首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of T cells in the thymus is dependent on interactions between thymocytes and thymic stromal cells, on stimulation by growth factors, and on the binding to and migration along extracellular matrix (ECM) components. As metalloproteinases (MP) are involved in processes such as growth factor release and ECM modelling, we assessed the effect of MP inhibitors on T-cell development using fetal thymic organ culture systems. MP inhibitors significantly reduced the numbers of CD4/CD8 double-positive (DP) and mature single-positive thymocytes generated, correlated with a reduced number of cell cycles between the double-negative (DN)3 and DP stages. The progression of early thymocyte progenitors through the DN1-4 stages of development was also severely affected, including incomplete upregulation of CD25, decreased DN3 cell numbers, reduced rearrangement of the T-cell receptor (TCR)-beta locus and expression of intracellular TCR-beta by fewer DN3 cells. When purified DN1 cells were utilized as donor cells in reaggregate thymic organ cultures, essentially no DP thymocytes were produced in the presence of MP inhibitors. The results suggest that MP inhibitors affect the differentiation of developing thymocytes before, and reduce proliferation after, pre-TCR-mediated selection.  相似文献   

2.
3.
Thymus colonisation and thymocyte positioning are regulated by interactions between CCR7 and CCR9, and their respective ligands, CCL19/CCL21 and CCL25. The ligands of CCR7 and CCR9 also interact with the atypical receptor CCRL1 (also known as ACKR4), which is expressed in the thymus and has recently been reported to play an important role in normal αβT‐cell development. Here, we show that CCRL1 is expressed within the thymic cortex, predominantly by MHC‐IIlowCD40? cortical thymic epithelial cells and at the subcapsular zone by a population of podoplanin+ thymic epithelial cells in mice. Interestingly, CCRL1 is also expressed by stromal cells which surround the pericytes of vessels at the corticomedullary junction, the site for progenitor cell entry and mature thymocyte egress from the thymus. We show that CCRL1 suppresses thymocyte progenitor entry into the thymus, however, the thymus size and cellularity are the same in adult WT and CCRL1?/? mice. Moreover, CCRL1?/? mice have no major perturbations in T‐cell populations at different stages of thymic differentiation and development, and have a similar rate of thymocyte migration into the blood. Collectively, our findings argue against a major role for CCRL1 in normal thymus development and function.  相似文献   

4.

Background

Thymic stromal derived lymphopoietin (TSLP) is preferentially and highly expressed in the thymus, but its function in T cell development is not clear.

Results

We report here that TSLP, independently or in combination with IL-7, enhances thymopoiesis in the murine fetal thymic organ culture (FTOC) model. Furthermore, TSLP preferentially increases the number and proliferation of the (DN1 and DN2) pro-T progenitor cells, and FTOC lobes from TSLP receptor-null mice show a decreased number of these cells. Finally, DN1-DN2 cells expanded with TSLP in vitro are functional T progenitors that are able to differentiate into mature T cells in fetal or adult thymus organs.

Conclusion

Together, these data suggest that TSLP plays an important role in expansion of thymocyte progenitors and may be of value for expanding T progenitor cells in vitro.  相似文献   

5.
Early T lineage cells are selected in the thymus by the specific recognition of peptide components presented by MHC molecules on the surface of thymic epithelial cells and dendritic cells. As a potential regulator of the apoptotic and survival signals, the protein phosphatase 2A-component G5PR regulates Bim phosphorylation in B-cells. Here, we studied whether G5PR is involved in the regulation of the similar apoptotic pathway for cell survival during the selection of thymocytes. T-cell-specific G5PR knockout (G5pr(-/-)) mice displayed thymic atrophy, significant reduction in thymocyte numbers, particularly a 10-fold decrease in the number of CD4 and CD8 double-positive (DP) thymocytes and few mature single-positive (SP) cells. G5pr(-/-) thymocytes exhibited normal potential of proliferation and differentiation during the transition from double-negative (DN) to DP stage, but significantly increased susceptibility to apoptosis at the DP stage. G5PR deficiency did not affect on Bim activation in thymocytes, but caused hyper-activation of JNK and Caspase-3 with augmented Fas ligand (FasL) expression, indicating that G5PR regulates the thymocyte unique apoptotic signal involved in JNK-mediated Caspase-3 activation but not in Bim activation. G5PR is essential for the survival of DP cells during thymocyte development.  相似文献   

