首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marques CP  Hu S  Sheng W  Cheeran MC  Cox D  Lokensgard JR 《Glia》2004,47(4):358-366
Infection of the central nervous system (CNS) with herpes simplex virus (HSV)-1 initiates a rapidly progressive, necrotizing, and fatal encephalitis in humans. Even with the advent of antiviral therapy, effective treatments for HSV-1 brain infection are limited because the cause of the resulting neuropathogenesis is not completely understood. We previously reported that human microglial cells, while nonproductively infected, respond to HSV-1 by producing robust amounts of pro-inflammatory mediators, such as tumor necrosis factor(TNF), interleukin (IL)-1beta, CCL5 (RANTES), and CXCL10 (IP-10). Although initiation of immune responses by glial cells is an important protective mechanism in the CNS, unrestrained inflammatory responses may result in irreparable brain damage. To elucidate the potential immunomodulatory role of anti-inflammatory cytokines, we investigated the effects of IL-4, IL-10, and transforming growth factor (TGF)-beta on microglial cell cytokine and chemokine production in response to HSV-1. Results from these studies demonstrated a consistent IL-10-mediated suppression of TNF-alpha (60% +/- 2%), IL-1beta (68% +/- 3%), CCL5 (62 +/- 4%), but not CXCL10 production by HSV-1-infected microglial cells. This inhibition was associated with decreased HSV-1-induced activation of NF-kappaB. These results suggest that IL-10 has the ability to regulate microglial cell production of immune mediators and thereby, dampen the pro-inflammatory response to HSV-1.  相似文献   

2.
M. Lafon 《Revue neurologique》2009,165(12):1039-1044
Viruses that infect the nervous system may cause acute, chronic or latent infections. Despite the so-called immunoprivileged status of the nervous system, immunosurveillance plays an important role in the fate of viral infection of the brain. Herpes simplex virus 1 (HSV-1) persists in the nervous system for the life of the host with periodic stress induced reactivation that produces progeny viruses. Prevention of reactivation requires a complex interplay between virus neurons, and immune response. New evidence supports the view that CD8+T cells employing both lytic granule- and IFN-gamma-dependent effectors are essential in setting up and maintaining HSV-1 latency. HSV-1 infection of the nervous system can be seen as a parasitic invasion which leaves the individual at risk for subsequent reactivation and disease. The recent observation that herpes virus latency may confer protection against experimental bacterial infection suggests that unexpected symbiosis may exist between latent viruses and the infected nervous system of its host.  相似文献   

3.
4.
Microglial cells and astrocytes are glial cell types that perform distinct functions and generate innate immune responses to counter invading pathogens. Herpes simplex virus 1 (HSV-1) is a neurotropic virus that is capable of causing severe, necrotizing encephalitis. HSV-1 infects both of these glial cell types. Microglial cells undergo an abortive infection, yet respond to viral infection by inducing a burst of proinflammatory cytokine and chemokine production. Following this cytokine burst, they rapidly succumb to cell death. In contrast, astrocytes do permit productive viral replication, but do not generate these same innate immune mediators. Although apoptosis has been implicated in a number of acute and chronic neurological disorders, little is known about apoptosis during viral encephalitis. In the present study, the authors investigated the effect of HSV-1 infection on cell survival and studied the mechanisms of cell-death in virus-infected, primary murine glial cells. The authors report that although apoptosis occurred rapidly in microglia, it was delayed during productive infection of astrocytes. Furthermore, microarray studies revealed significant variations in the expression of apoptotic genes between these two types of glial cells, indicating crucial differences in signaling pathways. Intrinsic as well as extrinsic pathways of apoptosis were found to be activated in both glial cell types. Specifically, genes involved in the tumor necrosis factor (TNF) signaling pathway were predominantly up-regulated in microglia, whereas genes of the Fas pathway were induced during HSV infection of astrocytes.  相似文献   

