首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mistletoe lectins are of high biological activity and exert cytotoxic effects. We have previously shown that Korean mistletoe, Viscum album var. coloratum, lectin-II specifically induces apoptotic cell death in cancer cells, not normal lymphocytes. The destructive mechanism by mistletoe lectins on tumor cells was mediated by activation of c-JUN N-terminal kinase (JNK)/stress-activated protein kinase. Herein, we investigated the involvement of caspase cascade and its proteolytic cleavage effects on biosubstrates of human myeloleukemic U937 cells by D-galactoside and N-acetyl-galactosamine-specific Korean mistletoe lectin-II. Mistletoe lectin-II induced ladder pattern DNA fragmentation and activation of caspase-3, -8, and -9 of U937 cells, but not caspase-1 protease, in a time- and dose-dependent manner. Consistent with catalytic activation of protease, both poly(ADP-ribose) polymerase (PARP) and protein kinase C-delta (PKC-delta) are also cleaved in mistletoe lectin-II-treated U937 cells. An inhibitor of caspase-3-like protease, DEVD-CHO peptide, significantly inhibited mistletoe lectin-II-induced apoptosis, PARP cleavage, and fragmentation of DNA. These results provide the evidence that Korean mistletoe lectin-II induces apoptotic death of U937 cells via activation of caspase cascades.  相似文献   

2.
JP-8 induces apoptosis in rat lung epithelial cells, primary mouse T lymphocytes, Jurkat T lymphoma cells, and U937 monocytic cells (Stoica et al., 2001). Here, we have observed a different mechanism of cytotoxicity in human keratinocytes grown in culture as well as when grafted onto nude mice. At lower levels of JP-8 (80 microg/ml; 1 x 10(-4) dilution), sufficient to induce apoptosis in other cell types, including lung epithelial cells (Stoica et al., 2001), no apoptosis was observed. At higher levels (>200 microg/ml; 2.5 x 10(-4) dilution), JP-8 is cytotoxic to both primary and immortalized human keratinocytes, as evidenced by the metabolism of calcein, as well as by morphological changes such as cell rounding and cell detachment. There was no evidence of activation of caspases-3, -7, or -8 either by enzyme activity or immunoblot analysis, and the stable expression of a dominant-negative inhibitor of apoptosis (FADD-DN) did not increase the survival of keratinocytes to JP-8. The pattern of poly(ADP-ribose) polymerase (PARP) cleavage was also characteristic of necrosis. PARP has been also been implicated in necrosis via its ability to lower levels of ATP in damaged cells. However, fibroblasts derived from PARP-/- mice underwent necrotic cell death similar to those derived from PARP+/+ mice, indicating that the effects of JP-8 are independent of PARP. Immunoblot analysis further revealed that exposure of keratinocytes to the toxic higher levels of JP-8 markedly downregulates the expression of the prosurvival members of the Bcl-2 family, Bcl-2 and Bcl-x(L), and upregulates the expression of antisurvival members of this family, including Bad and Bak. Bcl-2 and Bcl-x(L) have been shown to preserve mitochondrial integrity and suppress cell death. In contrast, Bak and Bad both promote cell death by alteration of the mitochondrial membrane potential, in part by heterodimerization with and inactivation of Bcl-2 and Bcl-x(L), and either inducing necrosis or activating a downstream caspase program. High intrinsic levels of Bcl-2 and Bcl-x(L) may prevent apoptotic death of keratinocytes at lower levels of JP-8, while perturbation of the balance between pro- and antiapoptotic Bcl-2 family members at higher levels may ultimately play a role in necrotic cell death in human keratinocytes. Finally, when human keratinocytes were grafted to form a human epidermis on nude mice, treatment of these grafts with JP-8 revealed cytotoxicity and altered histology in vivo.  相似文献   