6.
Apoptotic protease-activating factor 1 (Apaf-1) is a component of the apoptosome which is required for the activation of procaspase-9. As Apaf-1 knockout (KO) (Apaf-1-/-) mice die before birth, the role of Apaf-1 during thymic selection was investigated using 5 day foetal thymic organ culture (FTOC) of thymi obtained at gestational day 15. There was a lower ratio of CD4 single-positive (SP) to CD8 SP cells and decreased apoptosis of CD4+CD8+ (DP) thymocytes from Apaf-1-/- mice compared with wild-type. To determine if these defects resulted in increased production of neglected thymocytes, the Apaf-1-/- mice were crossed with the T-cell receptor (TCR)-alpha-chain KO mice. There was no difference in thymocyte development in the thymi of TCR-alpha-/-Apaf-1-/- and TCR-alpha-/-Apaf-1+/+ mice 5 days after FTOC. To determine if Apaf-1 is involved in apoptosis during death by negative or positive selection, FTOC of the thymus of Apaf-1-/- Db/HY TCR-alphabeta transgenic (Tg) mice was carried out. There was decreased apoptosis of the HY clonal-specific M33+ thymocytes and an increased percentage of the autoreactive CD8+M33+ thymocytes in male, but not female Apaf-1-/- Db/HY TCR Tg mice. Our data suggest that Apaf-1 is not involved in positive selection or death by neglect, but may have a partial role in negative selection during early thymic T-cell development.  相似文献   

7.
Early during rat thymus ontogeny, an important proportion of thymocytes expresses IL-2R and contains IL-2 mRNA. To investigate the role of the IL-2-IL-2R complex in rat T cell maturation, we supplied either recombinant rat IL-2 or blocking anti-CD25 mAb to rat fetal thymus organ cultures (FTOC) under several experimental conditions. The IL-2 treatment initially stimulated the growth of thymocytes and, as a result, induced T cell differentiation, but the continuous addition of IL-2 to rat FTOC, as well as the anti-CD25 administration, resulted in cell number decrease and inhibition of thymocyte maturation. These results indicate that immature rat thymocytes bear functional high- affinity IL-2R and that IL-2 promotes T cell differentiation as a consequence of its capacity to stimulate cell proliferation. Modifications in TCR alpha beta repertoire and increased numbers of NKR- P1+ cells, largely NK cells, were also observed in IL-2-treated FTOC. Furthermore, IL-2-responsiveness of different thymocyte subsets changed throughout thymic ontogeny. Immature CD4-CD8-cells responded to IL-2 in two stages, early in thymus development and around birth, in correlation with the maturation of two distinct waves of thymic cell progenitors. Mature CD8+ thymocytes maximally responded to IL-2 around birth, supporting a role for IL-2 in the increased proliferation of mature thymocytes observed in vivo in the perinatal period. Taken together, these findings support a role for IL-2 in rat T cell development.   相似文献   

8.
A functional interaction between the immune and the nervous system has been suggested, with neuropeptides acting as immunomodulators. Somatostatin (SOM) is a neuropeptide, mainly produced in the brain, that binds to five different receptors (SSTR). It is believed that SOM along with one of its receptors, SSTR2, is expressed in the murine thymus, although their exact localization is unresolved. We found that SOM is highly expressed in both cortical and medullary epithelial cells whereas its receptor SSTR2 is expressed on thymocytes. In order to elucidate its role in thymopoiesis, SOM was added in fetal thymic organ culture (FTOC) and found to increase thymocyte numbers and enhance maturation. SOM increased the cellular proliferation of total splenocytes but inhibited proliferation of thymocytes and purified splenic T cells. Furthermore, SOM was able to induce the migration of thymocytes. We also investigated the effect of four other neuropeptides in FTOC and found that, vasoactive intestinal peptide had a marginal effect, whereas substance P increased thymic cellularity, at intermediate but not at low or high concentrations. In contrast, both neuropeptide Y and calcitonin gene-related peptide reduced thymocyte numbers. This study supports the hypothesis for a role of neuropeptides, particularly somatostatin, in immune regulation and development.  相似文献   

