首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Rashid MH  Furue H  Yoshimura M  Ueda H 《Pain》2006,125(1-2):125-135
In the spinal dorsal horn, activation of the nicotinic acetylcholine receptors (nAChR) by exogenously applied agonists is known to enhance inhibitory synaptic transmission, and to produce analgesia. However, it is still unknown whether endogenously released acetylcholine exerts a tonic inhibition on nociceptive transmission through the nAChRs in the spinal dorsal horn. Here, we report the presence of such a tonic inhibitory mechanism in the spinal dorsal horn in mice. In behavioral experiments, intrathecal (i.t.) injection of non-selective nAChR antagonist mecamylamine and alpha4beta2 subtype-selective antagonist dihydro-beta-erythroidine (DHbetaE) dose-dependently induced thermal and mechanical hyperalgesia in mice while the alpha7-selective antagonist methyllycaconitine (MLA) had no effect. Similarly, antisense knock-down of alpha4 subunit of nAChR, but not alpha7 subunit, in spinal cord induced thermal and mechanical hyperalgesia. In whole-cell patch-clamp experiments in spinal cord slice preparation from adult mice, the frequency of miniature inhibitory postsynaptic currents (mIPSCs) observed in substantia gelatinosa (SG) neurons was decreased by mecamylamine and DHbetaE, but not by MLA. The amplitudes of the mIPSCs were not affected. The nicotinic antagonists decreased the frequency of both GABAergic and glycinergic IPSCs. On the other hand, the nicotinic antagonists had no effect on the excitatory postsynaptic currents (EPSCs). Finally, acetylcholine-esterase inhibitor neostigmine-induced facilitation of IPSC frequencies in SG neurons was inhibited by mecamylamine and DHbetaE. Altogether these findings suggest that nicotinic cholinergic system in the spinal dorsal horn can tonically inhibit nociceptive transmission through presynaptic facilitation of inhibitory neurotransmission in SG via the alpha4beta2 subtype of nAChR.  相似文献   

2.
Nicotinic acetylcholine receptors (nAChRs) localized to excitatory longitudinal muscle motoneurons were studied in segments of guinea pig ileum maintained in vitro. Longitudinal muscle contractions caused by the nAChRs agonists, dimethylphenylpiperazinium (DMPP), nicotine, and cytisine were measured using isometric strain gauge transducers. In normal Krebs' solution, the nAChR agonists caused concentration-dependent biphasic contractions with a rank order potency of DMPP > cytisine = nicotine. Contractions caused by DMPP and nicotine were inhibited more than 80% by tetrodotoxin (TTX, 0.3 microM). Responses caused by DMPP were inhibited in a concentration-dependent manner by the competitive nAChR antagonist dihydro-beta-erythroidine (pA(2) = 5.4). In the presence of scopolamine (1 microM) to block muscarinic cholinergic receptors, the nAChR agonists caused longitudinal muscle contractions that were monophasic and smaller in amplitude than those recorded in the absence of scopolamine. With scopolamine present, the agonist rank order potency was nicotine = DMPP > cytisine. Contractions caused by DMPP and nicotine (each at 100 microM) were reduced by TTX by only 52 +/- 7 and 59 +/- 6%, respectively. Noncholinergic contractions caused by DMPP and nicotine were blocked by the neurokinin-1 receptor antagonist, CP 96,345-1 (0.3 microM). Dihydro-beta-erythroidine also inhibited noncholinergic contractions caused by DMPP with a pA(2) value of 5.4. It is concluded that nAChRs are localized to the somatodendritic region of excitatory longitudinal muscle motoneurons. There are also nAChRs localized to the nerve terminals of these neurons where agonists can cause noncholinergic contractions via a TTX-insensitive mechanism.  相似文献   