5.
6.
To determine whether herpes simplex virus type 1 (HSV-1) infection causes oxidative stress and lipid peroxidation in cultured neural cells, mouse P19 embryonal carcinoma cells were differentiated into cells with neural phenotypes (P19N cells) by retinoic acid and were then infected with HSV-1. Cellular levels of reactive oxygen species (ROS) and the release of lipid peroxidation by-products into the tissue culture medium were then measured by the generation of fluorescent markers hydroxyphenyl fluorescein and a stable chromophore produced by lipid peroxidation products, malondialdehyde (MDA) and hydroxyalkenals (4-HAEs; predominantly 4-hydroxy-2-nonenal [HNE]), respectively. HSV-1 infection increased ROS levels in neural cells as early as 1 h post infection (p.i.) and ROS levels remained elevated at 24 h p.i. This viral effect required viral entry and replication as heat- and ultraviolet light-inactivated HSV-1 were ineffective. HSV-1 infection also was associated with increased levels of MDA/HAE in the culture medium at 2 and 4 h p.i., but MDA/HAE levels were not different from those detected in mock infected control cultures at 1, 6, and 24 h p.i. HSV-1 replication in P19N cells was inhibited by the antioxidant compound ebselen and high concentrations of HNE added to the cultures, but was increased by low concentrations of HNE. These findings indicate that HSV-1 infection of neural cells causes oxidative stress that is required for efficient viral replication. Furthermore, these observations raise the possibility that soluble, bioactive lipid peroxidation by-products generated in infected neural cells may be important regulators of HSV-1 pathogenesis in the nervous system.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) is capable of causing a latent infection in sensory neurons that lasts for the lifetime of the host. The primary infection is resolved following the induction of the innate immune response that controls replication of the virus until the adaptive immune response can clear the active infection. HSV-1-specific CD8+ T cells survey the ganglionic regions containing latently infected neurons and participate in preventing reactivation of HSV from latency. The long-term residence and migration dynamics of the T cells in the trigeminal ganglia appear to distinguish them from the traditional memory T cell subsets. Recently described tissue resident memory (TRM) T cells establish residence and survive for long periods in peripheral tissue compartments following antigen exposure. This review focuses on the immune system response to HSV-1 infection. Particular emphasis is placed on the evidence pointing to the HSV-1-specific CD8+ T cells in the trigeminal belonging to the TRM class of memory T cells and the role of TRM cells in virus infection, pathogenesis, latency, and disease.  相似文献   

8.
The RL1 gene of herpes simplex virus (HSV) encodes a polypeptide, ICP34.5 which is a specific virulence determinant. RL1 null mutants fail to replicate in both the PNS and CNS and are incapable of causing encephalitis. Additionally, RL1 null mutants have the capacity to replicate in actively dividing cells but fail to replicate in growth arrested or terminally differentiated cells. This selective replication phenotype has highlighted their use as both tumour killing agents and gene delivery vehicles particularly to the nervous system. Before their full potential can be assessed, however, it is necessary to determine the pathological and immune responses induced following direct intracerebral inoculation. Fourteen mice were injected in the left cerebral hemisphere with a high dose of the HSV-1, RL1 null mutant 1716. At regular time intervals up to 28 days, the mice were killed and the distribution of virus antigen, histopathological changes and immune responses in the CNS determined by H & E staining and immunohistochemistry. Control mice were injected with either wild type HSV-1 or buffer. At early times post- inoculation with 1716, there is a low grade meningoencephalitis with a limited inflammatory response. This is accompanied by virus antigen expression confined to the site of inoculation. By 28 days the CNS is histopathologically normal; virus antigen and immune responses are no longer detectable. These findings demonstrate that infection of the CNS by RL1 null mutants of HSV results in a finite, self-limiting response and highlights their potential for therapeutic use.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) infection of the eye leads to the retrograde spread of the virus from the eye to the trigeminal ganglion resulting in the infiltration of leukocytes and production of inflammatory cytokines and chemokines including CXCL9 and CXCL10. The present study investigated the role of the receptor for CXCL9 and CXCL10 in the host response to HSV-1 infection using mice deficient in CXCR3 expression (CXCR3-/-). Although wild type C57BL/6 and CXCR3-/- mice cleared the virus, HSV-1 titers remained elevated in the ganglion and brain stem of CXCR3-/- mice day 7 post infection. Coinciding with the increase in virus titer, CCL5, CXCL9, CXCL10 and IFN-gamma protein levels were enhanced in the trigeminal ganglion and/or brain stem of the CXCR3-/- mice associated with a 2-fold increase in the percentage of CD3+CD8+ T lymphocytes in the trigeminal ganglion. However, the survival rate of CXCR3-/- mice was significantly enhanced above the wild type controls associated with an increase in brain IL-6 content. Collectively, the results indicate the absence of CXCR3 is associated with a transient increase in virus burden in the nervous system and an elevated protective immune response.  相似文献   