3.
4.
Mechanism of ricin-induced apoptosis in human cervical cancer cells   总被引:4,自引:0,他引:4  
The mechanism of ricin-induced apoptosis in human cervical cancer cell line HeLa was studied. The present study demonstrated that ricin induces apoptosis of human cervical cancer cells (HeLa) in a time dependent manner with an IC(50) for cell viability of 1 microg/ml. Ricin treatment resulted in a time dependent increase in LDH leakage, DNA fragmentation, percent apoptotic cells, generation of reactive oxygen species and depletion of intracellular glutathione levels. DNA agarose gel electrophoresis showed typical oligonucleosomal length DNA fragmentation. Additionally, DNA diffusion assay was performed to confirm DNA damage and apoptosis. Ricin activated caspase-3 as evidenced by both proteolytic cleavage of procaspase-3 into 20 and 18 kDa subunits, and increased protease activity. Caspase activity was maximum at 4h and led to the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP), resulting in the 85 kDa cleavage product. Ricin-induced caspase-3 activation also resulted in cleavage of DNA fragmentation factor-45 (DFF45/ICAD) and DFF40 or caspase-activated DNase in HeLa cells. Activation of caspase-3, cleavage of PARP and DNA fragmentation was blocked by pre-treatment with caspase-3 specific inhibitor Ac-DEVD-CHO (100 microM) and broad-spectrum caspase inhibitor Z-VAD-FMK (40 microM). Ricin-induced DNA fragmentation was inhibited by pre-treatment with PARP inhibitors 3-aminobenzamide (100 microM) and DPQ (10 microM). Our results indicate that ricin-induced cell death was mediated by generation of reactive oxygen species and subsequent activation of caspase-3 cascade followed by down stream events leading to apoptotic mode of cell death.  相似文献   

5.
Acetaminophen is a widely used analgesic and antipyretic drug that exhibits toxicity at high doses to the liver and kidneys. This toxicity has been attributed to cytochrome P-450-generated metabolites which covalently modify target proteins. Recently, acetaminophen, in its unmetabolized form, has been shown to affect a variety of cells and tissues, for instance, testicular and lymphoid tissues and lymphocyte cell lines. The effects on cell viability of acetaminophen at a concentration comparable to that achieved in plasma during acetaminophen toxicity have now been examined with a hepatoma cell line SK-Hep1, primary human peripheral blood lymphocytes and human Jurkat T cells. Acetaminophen reduced cell viability in a time-dependent manner. Staining of cells with annexin-V also revealed that acetaminophen induced, after 8 hr of treatment, a loss of the asymmetry of membrane phospholipids, which is an early event associated with apoptosis. Acetaminophen triggered the release of cytochrome c from mitochondria into the cytosol, activation of caspase-3, 8, and 9, cleavage of poly(ADP-ribose) polymerase, and degradation of lamin B1 and DNA. Whereas cleavage of DNA into internucleosomal fragments was apparent in acetaminophen treated SK-Hep1 and primary lymphocytes, DNA was only degraded to 50-kb fragments in treated Jurkat cells. Overexpression of the antiapoptotic protein Bcl-XL prevented these various apoptotic events induced by acetaminophen in Jurkat cells. Caspase-8 activation was a postmictochondrial event and occurred in a Fas-independent manner. These results demonstrate that acetaminophen induces caspases-dependent apoptosis with mitochondria as a primary target. These results also reiterate the potential role of apoptosis in acetaminophen hepatic and extrahepatic toxicity.  相似文献   

6.
To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 microM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.  相似文献   

7.
N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8–Bid–Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.  相似文献   

8.
This study reports apoptotic events after yessotoxin (YTX) exposure in L6 (rat) and BC3H1 (mouse) skeletal muscle myoblast cell lines. These cell lines are relevant targets to study the cytotoxic effect since this toxin has been reported as cardiotoxic. Mechanisms of action of YTX in multicellular organisms are not fully elucidated. Cell culture studies can contribute to find some of these mechanisms and trace the molecular pathways involved. The present work shows results from exposing cells to 100 nM purified YTX for 72 h. Morphological and biochemical changes characteristic of apoptotic cell death were evaluated in the two cell lines. Immunofluorescence and western blot techniques showed caspase-3 and caspase-9 activation. Western blot analysis of poly(ADP-ribose)-polymerase (PARP) confirmed caspase-3 activation in both cell lines. DNA fragmentation was not detected in these cell lines. This evidence reflect that oligonucleosomal DNA fragmentation is not a biochemical event that can be used as a definitive apoptotic marker in L6 and BC3H1 myoblast cell lines. The results indicate that the time-course and degree of apoptotic events induced by YTX depend on cell line sensitivity.  相似文献   