3.
Takeda D  Nakatsuka T  Papke R  Gu JG 《Pain》2003,101(1-2):13-23
The GABA/glycine-mediated inhibitory activity in the substantia gelatinosa (SG) of the spinal cord is critical in the control of nociceptive transmission. We examined whether and how SG inhibitory activity might be regulated by neuronal nicotinic receptors (nAChRs). Patch-clamp recordings were performed in SG neurons of spinal slice preparations from adult rats. We provided electrophysiological evidence that inhibitory presynaptic terminals in the SG expressed nAChRs and their activation resulted in large increases in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in over 90% SG neurons tested. The enhancement of inhibitory activity was mediated by increases in the release of GABA/glycine, and direct Ca(2+) entry through SG presynaptic nAChRs appeared to be involved. Miniature IPSC frequency could be enhanced by the nAChR agonists nicotine or cytisine. Nicotine could still elicit large increases in mIPSC frequency in the presence of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (5 microM) and the alpha7 nAChR-selective antagonist methyllycaconitine (40 nM). However, nicotine did not produce a significant enhancement of mIPSC frequency in the presence of the broad spectrum nAChR antagonist mecamylamine (5 microM). Nicotinic agonist-evoked whole-cell currents from SG neurons and the antagonist profiles also indicated the presence of a subtype of nAChRs, which were different from the major central nervous system nAChR subtypes, i.e. alpha4beta2* or alpha7 nAChRs. Together, our results suggest that a subtype of nAChR, possibly alpha3beta4* nAChR or a new nAChR type, is highly expressed at the inhibitory presynaptic terminals in SG of adult rats and play a role in the control of inhibitory activity in SG.  相似文献   

4.
5.
Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes   总被引:15,自引:0,他引:15  
Because mecamylamine, a nicotinic receptor antagonist, is used so often in nicotine research and because mecamylamine may have important therapeutic properties clinically, it is important to fully explore and understand its pharmacology. In the present study, the efficacy and potency of mecamylamine and its stereoisomers were evaluated as inhibitors of human alpha 3 beta 4, alpha 3 beta 2, alpha 7, and alpha 4 beta 2 nicotinic acetylcholine receptors (nAChRs), as well as mouse adult type muscle nAChRs and rat N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes. The selectivity of mecamylamine for neuronal nAChR was manifested primarily in terms of slow recovery rates from mecamylamine-induced inhibition. Neuronal receptors showed a prolonged inhibition after exposure to low micromolar concentrations of mecamylamine. Muscle-type receptors showed a transient inhibition by similar concentrations of mecamylamine, and NMDA receptors were only transiently inhibited by higher micromolar concentrations. Mecamylamine inhibition of neuronal nAChR was noncompetitive and voltage dependent. Although there was little difference between S-(+)-mecamylamine and R-(-)-mecamylamine in terms of 50% inhibition concentration values for a given receptor subtype, there appeared to be significant differences in the off-rates for the mecamylamine isomers from the receptors. Specifically, S-(+)-mecamylamine appeared to dissociate more slowly from alpha 4 beta 2 and alpha 3 beta 4 receptors than did R-(-)-mecamylamine. In addition, it was found that muscle-type receptors appeared to be somewhat more sensitive to R-(-)-mecamylamine than to S-(+)-mecamylamine. Together, these findings suggest that in chronic (i.e., therapeutic) application, S-(+)-mecamylamine might be preferable to R-(-)-mecamylamine in terms of equilibrium inactivation of neuronal receptors with decreased side effects associated with muscle-type receptors.  相似文献   

6.
Schizophrenics have cortical dysfunction that may involve mesoprefrontal dopamine (DA) systems. Rates of nicotine dependence approach 90% in schizophrenia, and nicotine administration through cigarette smoking may ameliorate cognitive dysfunction, which may be related to cortical DA dysregulation. We have shown that repeated, but not acute, nicotine pretreatment (0.15 mg/kg daily s.c.) reduces footshock stress-induced mesoprefrontal DA metabolism and immobility responses. This effect of repeated nicotine is dependent on mecamylamine (MEC)-sensitive nicotinic acetylcholine receptor (nAChR) stimulation and endogenous opioid peptides. In the present study, we have further characterized these effects of repeated nicotine on the stress reactivity of mesoprefrontal DA neurons by using the following: 1) local infusion of MEC into cell bodies (ventral tegmental area) and terminal fields (medial prefrontal cortex) to determine the site of action of nicotine; and 2) systemic administration of selective nAChR antagonists. Results of bilateral local infusions of MEC (0.1-1.0 microgram/side) into ventral tegmental area or medial prefrontal cortex in saline- and nicotine-pretreated rats suggests a modulatory role for somatodendritic versus terminal field nAChRs on mesoprefrontal DA neurons under stress-induced states. Experiments with dihydro-beta-erythroidine (a beta2-subunit-selective blocker; 0.0-3.0 mg/kg) and methylycaconitine (an alpha7-subunit-selective blocker; 0.0-8.4 mg/kg) suggest that both alpha4beta2- and alpha7-containing nAChRs modulate mesoprefrontal DA neurons. Thus, complex regulation of mesoprefrontal DA neurons by nAChRs is suggested, which may have relevance to prefrontal cortical DA dysfunction and the high comorbid rates of nicotine dependence in schizophrenia.  相似文献   

