首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microparticles prepared from poly(lactic-co-glycolic acid) (PLGA) using a W1/O/W2 double emulsion solvent evaporation method are suitable vehicles for the delivery of proteins to antigen presenting cells, e.g. dendritic cells. In this study, the influence of different techniques for the preparation of the primary W1/O emulsion was investigated with respect to the protein localization within the microparticles, morphological characteristics of these particles, protein burst release and the native state of the released protein. Bovine serum albumin bearing fluorescein isothiocyanate (FITC-BSA) was used as model protein. A static micromixer was applied for the preparation of the W1/O/W2 double emulsion. Employing a rotor-stator homogenizer (Ultra-Turrax) for primary emulsification, microcapsules with a high burst release were produced, because nearly all FITC-BSA was attached to the outside of the particle wall. Using a high pressure homogenizer or an ultrasonic procedure resulted in the formation of microspheres with homogeneous protein distribution and a reduced burst release.  相似文献   

2.
Oil-frozen water-in-oil-in-water (W1/O/W2) double emulsions (DE) containing ethanol up to 40% (w/v) in the external aqueous W2 phase exhibited external coalescence upon thawing of the oil phase, releasing up to 85% of the encapsulated protein of the internal aqueous phase. These emulsions were studied in vitro as potential dermal macromolecular delivery formulations, achieving fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) penetration of up to 86 μm into porcine skin, reaching the viable epidermis where the immunocompetent Langerhans cells are located. Enzyme-linked immunosorbent assay was performed to observe the effect of the emulsification process and ethanol content on the ability of BSA to form antigen–antibody complexes; results indicated that ethanol content and the emulsification process did not diminish the BSA–antibody complex formation when compared with a BSA standard aqueous solution. Therefore, it is shown that oil-frozen W1/O/W2 DE, with penetration-enhancing ethanol in the W2 phase, can potentially be used for cutaneous vaccine delivery formulations.  相似文献   

3.

Purpose

It is well known that primary emulsion (W1/O) preparation process (by ultrasonication or homogenization) plays an important role in the properties of drug-loaded microspheres, such as encapsulation efficiency, release behavior and pharmacodynamics. However, its involved mechanism has not been intensively and systematically studied, partly because that broad size distribution of the resultant particles prepared by conventional preparation can greatly disturb the analysis and reliability of the results. Here, we focused on the relevant studies.

Methods

In order to eliminate the disturbance caused by broad size distribution, uniform-sized exenatide-loaded poly(DL-lactic-co-glycolic acid) (PLGA) microspheres were prepared by Shirasu Porous Glass (SPG) premix membrane emulsification. The properties of microspheres whose W1/O was formed by ultrasonication (UMS) and homogenization (HMS) were compared including in vitro release, pharmacology and so forth.

Results

HMS exhibited fast release rate and hyperglycemic efficacy within first 14 days, but declined afterwards. Comparatively, UMS showed slower polymer degradation, more acidic microclimate pH (μpH) in vitro, and stable drug release with sustained efficacy during 1 month in vivo.

Conclusions

HMS was desirable for the 2-week-sustained release in vivo, while UMS was more appropriate for the longer time release (about 1 month). These comparative researches can provide guidance for emulsion-microsphere preparation routs in pharmaceutics.  相似文献   

4.
The particle morphology and in vitro release of protein from porous and non-porous PCL-F127 blended microparticles were evaluated. The BSA loaded PCL microparticles were prepared by the w/o/o/o emulsion-solvent evaporation method. Two types of homogenizer, a Polytron® homogenizer and a probe ultrasonicator, were used to prepare the emulsion systems. The effects of solvent evaporation rate on the crystallinity and the performance of the microparticles were investigated. Both microparticles showed quite different shapes as well as surface morphology and release characteristics. The microparticles prepared with a Polytron® homogenizer were quite porous in structure, which created channels for protein to continuously diffuse out, and resulted in sustained- and controlled-release characteristics. In addition, the initial burst release of protein from the microparticles was also reduced. Alteration of the evaporation rate of solvent did not change the crystallinity of the final microparticles. An influence of evaporation rate on the size of resulting microparticles was observed. The porous PCL microparticles were developed by choosing a proper homogenizer and fabrication conditions. Carefully controlling these variables resulted in microparticles with desirable release performance.  相似文献   