9.
We investigated the mechanism by which 4-hydroxynonenal (HNE), a major aldehydic product of lipid peroxidation, induces apoptosis in tumor cells. Treatment of human colorectal carcinoma (RKO) cells with HNE-induced poly-ADP-ribose-polymerase (PARP) cleavage and DNA fragmentation in a dose- and time-dependent manner. The induction of PARP cleavage and DNA fragmentation paralleled caspase-2, -3, -8, and -9 activation. Pretreatment of cells with an inhibitor of caspase-3, z-DEVD-fmk, or a broad spectrum caspase inhibitor, z-VAD-fmk, abolished caspase activation and subsequent PARP cleavage. Constitutive expression of high levels of Bcl-2 protected cells from HNE-mediated apoptosis. In addition, Bcl-2 overexpression inhibited cytochrome c release from mitochondria and subsequent caspase-2, -3, and -9 activation. These findings demonstrate that HNE triggers apoptotic cell death through a mitochondrion-dependent pathway involving cytochrome c release and caspase activation. Bcl-2 overexpression protected cells from HNE-induced apoptosis through inhibition of cytochrome c release.  相似文献   

10.
1. Arvanil (N-arachidonoylvanillamine), a nonpungent capsaicin-anandamide hybrid molecule, has been shown to exert biological activities through VR1/CB1-dependent and -independent pathways. We have found that arvanil induces dose-dependent apoptosis in the lymphoid Jurkat T-cell line, but not in peripheral blood T lymphocytes. Apoptosis was assessed by DNA fragmentation through cell cycle and TUNEL analyses. 2. Arvanil-induced apoptosis was initiated independently of any specific phase of the cell cycle, and it was inhibited by specific caspase-8 and -3 inhibitors and by the activation of protein kinase C. In addition, kinetic analysis by Western blots and fluorimetry showed that arvanil rapidly activates caspase-8, -7 and -3, and induces PARP cleavage. 3. The arvanil-mediated apoptotic response was greatly inhibited in the Jurkat-FADDDN cell line, which constitutively expresses a negative dominant form of the adapter molecule Fas-associated death domain (FADD). This cell line does not undergo apoptosis in response to Fas (CD95) stimulation. 4. Using a cytofluorimetric approach, we have found that arvanil induced the production of reactive oxygen species (ROS) in both Jurkat-FADD+ and Jurkat-FADDDN cell lines. However, ROS accumulation only plays a residual role in arvanil-induced apoptosis. 5. These results demonstrate that arvanil-induced apoptosis is essentially mediated through a mechanism that is typical of type II cells, and implicates the death-inducing signalling complex and the activation of caspase-8. This arvanil-apoptotic activity is TRPV1 and CB-independent, and can be of importance for the development of potential anti-inflammatory and antitumoral drugs.  相似文献   

11.
Paecilomyces tenuipes is a famous Chinese medicinal entomopathogenic fungus that grows within the larvae of silkworms. 4beta-acetoxyscirpendiol (4-MAS), a cytotoxic compound belonging to the scirpenol subfamily of trichothecene mycotoxin, was isolated from Paecilomyces tenuipes. To further elucidate the cytotoxic mechanism of 4-MAS, evidences of its induction of apoptosis, together with the structurally related acetoxyscirpenol moiety mycotoxins (ASMs) such as, 15-acetoxyscirpenol (15-MAS), 4,15-diacetoxyscirpenol (4,15-DAS), and 3alpha-acetyldiacetoxyscirpenol (TAS), in the human Jurkat T cell line were reported herein. In the MTT reduction and time-course cytotoxicity assays for monitoring cell viability, all the four ASMs that were tested exhibited cytotoxicity; single acetoxylation at C-4 of the scirpenol family resulted in relatively weak cytotoxicity, while acetoxylation at C-15 resulted in strong cytotoxicity regardless of the other acetoxylations at the C-3 and/or C-4 positions. Phosphatidylserine externalization was induced by all the ASMs that were treated at an early phase in a time-dependent manner, showing a typical apoptotic phenomenon, not a necrotic one. The ASMs also reduced the mitochondria's inner-membrane potential (deltaPsim) through flow cytometry analysis after staining these with DiOC6, a mitochondria-specific and voltage-dependent dye. Acetoxylation of ASM at C-15 increased deltaPsim disruption, but that at C-3 reduced the deltaPsim. The ASMs that were tested also cleaved 113 kDa PARP to an 89-kDa fragment through Western blot assay, suggesting the activation of caspase-3 and/or caspase-7 in the Jurkat T cell. DNA fragmentation was also observed to have been increased in a time-dependent manner by the ASMs that were tested in Jurkat T cells, resulting in the DNA fragmentation intensity order of 4,15-DAS>15-MAS>TAS>4-MAS. These data indicate that the Jurkat T cells that were treated with ASMs underwent typical cascades of apoptotic cell death.  相似文献   