7.
Nicotinic acetylcholine receptors are pentameric, typically being composed of two or more different subunits. To investigate which receptor subtypes are active in the heart, we initiated a series of experiments using an isolated perfused rat heart (Langendorff) preparation. Nicotine administration (100 microM) caused a brief decrease (-7 +/- 2%) followed by a much larger increase (17 +/- 5%) in heart rate that slowly returned to baseline within 10 to 15 min. The nicotine-induced decrease in heart rate could be abolished by an alpha7-specific antagonist, alpha-bungarotoxin (100 nM). In contrast, the nicotine-induced increase in heart rate persisted in the presence of alpha-bungarotoxin. These results suggest that the nicotinic acetylcholine receptors (nAChRs) that mediate the initial decrease in heart rate probably contain alpha7 subunits, whereas those that mediate the increase in heart rate probably do not contain alpha7 subunits. To investigate which subunits may contribute to the nicotine-induced increase in heart rate, we repeated our experiments with cytisine, an agonist at nAChRs that contain beta4 subunits. The cytisine results were similar to those obtained with nicotine, thereby suggesting that the nAChRs on sympathetic nerve terminals in the heart probably contain beta4 subunits. Thus, the results of this study show that pharmacologically distinct nAChRs are responsible for the differential effects of nicotine on heart rate. More specifically, our results suggest that alpha7 subunits participate in the initial nicotine-induced heart rate decrease, whereas beta4 subunits help to mediate the subsequent nicotine-induced rise in heart rate.  相似文献   

8.
We previously reported that nicotine-induced nitric oxide (NO)-mediated neurogenic vasodilation in the porcine basilar artery was dependent on intact sympathetic innervation. We further demonstrated in this artery that nicotine acted on nicotinic acetylcholine receptors (nAChRs) on presynaptic sympathetic nerve terminals to release norepinephrine (NE), which then acted on beta2-adrenoceptors located on the neighboring NOergic nerve terminals to release NO, resulting in vasodilation. The nature of the nAChRs has not been determined. The nAChR subtype mediating nicotine-induced dilation in isolated porcine basilar arterial rings denuded of endothelium was therefore examined pharmacologically and immunohistochemically. Results from using an in vitro tissue bath technique indicated that relaxation induced by nicotine (100 microM) was blocked by preferential alpha7-nAChR antagonists (methyllycaconitine and alpha-bungarotoxin) and nonspecific nAChR antagonist (mecamylamine) in a concentration-dependent manner, but was not affected by dihydro-beta-erythroidine (a preferential alpha4-nAChR antagonist). These nAChR antagonists did not affect relaxation elicited by transmural nerve stimulation (8 Hz) or that by sodium nitroprusside and NE. Results from double-labeling immunohistochemical studies in whole-mount porcine basilar and middle cerebral arteries and in cultured porcine superior cervical ganglia (SCG) indicated that alpha7-nAChR- and tyrosine hydroxylase immunoreactivities were colocalized in same nerve fibers. These results suggest the presence of functional alpha7-nAChRs on postganglionic sympathetic adrenergic nerve terminals of SCG origin, which mediate nicotine-induced neurogenic NOergic vasodilation. These findings are consistent with our hypothesis that nicotine acts on nAChRs on presynaptic sympathetic nerve terminals to release NE, which then acts on presynaptic beta2-adrenoceptors located on the neighboring NOergic nerve terminals, resulting in release of NO and dilation of porcine basilar arteries.  相似文献   