10.
Li J  Hu S  Zhou L  Ye L  Wang X  Ho J  Ho W 《Glia》2011,59(1):58-67
Herpes simplex virus Type I (HSV-1) is a neurotropic virus that is capable of infecting not only neurons, but also microglia and astrocytes and can establish latent infection in the central nervous system (CNS). We investigated whether IFN lambda (IFN-λ), a newly identified member of IFN family, has the ability to inhibit HSV-1 infection of primary human astrocytes and neurons. Both astrocytes and neurons were found to be highly susceptible to HSV-1 infection. However, upon IFN-λ treatment, HSV-1 replication in both astrocytes and neurons was significantly suppressed, which was evidenced by the reduced expression of HSV-1 DNA and proteins. This IFN-λ-mediated action on HSV-1 could be partially neutralized by antibody to IFN-λ receptor. Investigation of the mechanisms showed that IFN-λ treatment of astrocytes and neurons resulted in the upregulation of endogenous IFN-α/β and several IFN-stimulated genes (ISGs). To block IFN-α/β receptor by a specific antibody could compromise the IFN-λ actions on HSV-1 inhibition and ISG induction. In addition, IFN-λ treatment induced the expression of IFN regulatory factors (IRFs) in astrocytes and neurons. Furthermore, IFN-λ treatment of astrocytes and neurons resulted in the suppression of suppressor of cytokine signaling 1 (SOCS-1), a key negative regulator of IFN pathway. These data suggest that IFN-λ possesses the anti-HSV-1 function by promoting Type I IFN-mediated innate antiviral immune response in the CNS cells.  相似文献   

11.
Using immunohistochemistry on adjacent brain sections, we studied the correlation between the dissemination of the virus, the inflammatory responses and the expression of major histocompatibility complex (MHC) proteins in rat brain infected with herpes simplex virus (HSV-1) F strain by either corneal scarification or intracerebral injection. Our results showed that the mortality of the corneally infected rats was much higher than that of the intracerebrally infected rats, due to a more extensive dissemination of the virus in the brain, particularly in the brain stem. The inflammatory responses were similar in brains infected through either route, as demonstrated by the expression of MHC I/II antigens on infiltrating lymphocytes, leukocytes and macrophage/microglia cells. While there was strong immunoreactivity for HSV-1 antigens in the cerebral cortex, the infiltrates were only located in subcortical areas, especially the hippocampus. Therefore, the distribution of these immune cells did not always overlap with the regions of viral infection. These results suggest that HSV-1 disseminate more efficiently from the peripheral to the central nervous system (CNS) than from CNS to CNS, which is independent of the immune responses, and that the cerebral cortex may immunologically respond to HSV-1 infection differently from other brain regions. Received: 16 June 1998 / Revised: 22 October 1998 / Accepted: 11 November 1998  相似文献   