5.
Purpose. To substitute dichloromethane with a safer solvent, a solvent extraction process using methylethyl ketone (MEK) was developed to prepare poly(d,l-lactide-co-glycolide) microcapsules. Methods. The MEK dispersed phase containing PLGA and progesterone was emulsified in the MEK-saturated aqueous phase (W1) to make a transient oil-in-water (O/W1) emulsion. It was then transferred to a sufficient amount of water (W2) so that MEK residing in polymeric droplets could be extracted effectively into the continuous phase. Results. This solvent extraction process provided the encapsulation efficiency for progesterone ranging from 77 to 60%. The amount of MEK predissolved in W1 as well as the degree of progesterone payload, influenced the encapsulation efficiency. The leaching profile of MEK analyzed by GC substantiated that, upon dispersion of O/W1 to W2, MEK quickly diffused into the continuous phase. Such a rapid diffusion of MEK from and the ingression of water into polymeric droplets produced hollow microcapsules, as evidenced by their SEM micrographs. Conclusions. When solvent extraction/evaporation techniques are employed for preparing PLGA microcapsules, water-immiscibility of a dispersed phase is not an absolute prerequisite to the successful microencapsulation. Adjustment of an initial extraction rate of MEK and formation of a primary transient O/W1 emulsion are found to be very crucial not only for the success of microencapsulation but also for the determination of microcapsule morphology.  相似文献   

6.
In this study, poly (d,l-lactide-co-glycolide) (PLGA) microspheres encapsulating Olea europaea pollen extracts were prepared by using the double emulsion (w/o/w) based on a solvent evaporation/extraction method. The resulting microspheres were 1.93 μm in size. The total allergen loading and surface-associated allergen were 8 and 0.64%, respectively. The release of the allergen from the microspheres showed a biphasic profile with an initial burst release followed by a sustained release phase. Finally, the polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the encapsulation process does not affect the stability of the protein. We describe here some preliminary observations concerning the use of these microspheres as parenteral antigen delivery systems for immunization with O. europaea pollen extracts, in a small animal model, the mouse.  相似文献   

7.
The effect of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres was investigated. The polyanhydrides used were poly(sebacic anhydride) (poly(SA)) and a 20:80 random copolymer of poly[1,6-bis(p-carboxyphenoxy)hexane] (poly(CPH)) and poly(SA). Microspheres were fabricated using three double emulsion methods (water/oil/water, water/oil/oil and solid/oil/oil) and cryogenic atomization. The encapsulation efficiency was highest for cryogenic atomization and lowest when the w/o/w technique was used. Microspheres fabricated by the s/o/o method had the largest initial burst of released protein. All the methods resulted in zero-order release of the protein after the burst. The release of ovalbumin from poly(SA) and 20:80 (CPH:SA) microspheres lasted ~3 and ~6 weeks, respectively. For all fabrication methods the primary structure of released ovalbumin was conserved as determined by gel electrophoresis. The secondary structure of ovalbumin encapsulated in 20:80 (CPH:SA) w/o/w microspheres was not conserved.  相似文献   

8.
The particle morphology and in vitro release of protein from porous and non-porous PCL-F127 blended microparticles were evaluated. The BSA loaded PCL microparticles were prepared by the w/o/o/o emulsion-solvent evaporation method. Two types of homogenizer, a Polytron homogenizer and a probe ultrasonicator, were used to prepare the emulsion systems. The effects of solvent evaporation rate on the crystallinity and the performance of the microparticles were investigated. Both microparticles showed quite different shapes as well as surface morphology and release characteristics. The microparticles prepared with a Polytron homogenizer were quite porous in structure, which created channels for protein to continuously diffuse out, and resulted in sustained- and controlled-release characteristics. In addition, the initial burst release of protein from the microparticles was also reduced. Alteration of the evaporation rate of solvent did not change the crystallinity of the final microparticles. An influence of evaporation rate on the size of resulting microparticles was observed. The porous PCL microparticles were developed by choosing a proper homogenizer and fabrication conditions. Carefully controlling these variables resulted in microparticles with desirable release performance.  相似文献   