9.
To identify the brain nicotinic acetylcholine receptor (nAChR) subtypes that may be involved in nicotine addiction, we investigated the actions of bupropion, a drug used in cigarette smoking cessation programs, and nicotine on three pharmacologically identified nAChRs in rat hippocampal slices, namely, type IA, type II, and type III nAChRs, likely representing alpha7, alpha4beta2, and alpha3beta4 subunits, respectively. Using whole-cell patch-clamp recordings from interneurons of acute hippocampal slices prepared from male rat pups, we studied the effect of nicotine on in vivo up-regulation and in vitro desensitization of nAChRs. Two subcutaneous injections of nicotine (0.586 mg/kg free base, in less than a day) to rats at postnatal days 14 to 15 significantly enhanced the magnitude of functional responses arising from type III and type II, but not type IA nAChRs. This treatment did not increase the functional affinity for acetylcholine at type II nAChRs. A single injection of nicotine also produced a significant increase in type III nAChR response. In addition, type III and type II, but not type IA nAChRs, are desensitized by in vitro exposure to nicotine at concentrations found in the venous blood of cigarette smokers. Bupropion at 1 muM produced 56, 15, and 0% inhibition of type III, type II, and type IA nAChR responses, respectively, in the slices. Our results suggest that in vivo-nicotine-induced nAChR up-regulation observed in neurons of intact brain tissue is a physiologically relevant phenomenon and that early up-regulation of type III and type II nAChRs could be an important biological signal in nicotine addiction.  相似文献   

10.
Effects of prolonged nicotinic ligand exposure on the function of human alpha4beta2- and alpha4beta4-nicotinic acetylcholine receptor (nAChR) subtypes were studied using receptors heterologously expressed in SH-EP1 human epithelial cells. Magnitudes of acute, nAChR-mediated, specific 86Rb+ efflux responses to 1 mM carbamylcholine were reduced after pretreatment with specific nAChR ligands in effects that depended on pretreatment drug dose, duration of drug pretreatment, and duration of drug-free recovery. Fifty percent inhibition of alpha4beta2-nAChR function following 5 min of recovery occurred after 1 min of pretreatment with 1 mM nicotine but also after 1-h pretreatment at 10 nM nicotine. Seventy-five percent loss in function persisted 1 h after drug removal following 15 min or more of exposure to 1 mM nicotine. However, functional recovery was nearly complete after 1 h in drug-free medium following 1 min to 24 h pretreatment with 0.1 to 1 microM nicotine, i.e., in the range of smoker plasma nicotine levels. alpha4beta4-nAChR was similarly sensitive to persistent inactivation by prolonged nicotine exposure. Carbamylcholine exhibited slightly lower persistent inactivation potency than nicotine at both alpha4beta2- and alpha4beta4-nAChR. The nAChR antagonist, mecamylamine, exhibited persistent inactivation potency and efficacy similar to nicotine at alpha4beta2-nAChR but had a reduced effect on alpha4beta4-nAChR. These studies illustrate persistent inactivation of human alpha4beta2- or alpha4beta4-nAChR induced by prolonged exposure to nicotine and show that other ligands induce nAChR persistent inactivation in a subtype-specific manner.  相似文献   

11.
12.
The effects of dextrometorphan and its metabolite dextrorphan on nicotine-induced antinociception in two acute thermal pain assays after systematic administration were evaluated in mice and compared with that of mecamylamine. Dextrometorphan and dextrorphan were found to block nicotine's antinociception in the tail-flick and hot-plate tests with different potencies (dextrometorphan is 10 times more potent than its metabolite). This blockade was not due to antagonism of N-methyl-d-aspartate receptors and/or interaction with opiate receptors, since selective drugs of these receptors failed to block nicotine's analgesic effects. Our results with the tail-flick and hot-plate tests showed an interesting in vivo functional selectivity for dextrometorphan over dextrorphan. In oocytes expressing various neuronal acetylcholine nicotinic receptors (nAChR), dextrometorphan and dextrorphan blocked nicotine activation of expressed alpha(3)beta(4), alpha(4)beta(2), and alpha(7) subtypes with a small degree of selectivity. However, the in vivo antagonistic potency of dextrometorphan and dextrorphan in the pain tests does not correlate well with their in vitro blockade potency at expressed nAChR subtypes. Furthermore, the apparent in vivo selectivity of dextrometorphan over dextrorphan is not related to its in vitro potency and does suggest the involvement of other mechanisms. In that respect, dextrometorphan seems to behave as another mecamylamine, a noncompetitive nicotinic receptor antagonist with a preferential activity to alpha(3)beta(4)(*) neuronal nAChR subtypes.  相似文献   