12.
The human respiratory syncytial virus (hRSV) is the most common infectious agent that affects children before two years of age. hRSV outbreaks cause a significant increase in hospitalizations during the winter season associated with bronchiolitis and pneumonia. Recently, neurologic alterations have been associated with hRSV infection in children, which include seizures, central apnea, and encephalopathy. Also, hRSV RNA has been detected in cerebrospinal fluids (CSF) from patients with neurological symptoms after hRSV infection. Additionally, previous studies have shown that hRSV can be detected in the lungs and brains of mice exposed to the virus, yet the potential effects of hRSV infection within the central nervous system (CNS) remain unknown. Here, using a murine model for hRSV infection, we show a significant behavior alteration in these animals, up to two months after the virus exposure, as shown in marble-burying tests. hRSV infection also produced the expression of cytokines within the brain, such as IL-4, IL-10, and CCL2. We found that hRSV infection alters the permeability of the blood–brain barrier (BBB) in mice, allowing the trespassing of macromolecules and leading to increased infiltration of immune cells into the CNS together with an increased expression of pro-inflammatory cytokines in the brain. Finally, we show that hRSV infects murine astrocytes both, in vitro and in vivo. We identified the presence of hRSV in the brain cortex where it colocalizes with vWF, MAP-2, Iba-1, and GFAP, which are considered markers for endothelial cells, neurons, microglia, and astrocyte, respectively. hRSV-infected murine astrocytes displayed increased production of nitric oxide (NO) and TNF-α. Our results suggest that hRSV infection alters the BBB permeability to macromolecules and immune cells and induces CNS inflammation, which can contribute to the behavioral alterations shown by infected mice. A better understanding of the neuropathy caused by hRSV could help to reduce the potential detrimental effects on the CNS in hRSV-infected patients.  相似文献   

13.
Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common fatal sporadic encephalitis in developed countries. There is evidence from HSE animal models that not only direct virus-mediated damage caused but also the host’s immune response contributes to the high mortality of the disease. Chemokines modulate and orchestrate this immune response. Previous experimental studies in HSE models identified the chemokine receptor CXCR3 and its ligands as molecules with a high impact on the course of HSE in mouse models. In this study, the role of the chemokine receptor CXCR3 was evaluated after intranasal infection with the encephalitogenic HSV-1 strain 17 syn+ using CXCR3-deficient mice (CXCR3?/?) and wild-type controls. We demonstrated a neurotropic viral spread into the CNS of after intranasal infection. Although viral load and histological distribution of infected neurons were independent from CXCR3 signaling early after infection, CXCR3-deficient mice cleared HSV-1 more efficiently 14 days after infection. Furthermore, CXCR3 deficiency led to a decreased weight loss in mice after HSV-1 infection. T cell infiltration and microglial activation was prominently reduced by inhibition of CXCR3 signaling. Quantitative PCR of proinflammatory cytokines and chemokines confirmed the reduced neuroinflammatory response in CXCR3-deficient mice during HSE. Our results demonstrate that the recruitment of peripheral immune cells into the CNS, induction of neuroinflammation, and consecutive weight loss during herpes encephalitis is modulated by CXCR3 signaling. Interruption of the CXCR3 pathway ameliorates the detrimental host immune response and in turn, leads paradoxically to an enhanced viral clearance after intranasal infection. Our data gives further insight into the role of CXCR3 during HSE after intranasal infection.  相似文献   