9.
One of the most widely used animal models for inflammatory bowel disease (IBD) is the dextran sulfate sodium (DSS)-induced colitis. We have previously reported that 5 days administration of DSS in C57Bl/6J mice induces a colonic inflammation that progresses into chronicity after DSS removal, whereas in BALB/cJ mice the inflammation resolves within 4 weeks post-DSS. Here we show that both thymic size and thymocyte numbers dramatically decreased in the acute phase of inflammation in C57Bl/6 mice, 7 days after DSS withdrawal. Mature, CD4(+) and CD8(+) single positive (SP) CD69(lo) CD62L(hi) thymocytes were enriched in these mice, accompanied by a major decrease in the number of immature double positive (DP) thymocytes. However, the different maturation stages within the DP thymocyte subset were unchanged between healthy and inflamed C57Bl/6J mice. Interestingly, as the inflammation progressed into the chronic phase, the thymus recovered and 2 weeks after the acute inflammatory phase all the thymic parameters investigated in this study were restored to normal. In contrast, BALB/cJ mice only develop mild thymic alterations. Nevertheless, we found that within the double negative (DN) thymocytes an increased frequency and also total numbers of CD44(+) CD25(-) (DN1) cells correlated with the severity of colitis, and that the frequency of CD44(-) CD25(-) (DN4) thymocytes decreased proportionally in the acute phase in BALB/cJ mice. Our observations suggest that the thymic effects are intimately connected to the intestinal inflammatory response in colitis regardless of the inflammatory stimuli.  相似文献   

10.
Positive and negative selection steps in the thymus prevent non-functional or harmful T cells from reaching the periphery. To examine the role of glucocorticoid (GC) hormone and its intracellular receptor (GCR) in thymocyte development we measured the GCR expression in different thymocyte subpopulations of BALB/c mice with or without previous dexamethasone (DX), anti-CD3 mAb, RU-486 and RU-43044 treatment. Four-color labeling of thymocytes allowed detection of surface CD4/CD8/CD69 expression in parallel with intracellular GCR molecules by flow cytometry. Double-positive (DP) CD4+CD8+ thymocytes showed the lowest GCR expression compared to double-negative (DN) CD4-CD8- thymocytes and mature single-positive (SP) cells. DX treatment caused a concentration-dependent depletion of the DP cell population and increased appearance of mature SP cells with reduced GCR levels. GCR antagonists (RU-486 or RU-43044) did not influence the effect of DX on thymocyte composition; however, RU-43044 inhibited the high-dose GC-induced GCR down-regulation in SP and DN cells. GCR antagonists alone did not influence the maturation of thymocytes and receptor numbers. Combined low-dose anti-CD3 mAb and DX treatment caused an enhanced maturation (positive selection) of thymocytes followed by the elevation of CD69+ DP cells. The sensitivity of DP thymocytes with a GCRlow phenotype to GC action and the ineffectiveness of the GCR antagonist treatment may reflect a non-genomic GC action in the thymic selection steps.  相似文献   

11.
Hutcheson J  Perlman H 《Immunobiology》2007,212(8):629-636
The process of thymopoiesis is tightly regulated by a series of selection events which ensure that only functional T-lymphocytes directed against foreign antigens are exported into the periphery. The adaptive immune response largely depends on the regulation of thymocyte development, and thymocytes which fail selection in the thymus are removed by apoptosis. However, the roles of specific apoptotic proteins in early T-lymphocyte development are poorly understood. Here, we report a novel function for Bim in thymocyte development. There is an accumulation of thymocytes in Bim(-/-) mice that lack expression of CD4, CD8, CD44, and CD25 but express CD3 and TCRbeta. Further, the CD4(-)CD8(-)CD25(-)CD44(-)CD3(+)TCRbeta(+) thymocytes are smaller and do not proliferate. These data suggest that these thymocytes are mature DN thymocytes that may have down-regulated the expression of CD4 and CD8. The DN thymocyte phenotype in Bim(-/-) mice is unaffected by the additional loss of Bak or Bax and is similar to the thymic phenotype in mice lacking both Bak and Bax. These data demonstrate that Bim functions to ensure the proper homeostasis of mature thymocytes during selection and thymic export.  相似文献   