13.
Pharmacological characterization of nicotine-induced seizures in mice   总被引:8,自引:0,他引:8  
Pharmacological mechanisms involved in nicotine-induced seizures were investigated in mice by testing the ability of several nicotinic agonists in producing seizures after peripheral administration. In addition, nicotinic antagonists such as hexamethonium, mecamylamine, dihydro-beta-erythroidine, and methyllycaconitine citrate (MLA) were used in combination with nicotine. We also examined the involvement of calcium channels, N-methyl-D-aspartate receptors, and nitric oxide formation in nicotine-induced seizures. Our results showed that the peripheral administration of nicotine produced seizures in a stereospecific and mecamylamine-sensitive manner. Nicotine-induced seizures are centrally mediated and involve the activation of alpha7 along with other nicotinic receptor subunits. Indeed, MLA, an alpha7-antagonist, blocked the effects of nicotine after peripheral and central administration. The extent of alpha4beta2-receptor subtype involvement in nicotine-induced seizures was difficult to assess. On one hand, we observed that dihydro-beta-erythroidine (a competitive antagonist) failed to block the effects of nicotine. In addition, a poor correlation was found between binding affinity for (3)H-nicotine-labeled sites (predominantly alpha4beta2) and seizures potency for several nicotinic agonists. On the other hand, mecamylamine, a noncompetitive antagonist, blocked nicotine-induced seizures more potently than MLA. Furthermore, its potency in blocking seizures was in the same general dose range of other nicotinic effects that are not alpha7 mediated. These results suggest that this receptor subtype does not play a major role in nicotine-induced seizures. Our findings also suggest that nicotine enhances the release of glutamate either directly or indirectly (membrane depolarization that opens L-type calcium channels). Glutamate release in turn stimulates N-methyl-D-aspartate receptors, thus triggering the cascade of events leading to nitric oxide formation and possibly seizure production.  相似文献   

14.
It has been suggested that the negative effects associated with nicotine withdrawal promote continued tobacco use and contribute to the high relapse rate of smoking behaviors. Thus, it is important to understand the receptor-mediated mechanisms underlying nicotine withdrawal to aid in the development of more successful smoking cessation therapies. The effects of nicotine withdrawal are mediated through nicotinic acetylcholine receptors (nAChRs); however, the role of nAChRs in nicotine withdrawal remains unclear. Therefore, we used mecamylamine-precipitated, spontaneous, and conditioned place aversion (CPA) withdrawal models to measure physical and affective signs of nicotine withdrawal in various nAChR knockout (KO) mice. beta2, alpha7, and alpha5 nAChR KO mice were chronically exposed to nicotine through surgically implanted osmotic minipumps. Our results show a loss of anxiety-related behavior and a loss of aversion in the CPA model in beta2 KO mice, whereas alpha7 and alpha5 KO mice displayed a loss of nicotine withdrawal-induced hyperalgesia and a reduction in somatic signs, respectively. These results suggest that beta2-containing nAChRs are involved in the affective signs of nicotine withdrawal, whereas non-beta2-containing nAChRs are more closely associated with physical signs of nicotine withdrawal; thus, the nAChR subtype composition may play an important role in the involvement of specific subtypes in nicotine withdrawal.  相似文献   