14.
OBJECTIVE: It has been reported that acute morphine administration modulates innate immune response to herpes simplex virus 1 (HSV-1) infection. In this study, the effect of acute morphine on innate resistance and its probable mechanisms in increasing the mortality rate during HSV-1 infection were investigated. METHODS: Mice were infected with HSV-1 24 h prior to different doses of morphine or saline administration and the mortality rate was recorded. Spleen cells were obtained from morphine- or saline-treated mice, then natural killer (NK) cell activity and interferon-gamma (IFN-gamma) production were evaluated. The effect of morphine on white blood cells' capacity to induce protection against HSV-1 infection was evaluated by adoptive transfer of spleen cells to cyclophosphamide-treated mice that were previously infected with HSV-1. Furthermore, in a separate experiment, a different group of mice received corticosterone 24 h after HSV-1 infection. RESULTS: Mortality rate in high-dose acute morphine-treated mice increased significantly compared to saline-treated mice (p = 0.035). NK cell cytotoxicity and IFN-gamma mRNA levels also showed a significant reduction compared to those of control groups (p < 0.001 and p = 0.014, respectively). Corticosterone administration reduces innate resistance against HSV-1 infection compared to saline-treated mice (p = 0.044). Furthermore, adoptive transfer of normal but not morphine-treated spleen cells induces resistance against HSV infection in cyclophosphamide-injected mice (p = 0.009). CONCLUSIONS: The current study shows that acute morphine administration reduces white blood cells' capability to induce protection against HSV-1 infection via suppression of IFN-gamma production and NK cells activity. This may be due to the increase in corticosteroids. Further studies are needed to test the effect of acute morphine on other immune cells.  相似文献   

15.
The neonate's immune system is relatively immature. For short-term protection against pathogens the neonate is reliant primarily on maternally derived antibodies delivered via the mother's milk. However, neonates soon acquire the ability to generate adaptive immune responses for long-term protection. Products of the nervous and endocrine systems that are elicited by psychological stress are known to modulate a variety of immune responses. Additionally, psychological stressors are well recognized for their ability to increase corticosterone levels. The studies described herein examined the effects of increases in maternally derived corticosterone on the neonatal cell-mediated immune response to, and pathogenicity of, herpes simplex virus (HSV) infection. Water containing corticosterone was made available to nursing mothers for a period of 6 consecutive days beginning on either the day of or 6 days post-delivery. At 12 days of age, neonates were infected with HSV-1 in the rear footpads. These neonates exhibited a decrease in the proliferative ability of splenic-derived cells due to the reduction of IL-2 production and IL-2 receptor alpha subunit (IL-2R alpha) expression by these cells. These neonates also exhibited a decrease in the number and function of popliteal lymph node-resident HSV-1 gB(498-505) peptide-specific CD8(+) T cells as measured by tetramer analysis, CTL lytic activity, expression of CD107a, cytokine production, and proliferation. Additionally, these HSV-infected neonates exhibited increased morbidity and mortality. Together, these studies indicate that exposure of neonates to maternally derived corticosterone via the milk hinders their ability to generate an adaptive cell-mediated immune response to a viral infection and illustrate the potential importance of maternal stress in neonatal resistance to infectious pathogens.  相似文献   

16.
A pathogenic role of Th2 cells and their cytokine products (IL-4 and IL-10, Th2 cytokines) on the development of herpes simplex myelitis (HSM) was studied in mice exposed to footpad injection of herpes simplex virus type 2 (HSV-2). Morbidity and mortality of mice with HSM (HSM mice) increased when they were treated with a mixture of Th2 cytokines. Additionally, survival rates of HSM mice increased when they were treated with a mixture of mAbs for Th2 cytokines. As compared with HSM mice treated with saline, the growth of HSV-2 in spinal cords of HSM mice treated with the mixture of Th2 cytokines increased. Th2 cells (myelitis-associated Th2 cells, MTh2 cells) were demonstrated among cerebrospinal fluid cells from HSM mice. After the stimulation with HSV-2 antigen (Ag), MTh2 cells from HSM mice previously treated with the mixture of Th2 cytokines produced enhanced amounts of Th2 cytokines into their culture fluids, as compared with the amount of Th2 cytokines produced by MTh2 cells. Th2 cells were also demonstrated in mononuclear cells from spleens of HSM mice. When compared with HSM mice inoculated with splenic CD4(+) T cells from normal mice, morbidity and mortality of HSM mice inoculated with MTh2 cells markedly increased. These results indicated that the severity of HSM induced in mice by footpad injection of HSV-2 was influenced by MTh2 cells or Th2 cytokines released from these MTh2 cells. Th2 responses manifested in mice by HSV-2 infection may act as a pathogenic enhancer of HSM severities.  相似文献   