12.
Rimonabant (SR141716), a cannabinoid CB1 receptor antagonist known for anti-obesity activity, has more recently been shown to inhibit tumor cell growth. Here we demonstrated the antitumor potential of SR141716 in leukemia-derived cell lines and its low toxicity in normal cells (PBMC). SR141716 (1-20 μM range of doses) reduced Jurkat and U937 cell number by activating death signals as well as affecting cell cycle progression. The most prominent response in U937 to SR141716 was a G0/G1 block, while in Jurkat cells there was activation of cell death processes. SR141716-treated cells exhibited the morphological and biochemical features of apoptosis and to some extent necrosis. Apoptotic mode of cell death was confirmed in both cell lines by analysis of cell morphology, phosphatidylserine exposure and DNA fragmentation. Moreover, the drug was found to induce an early and robust mitochondrial membrane depolarization. In Jurkat cells the apoptotic process was typically caspase-dependent, while in U937 caspase-independent pathways were also activated. The contribution of PARP activation to SR141716-induced apoptosis in U937 was suggested by protein PARylation, AIF release and apoptosis reversal by PARP inhibitors. Moreover, SR141716 negatively modulated, especially in U937, the PI3K/AKT pathways. In conclusion, our data indicate that SR141716 elicits alternative response and/or cell death pathways depending on the cell type affected.  相似文献   

13.
Exposure of Jurkat T cells to mollugin (15–30 μM), purified from the roots of Rubia cordifolia L., caused cytotoxicity and apoptotic DNA fragmentation along with mitochondrial membrane potential disruption, mitochondrial cytochrome c release, phosphorylation of c-Jun N-terminal kinase (JNK), activation of caspase-12, -9, -7, -3, and -8, cleavage of FLIP and Bid, and PARP degradation, without accompanying necrosis. While these mollugin-induced cytotoxicity and apoptotic events including activation of caspase-8 and mitochondria-dependent activation of caspase cascade were completely prevented by overexpression of Bcl-xL, the activation of JNK and caspase-12 was prevented to much lesser extent. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk), the caspase-9 inhibitor (z-LEHD-fmk), the caspase-3 inhibitor (z-DEVD-fmk) or the caspase-12 inhibitor (z-ATAD-fmk) at the minimal concentration to prevent mollugin-induced apoptosis appeared to completely block the activation of caspase-7 and -8, and PARP degradation, but failed to block the activation of caspase-9 and -3 with allowing a slight enhancement in the level of JNK phosphorylation. Both FADD-positive wild-type Jurkat clone A3 and FADD-deficient Jurkat clone I2.1 exhibited a similar susceptibility to the cytotoxicity of mollugin, excluding involvement of Fas/FasL system in triggering mollugin-induced apoptosis. Normal peripheral T cells were more refractory to the cytotoxicity of mollugin than were Jurkat T cells. These results demonstrated that mollugin-induced cytotoxicity in Jurkat T cells was mainly attributable to apoptosis provoked via endoplasmic reticulum (ER) stress-mediated activation of JNK and caspase-12, and subsequent mitochondria-dependent activation of caspase-9 and -3, leading to activation of caspase-7 and -8, which could be regulated by Bcl-xL.  相似文献   