9.
Purpose. The aim of this work was to understand the mechanism by which co-encapsulated PEG 400 improved the stability of NGF and allowed a continuous release from PLGA 37.5/25 microspheres. Methods. Microparticles were prepared according to the double emulsion method. PEG 400 was added with NGF in the internal aqueous phase (PEG/PLGA ratio 1/1 and 1.8/1). Its effect was investigated through interfacial tension studies. Protein stability was assessed by ELISA. Results. A novel application of PEG in protein stabilization during encapsulation was evidenced by adsorption kinetics studies. PEG 400 limited the penetration of NGF in the interfacial film of the primary emulsion. Consequently, it stabilized the NGF by reducing the contact with the organic phase. In addition, it avoided the NGF release profile to level off by limiting the irreversible NGF anchorage in the polymer layers. On the other hand, the amount of active NGF released in the early stages was increased. During microparticle preparation, NaCl could be added in the external aqueous phase to modify the structure of microparticles. This allowed to reduce the initial release rate without affecting the protein stability always encountered in the absence of PEG. Conclusions. PEG 400 appeared of major interest to achieve a continuous delivery of NGF over seven weeks from biodegradable microparticles prepared by the double emulsion technique.  相似文献   

10.
缓释微粒给药系统是蛋白质/多肽药物传输系统的一个重要研究方向,聚乳酸和乳酸-羟基乙酸共聚物是制备缓释微球最常用的载体材料。蛋白质/多肽药物聚乳酸/乳酸-羟基乙酸共聚物微球常用的制备方法包括溶剂萃取/挥发法(复乳法)、相分离法和喷雾干燥法。本文总结了微球制备中面临的难点如蛋白质/多肽药物稳定性、包封率、药物突释和药物吸附等问题,并综述了保持药物结构稳定性和生物活性、提高包封率、改善药物释放曲线等微球制备方法和进展。  相似文献   

11.
Poly(dl-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 25−1 fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties.  相似文献   

12.
Supercritical fluid emulsion extraction is an innovative technology that uses supercritical carbon dioxide (SC‐CO2) to extract the dispersed oily phase of an emulsion. This technology was used to produce poly‐lactic‐co‐glycolic acid (PLGA) microspheres charged with two common NSAIDs: piroxicam (PX) and diclophenac sodium (DF). Single (O/W) and double (W/O/W) emulsions were tested and a comparative study between the characteristics of the microspheres obtained by SC‐CO2 extraction and the ones produced by conventional solvent evaporation (SE) is proposed. Varying the droplet dimensions, microspheres with mean diameters (MDs) of 1, 2, and 3 µm were obtained; however, the microspheres produced by SC‐CO2 gave always a better reproduction of the MD of original droplets because aggregation phenomena often modify the mean size and distribution of the microparticles produced by SE. Moreover, very efficient drug loadings (88% w/w of DF in PLGA using W/O/W emulsion and 97% of PX w/w in PLGA starting from O/W emulsion) were measured in the products obtained by SC‐CO2, respectively; whereas, the SE produced a drug loading of 30% in the case of double emulsion and of 70% for single emulsion. Solvent residue of 10 ppm was also measured by SC‐CO2 technology against the 600 ppm of the SE products. The release profiles of the entrapped drugs were also monitored to check the structure of the microspheres produced by this new technology. © 2009 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1484–1499, 2010  相似文献   

13.
目的:制备包封率高、可持续释药35 d的丙氨瑞林微球.方法:以生物可降解聚合物聚乳酸-聚羟基乙酸(PLGA)为载体,采用W/O/W复乳溶剂挥发法制备缓释丙氨瑞林微球,以包封率为观察指标,用正交设计L9(34)对微球制备工艺进行优化.在pH=7.0的磷酸盐缓冲溶液中考察微球的体外释放.结果:经优化工艺制备的丙氨瑞林微球包封率为(93.2±1.6)%,90%的微球粒径分布范围为55~65 μm.在选择的释放条件下,至35 d时,药物累积释放92.3%,突释为9.7%.结论:该制备工艺简单、稳定.优化条件下制备的丙氨瑞林微球包封率高、粒径适宜、突释少.  相似文献   