17.
18.
Monolayer cultures of primary rat astrocytes grown with or without dibutyryl cyclic AMP (dBcAMP) for two weeks or longer were infected with round plaque-forming (Rd) or syncytia-forming (Syn) variants of herpes simplex virus type 1 (HSV-1). Infection with HSV-1 did not stimulate synthesis of glial fibrillary acidic protein (GFAP) or alter the general organization of the intermediate (glial) filaments in astrocyte cultures. However, the dBcAMP-treated astrocytes produced 10- to 100-fold lower titers of cell-free progeny HSV-1 than the untreated astrocyte cultures. Radiolabeled amino acid or glucosamine incorporated into acid precipitable cellular or viral glycoproteins was decreased by 10-25% in dBcAMP-treated astrocytes. Distinctive cell-rounding or syncytial cytopathology was produced by HSV-1 strains infecting untreated astrocytes, but the infected dBcAMP-treated astrocytes displayed only cell-rounding cytopathology. The dBcAMP-related effects on HSV-1 infection were specific to primary astrocyte cultures; they were not observed in HSV-1-infected human fibroblast cultures treated with dBcAMP. Comparison of HSV-1 infection of untreated versus dBcAMP-treated astrocytes suggests that the dBcAMP-induced "reactive" or differentiated state of the astrocyte can affect expression of virus-induced cytopathology and virus-specific polypeptide synthesis. The dBcAMP-treated primary astrocyte culture may afford a non-neoplastic, differentiated in vitro system for studying HSV-neural cell interactions.  相似文献   

19.
We previously described a novel in vitro model of a non-productive herpes simplex virus type 1 (HSV-1) infection in neurally differentiated (ND)-PC12 cells that allows for inducible virus replication upon forskolin and heat stress (HS) treatment. In this research, we further characterized the model with respect to HSV-2 strain 333. We found that: (i) ND-PC12 cells are non-permissive to HSV-2 replication; (ii) HSV-2 can establish a quiescent infection, like HSV-1, in ND-PC12 cells with the transient use of acycloguanosine (ACV); however unlike HSV-1, anti-viral conditions are not obligatory to establish and maintain a quiescent state; (iii) the quiescent state is maintained in the presence of Vero cell cocultivation indicating that such cultures are free of infectious virus; and (iv) a high percentage of quiescently infected (QIF)-PC12 cell cultures (80 - 100%) produce HSV-2 in response to forskolin and HS (43 degrees C, 3 h) treatment for as long as 4 weeks post infection. These findings indicate that ND-PC12 cells can harbor HSV-2 in a cryptic and non-productive state that is reversible. This model has appealing features for studying gene expression during the establishment, maintenance and reactivation phases of the HSV-2 quiescent state in cell culture.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) infection in the nervous system is tightly controlled by the T-cell-mediated response. This report describes the temporal relationships among HSV-1 infection, intracerebral adhesion molecule induction, and T cell migration in intravitreally inoculated mice. HSV-1 immunoreactivity, initially detected at 3 days, increased in area and intensity in the superior colliculus, oculomotor nucleus, and geniculate through 5 days. By 6 days, HSV-1 was nearly undetectable in the same regions and the mice survive the infection. At the peak of HSV-1 immunoreactivity, ICAM-1 and VCAM-1 were strongly expressed in all infected brain regions. Additionally, in these region a few CD4+and CD8+T cells were detected. The heaviest T cell migration and adhesion molecule expression occurred at 6 days, coinciding with the decrease in HSV-1 immunoreactivity. However, in SCID and athymic mice, HSV-1 was not cleared from the brain and the mice died. Together, these data suggest that HSV-1 infection of the brain is followed by adhesion molecule induction in and T cell extravasation into the infected brain regions. Most importantly, an efficient T cell response was required to eradicate infectious HSV-1 from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号