14.
Lectins are a class of carbohydrate-binding proteins or glycoproteins and used in the purification and characterization of glycoproteins according to their specificity to carbohydrates. In the present study, the mitogenic activity of Artocarpus lingnanensis lectin (ALL) and its apoptosis induction in Jurkat T cells were explored. MTT assay revealed strong mitogenic potential of ALL. Meanwhile, the anti-cancer activity of ALL was also explored using the human leukemic Jurkat T cell line. ALL exhibited strong binding affinity (97%) to the cell membrane, which could be effectively inhibited by N-acetyl-d-galactosaminide (NAD). ALL induced time- and dose-dependent growth inhibition in Jurkat T cells. ALL could induce morphologic change and increase the hypodiploid cell population with the decreased population of S and G2/M phases. The induction of phosphatidylserine externalization and PARP cleavage further confirmed its apoptosis-inducing activity due to the activation of caspase-8 and -9. The inhibition of caspase-9 but not caspase-8 could rescue ALL-induced apoptotic cells. Further studies showed that ALL enhanced the cleavage of Bid, the release of cytochrome C, the depolarization of mitochondria and the activation of caspase-3. ALL downregulated the expression of Bcl-xl and Bcl-2 without impact on Bax and Bad. In addition, the activation of p38/JNK MAPK signaling pathways was observed to be a requisite for ALL apoptotic activity. In contrast, ALL could not induce apoptosis of normal T cells. These findings present the differential effect of ALL on Jurkat and normal T lymphocytes, suggesting its therapeutic value in leukemia.  相似文献   

15.
Poly (ADP-ribose) polymerase is a zinc-finger DNA-binding enzyme which detects and signals DNA strand breaks generated either directly during base excision repair, or indirectly by genotoxic agents such as oxygen radicals. In response to genotoxic injury, PARP catalyses the synthesis of poly (ADP-ribose), from its substrate beta-NAD+ and this polymer is covalently attached to several nuclear proteins and PARP itself. As a result, PARP converts DNA breaks into intracellular signals which activate DNA repair programs or cell death options. Several studies have also shown that PARP is involved in either necrosis and subsequent inflammation or apoptosis. Although this enzyme is not indispensable during the latter cell death program, it has been demonstrated that PARP plays a facilitating role in this process. PARP is activated at an intermediate stage of apoptosis and is then cleaved and inactivated at a late stage by apoptotic proteases, namely caspase-3/CPP-32/Yama/apopain and caspase-7. This cleavage prevents necrosis during apoptosis, avoiding inflammation. All these functions, and the observation that PARP is an abundant and highly conserved enzyme, suggest that this enzyme plays a pivotal role, particularly in the maintenance of genomic DNA stability, apoptosis and in the response to oxidative stress. Since these situations are found in cancer, inflammation, autoimmunity (such as diabetes), myocardial dysfunction, certain infections, ageing and radiation/chemical exposure, attempts have been made to modulate PARP activity. With regard to the increasing interest towards PARP, the aim of this review is to explain the cellular role of PARP and the advantages of modulating its activity in diverse preventive or therapeutic strategies.  相似文献   

16.
Abstract: Acetaminophen is a widely used analgesic and antipyretic drug that exhibits toxicity at high doses to the liver and kidneys. This toxicity has been attributed to cytochrome P‐450‐generated metabolites which covalently modify target proteins. Recently, acetaminophen, in its unmetabolized form, has been shown to affect a variety of cells and tissues, for instance, testicular and lymphoid tissues and lymphocyte cell lines. The effects on cell viability of acetaminophen at a concentration comparable to that achieved in plasma during acetaminophen toxicity have now been examined with a hepatoma cell line SK‐Hep1, primary human peripheral blood lymphocytes and human Jurkat T cells. Acetaminophen reduced cell viability in a time‐dependent manner. Staining of cells with annexin‐V also revealed that acetaminophen induced, after 8 hr of treatment, a loss of the asymmetry of membrane phospholipids, which is an early event associated with apoptosis. Acetaminophen triggered the release of cytochrome c from mitochondria into the cytosol, activation of caspase‐3, 8, and 9, cleavage of poly(ADP‐ribose) polymerase, and degradation of lamin B1 and DNA. Whereas cleavage of DNA into internucleosomal fragments was apparent in acetaminophen treated SK‐Hep1 and primary lymphocytes, DNA was only degraded to 50‐kb fragments in treated Jurkat cells. Overexpression of the antiapoptotic protein Bcl‐xL prevented these various apoptotic events induced by acetaminophen in Jurkat cells. Caspase‐8 activation was a postmictochondrial event and occurred in a Fas‐independent manner. These results demonstrate that acetaminophen induces caspases‐dependent apoptosis with mitochondria as a primary target. These results also reiterate the potential role of apoptosis in acetaminophen hepatic and extrahepatic toxicity.  相似文献   

