. METHODS: Behavioral responses and functional magnetic resonance imaging data were collected while 18 patients with schizophrenia and 18 matched healthy control subjects performed a three-stimulus auditory oddball task. RESULTS: Target detection by healthy participants was associated with significant activation in all 38 regions of interest embracing distributed cortical and subcortical systems. Similar reproducibility was observed in healthy participants for processing novel stimuli. Schizophrenia patients, relative to control subjects, showed diffuse cortical and subcortical hypofunctioning during target detection and novelty processing, including bilateral frontal, temporal, and parietal cortices and amygdala, thalamus, and cerebellum. CONCLUSIONS: These data replicate and extend imaging studies of target detection in schizophrenia and present new insights regarding novelty processing in the disorder. The results are consistent with the hypothesis that schizophrenia is characterized by a widespread pathologic process affecting many cerebral areas, including cortical, subcortical, and cerebellar circuits.  相似文献   

17.
The objective of our work was to find whether the subthalamic nucleus (STN) is directly involved in cognitive activities, specifically in executive functions. Ten patients with idiopathic Parkinson's disease had P3 potentials recorded by externalized deep brain electrodes that were implanted in the STN or in its immediate vicinity. Two contacts of each electrode were positioned inside the STN according to clinical effect, perioperative microrecording, and stimulation. The P3 waves were recorded following the auditory stimulus in a standard oddball paradigm. They were compared with the P3 waves elicited from a protocol modified by a dual task with an increased demand on executive functions. The P3 potentials with a steep amplitude gradient evoked by the modified protocol were detected by the contacts in 8 of the 14 available electrodes, located either inside the STN or in its immediate vicinity. The modified protocol led to an increased latency of the P3 potential in 8 of 14 electrodes. No local field potentials of the standard P3 potentials were recorded. The P3 potentials related to the increased demand on executive functions were detected by the STN contacts known to have the best effect on Parkinsonian motor signs. This could suggest that the STN takes part in the executive function processing. © 2007 Movement Disorder Society  相似文献   

18.
Brain potentials accompanying the classification of probe items as being members of a previously presented list were recorded from subjects ranging in age from 18 to 86 years old. A group of older subjects (average age = 66 years) was compared to a younger group (average age = 29 years). The items tested were verbal (digits) and non-verbal (musical notes). Digits were presented in the auditory and visual modalities, and notes were presented acoustically. Reaction times (RTs) and performance accuracy were computed. Potentials are described in terms of scalp distribution, latency and amplitude as a function of the type of stimulus (verbal/non-verbal, auditory/visual) and age group (younger/older). Evoked potentials to target notes in an auditory target-detection ('odd-ball') task were also recorded for comparison with the memory tasks. Potentials evoked by probes consisted of a sequence of sensory components in the first 250 msec followed by a cognitive component that was positive in polarity and sustained in duration (approximately 700 msec labeled P3), consisting of an earlier frontal component, P3a (mean latency: younger = 385 msec, older = 406 msec), and a large (15 microV) and later parietal constituent, P3b (mean latency: younger = 574 msec, older = 630 msec). The frontal derivation of the younger subjects showed a sustained negative bias of the wave forms in the latency range of 200-500 msec (P2 to P3) compared to the older subjects. Reaction times were longer in older subjects than in younger subjects for all stimulus types and set sizes. For the potentials evoked by the probes the younger group had consistently larger late parietal components (P3b) than the older group, whereas the late frontal potentials (P3a) were larger for the older than younger subjects. Except for visual stimuli, the latencies of the parietal sustained potentials were not influenced by subject age in contrast to the uniform changes in RT for all stimulus types. Significant amplitude and latency effects on the parietal sustained potentials accompanied the different stimulus types and memorized-set sizes which were similar for the two age groups. These results suggest that the effects of aging on short-term memory are primarily on response selection, as evidenced by RT slowing with aging, and not on memory-scanning processes as evidenced by the similarity of the latency measures of the accompanying brain potentials between the two age groups.  相似文献   

19.
Current evidence suggests that older adults have reduced suppression of, and greater implicit memory for, distracting stimuli, due to age-related declines in frontal-based control mechanisms. In this study, we used fMRI to examine age differences in the neural underpinnings of attentional control and their relationship to differences in distractibility and subsequent memory for distraction. Older and younger adults were shown a rapid stream of words or nonwords superimposed on objects and performed a 1-back task on either the letters or the objects, while ignoring the other modality. Older adults were more distracted than younger adults by the overlapping words during the 1-back task, and they subsequently showed more priming for these words on an implicit memory task. A multivariate analysis of the imaging data revealed a set of regions, including the rostral PFC and inferior parietal cortex, that younger adults activated to a greater extent than older adults during the ignore-words condition, and activity in this set of regions was negatively correlated with priming for the distracting words. Functional connectivity analyses using right and left rostral PFC seeds revealed a network of putative control regions, including bilateral parietal cortex, connected to the frontal seeds at rest. Older adults showed reduced functional connectivity within this frontoparietal network, suggesting that their greater distractibility may be due to decreased activity and coherence within a cognitive control network that normally acts to reduce interference from distraction.  相似文献   

20.
This experiment explored the functional significance of age-related hemispheric asymmetry reduction associated with episodic memory and the cognitive mechanisms that mediate this brain pattern. ERPs were recorded while young and older adults performed a word-stem cued-recall task. Results confirmed that the parietal old/new effect was of larger latency and reduced magnitude and less lateralized in the older group than the young group. Correlational and regression analyses indicated that the degree of laterality of brain activity determines the accuracy of memory performance and mediates age-related differences in memory performance among older participants. They also confirmed a cascade model in which the individual level of executive functioning of older adults mediates age-related differences in the degree of lateralization of brain activity, which in turn mediates age-related differences in memory performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号