15.
Because the mesolimbic dopamine system plays a critical role in nicotine addiction/reinforcement and because nicotinic receptors regulate dopamine release, we initiated a study to evaluate the long-term effects of nicotine (>6 months at the final dose) on nicotinic acetylcholine receptor (nAChR) sites and function in the nucleus accumbens of nonhuman primates. Nicotine was given in the drinking water as this mode of administration is long-term but intermittent, thus resembling smoking in this aspect. We determined the effects of nicotine treatment on function and binding of the alpha3/alpha6beta2* and alpha4beta2* nAChRs subtypes in nucleus accumbens, a region directly implicated in the addictive effects of nicotine. To evaluate function, we measured nicotine and K+-evoked [3H]dopamine release from nucleus accumbens synaptosomes. Changes in alpha4beta2* and alpha3/alpha6beta2* nAChRs were measured using 125I-epibatidine, [125I]A85380 [5-[125I]iodo-3(2(S)-azetidinylmethoxy) pyridine] and 125I-alpha-conotoxin MII autoradiography. Chronic nicotine treatment, which led to plasma nicotine levels in the range of smokers, significantly increased nucleus accumbens alpha4beta2* nAChR sites and function compared with control. By contrast, this treatment did not significantly change alpha3/alpha6beta2* nAChR sites or evoked dopamine release in this region compared with control. Thus, these data are distinct from previous results in striatum in which the same nicotine treatment paradigm decreased striatal alpha3/alpha6beta2* nAChR sites and function. The finding that long-term nicotine treatment selectively modulates alpha4beta2* and not alpha3/alpha6beta2* nAChR expression in primate nucleus accumbens is consistent with the results of studies in nicotinic receptor mutant mice implicating the alpha4beta2* nAChR subtype in nicotine-mediated addiction.  相似文献   

16.
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.  相似文献   

17.
We investigated the effects of chronic nicotine on alpha6- and beta3-containing nicotinic acetylcholine receptors (nAChRs) in two rat brain regions using three methodological approaches: radioligand binding, immunoprecipitation, and nicotine-stimulated synaptosomal release of dopamine. Nicotine was administered by osmotic minipumps for 2 weeks. Quantitative autoradiography with [(125)I]alpha-conotoxin MII to selectively label alpha6(*) nAChRs showed a 28% decrease in binding in the striatum but no change in the superior colliculus. Immunoprecipitation of nAChRs labeled by [(3)H]epibatidine in these two regions showed that chronic nicotine increased alpha4- and beta2-containing nAChRs by 39 to 67%. In contrast, chronic nicotine caused a 39% decrease in alpha6-containing nAChRs in striatum but no change in superior colliculus. No changes in beta3-containing nAChRs were seen in either region after chronic nicotine. The decreased expression of alpha6-containing nAChRs persisted for at least 3 days, recovering to baseline by 7 days after removal of the pumps. There was a small but significant decrease in total nicotine-stimulated dopamine release in striatal synaptosomes after nicotine exposure. However, the component of dopamine release that was resistant to alpha-conotoxin MII blockade was unaffected, whereas dopamine release that was sensitive to blockade by alpha-conotoxin MII was decreased by 56%. These findings indicate that the alpha6(*) nAChR is regulated differently from other nAChR subtypes, and they suggest that the inclusion of a beta3 subunit with alpha6 may serve to inhibit nicotine-induced down-regulation of these receptors.  相似文献   

18.
The nicotine metabolite cotinine is an abundant long-lived bio-active compound that may contribute to the overall physiological effects of tobacco use. Although its mechanism of action in the central nervous system has not been extensively investigated, cotinine is known to evoke dopamine release in the nigrostriatal pathway through an interaction at nicotinic receptors (nAChRs). Because considerable evidence now demonstrates the presence of multiple nAChRs in the striatum, the present experiments were done to determine the subtypes through which cotinine exerts its effects in monkeys, a species that expresses similar densities of striatal alpha4beta2* (nAChR containing the alpha4 and beta2 subunits, but not alpha3 or alpha6) and alpha3/alpha6beta2* (nAChR composed of the alpha3 or alpha6 subunits and beta2) nAChRs. Competition binding studies showed that cotinine interacts with both alpha4beta2* and alpha3/alpha6beta2* nAChR subtypes in the caudate, with cotinine IC(50) values for inhibition of 5-[(125) I]iodo-3-[2(S)-azetinylmethoxy]pyridine-2HCl ([(125)I]A-85380) and (125)I-alpha-conotoxinMII binding in the micromolar range. This interaction at the receptor level is of functional significance because cotinine stimulated both alpha4beta2* and alpha3/alpha6beta2* nAChR [(3)H]dopamine release from caudate synaptosomes. Our results unexpectedly showed that nicotine evokes [(3)H]dopamine release from two alpha3/alpha6beta2* nAChR populations, one of which was sensitive to cotinine and the other was not. This cotinine-insensitive subtype was only present in the medial caudate and was preferentially lost with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage. In contrast, cotinine and nicotine elicited equivalent levels of alpha4beta2* nAChR-mediated dopamine release. These data demonstrate that cotinine functionally discriminates between two alpha3/alpha6beta2* nAChRs in monkey striatum, with the cotinine-insensitive alpha3/alpha6beta2* nAChR preferentially vulnerable to nigrostriatal damage.  相似文献   