17.
Jun DY  Rue SW  Han KH  Taub D  Lee YS  Bae YS  Kim YH 《Biochemical pharmacology》2003,66(12):2291-2300
We first report the mechanism for the inhibitory effect of the lysine analog, thialysine on human acute leukemia Jurkat T cells. When Jurkat T cells were treated with thialysine (0.32-2.5 mM), apoptotic cell death along with several biochemical events such as mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase, and DNA fragmentation was induced in a dose- and time-dependent manner. However, these thialysine-induced apoptotic events were significantly abrogated by an ectopic expression of Bcl-xL, which is known to block mitochondrial cytochrome c release. Decylubiquinone, a mitochondrial permeability transition pore inhibitor, also suppressed thialysine-induced apoptotic events. Comparison of the thialysine-induced alterations in the cell cycle distribution between Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) and Jurkat T cells transfected with vector (J/Neo) revealed that the apoptotic cells were mainly derived from the cells accumulated in S and G2/M phases following thialysine treatment. The interruption of cell cycle progression in the presence of thialysine was accompanied by a significant decline in the protein level of cdk4, cdk6, cdc2, cyclin A, cyclin B1, and cyclin E. These results demonstrate that the cytotoxic activity of thialysine toward Jurkat T cells is attributable to not only apoptotic cell death mediated by a mitochondria-dependent death signaling pathway, but also interruption of cell cycle progression by a massive down-regulation in the level of cdks and cyclins.  相似文献   

18.
19.
The toxic jet fuel JP-8 induces morphological and biochemical changes characteristic of apoptosis in rat lung epithelial (RLE-6TN) cells. The mechanism of JP-8 toxicity in these cells was further investigated in an attempt to identify potential therapeutic interventions. Given that oxidative stress and changes in the concentrations of endogenous antioxidants, such as glutathione (GSH), have been associated with the cellular damage elicited by numerous toxicants, the possibility that JP-8 induces cellular oxidative stress was investigated. Experimentally induced depletion of intracellular GSH or exposure of cells to a low concentration of H(2)O(2) markedly enhanced JP-8-induced cell death. A significant reduction in intracellular concentrations of GSH was noted in RLE-6TN cells shortly after exposure to JP-8. Furthermore, JP-8 induced the generation of reactive oxygen species (ROS) in RLE-6TN cells. Consistent with the notion that JP-8 toxicity is mediated by generation of ROS and depletion of intracellular GSH, JP-8-induced cell death was inhibited by exogenous GSH or the thiol-containing antioxidant N-acetyl-cysteine. This protective effect was associated with marked inhibition of both the activation of caspase-3 and the loss of the mitochondrial membrane potential induced by JP-8. Inhibition of the JP-8-induced activation of poly(ADP-ribose) polymerase by 3-aminobenzamide did not protect cells against JP-8 toxicity. Together, these results indicate that thiol antioxidants are highly effective in rescuing cells from JP-8-induced cell death and that they may provide a basis for new therapeutic approaches to counteract JP-8 toxicity.  相似文献   

20.
RM, a novel aminosteroid synthesized by our research group, shows a broad spectrum of antitumor activity against nine cancer cell lines and limited toxicity against two normal cell lines. However, its related mechanism of action has not yet been elucidated. In this study, we investigated the cellular and molecular events underlying the cytotoxicity of RM in human acute promyelocytic leukemia HL-60 cells. RM was found to induce a G0/G1 cell cycle block of HL-60 cells but not terminal myeloid differentiation. Interestingly, typical apoptotic morphological changes were exhibited by HL-60 cells treated with RM stained with Hoechst 33342 and examined by fluorescence microscopy. Apoptotic death assay using annexin-V/propidium iodide dual staining flow cytometry demonstrated a dose-dependent apoptotic effect of RM on HL-60 cells. In addition, RM induced the cleavage of caspase-3, caspase-8 and PARP, but not the cleavage of caspase-9. Our findings suggest that RM reduces HL-60 cells survival through a caspase-dependent death receptor pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号