12.
Mouse mutants lacking expression of the IL-7 receptor (IL-7R) α chain are defective in thymopoiesis. The adult thymus has multiple defects, including reduced cell numbers and proportions of the more mature thymocyte subsets, a complete absence of CD25+ cells and a reduced level of RAG1 and RAG2 expression. We show here that, in contrast to the profound developmental arrest observed in the adult thymus, fetal thymocytes from IL-7Rα−/− mice have normal proportions of all of the major thymocyte subpopulations, including CD25+ thymocytes and the most mature single-positive subsets. Moreover, normal levels of RAG1 and RAG2 were observed. Total thymocyte numbers, however, remained reduced. These data suggest that the IL-7Rα chain is a key regulator of both survival and proliferation during thymocyte development but that it is not essential for the production of T cells during fetal thymopoiesis.  相似文献   

13.
Immature CD8-CD4- double-negative (DN) thymocytes differentiate intrathymically into CD8+CD4- and CD8-CD4+ thymocytes and migrate to the periphery. This differentiation proceeds through several intermediate phenotypic changes in the expression of CD8 and CD4. We have recently established the existence of a CD8loCD4lo cell population in murine thymus that can repopulate the irradiated thymus in vivo and differentiate rapidly in vitro to CD8+CD4+ double-positive (DP) cells. The CD8loCD4lo cells score as DN upon direct cytofluorometric analysis, yet are distinct from true DN cells by various criteria. Experimental evidence strongly suggests that they are descendants of true DN in the maturation pathway. In the experiments presented here, we further characterize this CD8loCD4lo thymocyte population. Northern blot and RNA protection analysis reveal that these cells transcribe full length mRNA for the T cell receptor (TcR)alpha chain, unlike the less mature interleukin 2 receptor-positive DN thymocytes. Surface expression of the TcR-associated CD3 molecule occurs on approximately 15% of these cells at low levels characteristic of immature cells. In the course of in vitro differentiation a vast majority (approximately 80%) of these cells convert to CD8+CD4+ and significant numbers of the brightly staining DP convertants (11%-34% on day 1 and 48%-68% on day 2) express immature levels of CD3. Our results indicate that CD8lo, CD4lo cells might be the first thymic subset to rearrange TcR alpha chain genes and express TcR alpha/beta heterodimer on the surface at levels characteristic of immature cells. Furthermore, the surface expression of TcR persists on the in vitro progeny of these thymocytes.  相似文献   

14.
Chemokines constitute a large family of low-molecular-weight proteins (~10 kDa in size), recognized primarily for their role in directing leukocyte migration under both homeostatic and inflammatory settings. The chemokine CCL25 displays a unique and highly restricted expression pattern compared with other chemokine family members. In the steady state, CCL25 is expressed at high levels primarily in the thymus and small intestine, while its sole functional receptor, CCR9, is expressed on subsets of developing thymocytes and intestinal lymphocytes. Mice that are deficient in CCR9 show relatively normal thymocyte development; however, in competitive transfer experiments, CCR9-/- bone-marrow cells are severely disadvantaged in their ability to generate mature T cells compared with wildtype cells. Indeed, expression data and analysis of genetically modified mice suggest that CCL25/CCR9 may be involved in multiple stages of thymocyte development. Recent in vivo studies have demonstrated a role for CCL25/CCR9 in mediating lymphocyte recruitment to the small intestine and in the development of the small intestinal T-cell receptor-γδ T-cell compartment. Finally, CCL25 is expressed in the small intestine of Crohn’s disease patients and, in certain inflammatory conditions, outside the small intestine. Together, these results suggest an important role for CCL25/CCR9 in T-cell development and small intestinal immunity and suggest that targeting the CCL25/CCR9 pathway may provide a means to modulate small intestinal immune responses.  相似文献   