19.
(5aS,8S,10aR)-5a,6,9,10-Tetrahydro,7H,11H-8,10a-methanopyrido[2',3':5,6]pyrano[2,3-d]azepine (SSR591813) is a novel compound that binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes (Ki = 107 and 36 nM, respectively) and displays selectivity for the alpha4beta2 nAChR (Ki, human alpha3beta4 > 1000, alpha3beta2 = 116; alpha1beta1deltagamma > 6000 nM and rat alpha7 > 6000 nM). Electrophysiological experiments indicate that SSR591813 is a partial agonist at the human alpha4beta2 nAChR subtype (EC50 = 1.3 micro M, IA =19% compared with the full agonist 1,1-dimethyl-4-phenyl-piperazinium). In vivo findings from microdialysis and drug discrimination studies confirm the partial intrinsic activity of SSR591813. The drug increases dopamine release in the nucleus accumbens shell (30 mg/kg i.p.) and generalizes to nicotine or amphetamine (10-20 mg/kg i.p.) in rats, with an efficacy approximately 2-fold lower than that of nicotine. Pretreatment with SSR591813 (10 mg/kg i.p.) reduces the dopamine-releasing and discriminative effects of nicotine. SSR591813 shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine (hypothermia and cardiovascular effects). The compound (10 mg/kg i.p.) also prevents withdrawal signs precipitated by mecamylamine in nicotine-dependent rats and partially blocks the discriminative cue of an acute precipitated withdrawal. SSR591813 (20 mg/kg i.p.) reduces i.v. nicotine self-administration and antagonizes nicotine-induced behavioral sensitization in rats. The present results confirm important role for alpha4beta2 nAChRs in mediating nicotine dependence and suggest that SSR591813, a partial agonist at this particular nAChR subtype, may have therapeutic potential in the clinical management of smoking cessation.  相似文献   

20.
Subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) are differentially sensitive to up-regulation by chronic nicotine exposure in vitro. To determine whether this occurs in animals, rats were implanted with minipumps containing saline +/- nicotine (6.0 mg/kg/rat/day) for 14 days. Autoradiography with [125I]epibatidine using 3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride (A-85380) or cytisine as selective competitors allowed quantitative measurement in 33 regions of 3 families of nAChR binding, with properties of alpha4beta2, alpha3beta4, and alpha3/alpha6beta2. Chronic nicotine exposure caused increases of 20 to 100% for alpha4beta2-like binding in most regions surveyed. However, binding to this subtype was not increased in some regions, including habenulopeduncular structures, certain thalamic nuclei, and several brainstem regions. In 9 of 33 regions, including catecholaminergic areas and visual structures, alpha3/alpha6beta2-like binding represented >10% of total binding. Binding to this subtype was up-regulated by nicotine in only two of these nine regions: the nucleus accumbens and superior colliculus. alpha3beta4-Like binding represented >10% of total in 15 of the 33 regions surveyed. Binding to this subtype was increased by nicotine in only 1 of these 15 regions, and actually decreased in subiculum and cerebellum. These studies yielded two principal findings. First, chronic nicotine exposure selectively up-regulates alpha4beta2-like binding, with relatively little effect on alpha3/alpha6beta2-like and alpha3beta4-like binding in vivo. Second, up-regulation by chronic nicotine exposure shows considerable regional variation. Differential subtype sensitivity to chronic nicotine exposure may contribute to altered pharmacological response in individuals who smoke or use nicotine replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号