15.
Summary:  It has recently been observed, as in the fetal thymus, that the importation of hematogenous thymocyte progenitors by the adult thymus is a gated phenomenon, whereby saturating numbers of progenitors periodically enter the thymus and occupy a finite number of intrathymic niches. In addition, the mobilization of thymocyte progenitors from the bone marrow appears to be a cyclical process that coincides temporally with the periods of thymic receptivity (open gate). It is proposed that these events are coordinated by a thymus-bone marrow feedback loop in which a wave of developing triple negative (CD3CD4CD8) thymocytes interacts with stromal cells in the stratified regions of the thymus cortex to sequentially induce the release of diffusible cytokines that regulate the production, mobilization, and recruitment of thymocyte progenitors. The likely components of this feedback loop are described here, as are the properties of the intrathymic vascular gates and niches for thymocyte progenitors. The cyclical production and release of thymocyte progenitors from the bone marrow is placed in the context of a general phenomenon of oscillatory feedback regulation involving all lymphohemopoietic cell lineages. Lastly, the question of whether the gated (as opposed to the continuous) entry of thymocyte progenitors is essential for normal thymocytopoiesis in adult life is discussed.  相似文献   

16.
检测体外培养和体内发育过程中,胎鼠胸腺处于不同发育阶段时Toll样受体(TLR)的表达,阐明TLR表达量与胸腺细胞发育相关性,为TLR和胸腺细胞发育分化相关研究提供基础数据。无菌取15d胎龄胎鼠胸腺进行体外培养(FTOC),在培养不同时间点(2d,4d,6d),检测处于不同发育期胸腺TLR的表达;同时在孕期不同天数(15~19d),分别取胎鼠胸腺,检测在体内发育过程中胸腺TLR的表达;在FTOC中加入二脱氧鸟苷培养6d以制备胸腺基质细胞,检测基质细胞与胸腺细胞TLR表达情况。结果:小鼠胸腺中检测到多种TLR。FTOC培养中:培养第2天(F2)开始检测到各种TLR,到培养第6天(F6),TLR1,TLR3,TLR6,TLR7,TLR8明显上调,而TLR4,TLR5保持低水平,TLR4在培养第6天又下降;体内发育过程中:TLR6表达量随胎龄增加有较明显上调,TLR1,TLR3-8保持低水平表达;TLR2,TLR9体内体外都未检测到明显表达。在对胸腺细胞与基质细胞TLR表达比较中发现TLR1,TLR5,TLR6,TLR7高表达于胸腺细胞。胎鼠胸腺表达某些TLR,并且在发育不同阶段表达量有所改变,提示TLR可能参与胸腺细胞的发育过程。  相似文献   

17.
In the present study, we have analysed the phenotype of EphB2 and/or EphB3 deficient thymocytes confirming and extending previous studies on the role of this family of molecules in T-cell differentiation. In all mutant thymuses statistically significant reduced cell contents were observed. This reduction of thymic cellularity correlated with increased proportions of apoptotic cells, largely both double negative (DN; CD4- CD8-) and double positive (CD4+ CD8+) cells, and decreased proportions of DN cycling cells. Adult deficient thymuses also showed increased proportions of DN cells but not significant variations in the percentages of other thymocyte subsets. In absolute terms, the thymocyte number decreased significantly in all thymocyte compartments from the DN3 (CD44- CD25+) cell stage onward, without variations in the numbers of both DN1 (CD44+ CD25-) and DN2 (CD44+ CD25+) cells. Remarkably, all these changes also occurred from the 15-day fetal EphB2 and/or EphB3 deficient mice, suggesting that adult phenotype results from the gradual accumulations of defects appearing early in the thymus ontogeny. As a reflection of thymus condition, a reduction in the number of T lymphocytes occurred in the peripheral blood and mesenteric lymph nodes, but not in spleen, maintaining the proportions of T-cell subsets defined by CD4/CD8 marker expression, in all cases.  相似文献   

18.
Defects in the gene that encodes SHP-1 protein tyrosine phosphatase result in multiple hematopoietic abnormalities and generalized autoimmunity in viable motheaten (me(v)) mice. These mice also exhibit early thymic involution and abnormalities in T cell development. Here, we describe the use of fetal thymic organ culture (FTOC) and bone marrow adoptive transfer to study the effects of SHP-1 deficiency on thymocyte development. Chimeric FTOC established with normal bone marrow placed onto deoxyguanosine-treated fetal thymic lobes or onto scid fetal thymic lobes generated T cells. Bone marrow from SHP-1-deficient me(v)/ me(v) mice generated decreased numbers of T cells in chimeric FTOC established using deoxyguanosine-treated thymi but generated normal numbers in chimeric FTOC established using scid thymi. However, scid fetal thymi seeded with me(v)/ me(v) bone marrow also exhibited morphological abnormalities and contained elevated numbers of macrophages. Addition of IL-7 to me(v)/ me(v) bone marrow-seeded scid FTOC led to increased cell numbers, particularly of macrophages. Intrathymic injection of IL-7 partially restored the ability of progenitor cells in me(v)/ me(v) bone marrow to populate the thymus of adoptive recipients. We conclude that abnormal T cell development in me(v)/ me(v) mice may in part be due to defects in the ability of bone marrow-derived accessory cells to provide bioavailable IL-7 to developing thymocytes.  相似文献   

19.
Aging is associated with reduced numbers of all thymocyte sub-populations, including early T-cell progenitors. However, it is unclear if this is due to inadequate recruitment of lymphohematopoietic progenitor cells (LPCs) to the aged thymus or to abnormal development of T cells within the thymus. We found that LPCs from young mice were recruited equally well to the thymi of young or aged mice and that thymic stromal cells (TSCs) from young and old mice expressed similar levels of P-selectin and CCL25, which are believed to mediate recruitment of LPCs to the adult thymus. However, the number of recruited thymocytes in old thymus was markedly reduced after two weeks, indicating that T-cell development or proliferation is defective in the aged thymus. We also found that LPCs from aged and young mice have similar capacities to seed a fetal thymus that was transplanted under the kidney capsule. Thymic epithelial cells (TECs) in aged mice had lower proliferative capacity and higher rate of apoptosis, compared with findings in young animals. In addition, immunofluorescence staining with antibodies to cortical and medullary TECs revealed that aged thymi had a disorganized thymic stromal architecture, combined with reduced cellularity of the medulla, and apoptosis of thymocyte sub-populations in the medullary microenvironment was increased, compared with that in young mice. We conclude that aging does not impair recruitment of LPCs to the thymus, but is characterized by abnormalities in thymic epithelial architecture, especially medullary TEC function that may provide sub-optimal support for thymic development of LPCs.  相似文献   

20.
Age-associated thymic involution is characterized by decreased thymopoiesis, adipocyte deposition and changes in the expression of various thymic microenvironmental factors. In this work, we characterized the distribution of fat-storing cells within the aging thymus. We found an increase of unilocular adipocytes, ERTR7+ and CCR5+ fat-storing multilocular cells in the thymic septa and parenchymal regions, thus suggesting that mesenchymal cells could be immigrating and differentiating in the aging thymus. We verified that the expression of CCR5 and its ligands, CCL3, CCL4 and CCL5, were increased in the thymus with age. Hypothesizing that the increased expression of chemokines and the CCR5 receptor may play a role in adipocyte recruitment and/or differentiation within the aging thymus, we examined the potential role for CCR5 signaling on adipocyte physiology using 3T3-L1 pre-adipocyte cell line. Increased expression of the adipocyte differentiation markers, PPARγ2 and aP2 in 3T3-L1 cells was observed under treatment with CCR5 ligands. Moreover, 3T3-L1 cells demonstrated an ability to migrate in vitro in response to CCR5 ligands. We believe that the increased presence of fat-storing cells expressing CCR5 within the aging thymus strongly suggests that these cells may be an active component of the thymic stromal cell compartment in the physiology of thymic aging. Moreover, we found that adipocyte differentiation appear to be influenced by the proinflammatory chemokines, CCL3, CCL4 and CCL5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号