14.
目的制备可满足缓释要求的镶嵌蒙脱石的离子交换缓释微球。方法采用S/O1/O2/O3复乳-溶剂挥发法制备微球,考察处方因素包括复乳相体积比例、药物质量浓度、膜材用量和乳化剂质量分数对微球制备的影响。以微球体外释放为考察指标,优化微球处方。结果研究所得到的微球最佳处方为大豆油∶药物=6∶1,药物∶膜材=1∶5,乳化剂质量分数为0.5%2%。除乳化剂外,其他因素对微球体外释放均有较大影响。所制备微球的体外释放可以达到10h,基本无突释现象。进行形态观察发现,微球较为圆整,粒径比较均匀。结论采用优化处方以复乳-溶剂挥发法所制备盐酸倍他洛尔蒙脱石微球体外具有缓释性能。  相似文献   

15.
A central issue in controlled delivery of therapeutics from biodegradable microspheres is the immediate burst of drug release upon injection. This burst is often observed with microsphere systems made by the double emulsion (w/o/w) technique, and may be prevented by improving the drug distribution throughout the polymer matrix. To this end, protein and polymer (poly-lactide-co-glycolide or PLGA) were dissolved within the same solvent system, and micron-sized microspheres were created from this solution by spontaneous emulsification. Improved protein loading was achieved by ion-pairing the protein with charged surfactants to increase solubility in the single-phase solvent system. Both in vitro and in vivo results showed a much diminished burst: compared to microspheres made by double emulsion, it was reduced over 10-fold.  相似文献   

16.
The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.  相似文献   

17.
The process parameters such as the compositions of inner and outer aqueous phase and emulsification technique of the primary emulsion were optimized to decrease the burst release of BSA from biodegradable polymer microspheres in double emulsion method. It was found that diminished burst release of -14% was achieved for the microspheres produced by formulations, where no phosphate was present in the inner water phase (non-buffered system). Primary emulsion made by probe sonication rather than homogenization or mechanical stirring led to microspheres with insignificant burst effect. Microspheres obtained using 0.1% aqueous Tween 80 solution as the outer aqueous phase, frequently exhibit reduced burst effect of 2.7%. Low microsphere yield (52.1%), however, was observed. Microsphere yield was, therefore, enhanced by addition of additive such as sodium chloride, glucose or mannitol into the outer aqueous phase. Decrease in BSA entrapment was observed in the presence of sodium chloride, but reduction in entrapment efficiency was observed in the case of glucose. Burst release increased from 2.7% to 9.5% or 3.4% as 2.5% sodium chloride or 7.5% glucose was added into the outer aqueous phase respectively. Marked burst release (>20%) was observed in the presence of additive of higher concentration independent of sodium chloride or glucose. As far as surfactant type was concerned, diminished burst was found when PVP or Tween 80 rather than PVA was utilized as the surfactant during microsphere preparation. In addition to PLGA, the copolymers of L-lactide (LLA) and dimethyl trimethylene carbonate (DTC) or trimethylene carbonate (TMC) were also evaluated. Insignificant burst effect was found for the microspheres composed of DTC or TMC copolymers.  相似文献   

18.
The purpose of this study was to optimize the preparation method of injectable Octreotide microspheres. To explore the correlation between the solvent system and the general properties of microspheres to reduce burst release and enable them to be used for portal hypertension. Octreotide microspheres were prepared by modified double emulsion solution evaporation method after optimizing preparation conditions. The results showed that Octreotide microspheres had a particle size of 57.48 ± 15.24 μm, and the initial release was significantly reduced. In vitro release and in vivo pharmacokinetic data indicated that Octreotide was released stably within 1200 h. The effects on portal vein pressure, liver tissue morphology and other related indexes were observed after administration. As obvious results, injection of Octreotide microspheres could significantly reduce portal vein pressure and reduce the portal vein lumen area in experimental cirrhotic portal hypertensive rats. The optimized Octreotide PLGA microsphere preparation has been proved to have a good effect on PHT in vivo after detecting aminotransferase (AST) and alanine aminotransferase (ALT) activity, liver tissue hydroxyproline (Hyp) content, serum and liver tissue malondialdehyde (MDA) levels, plasma prostacyclin (PGI2) levels, and liver tissue tumor necrosis factor (TNFα) content. In addition, serum and liver tissue superoxide dismutase (SOD) activity and liver tissue glutathione (GSH) content, plasma thromboxane (TXA2), serum nitric oxide (NO), liver tissue nitric oxide synthase (NOS), and plasma and liver tissue endothelin (ET) were significantly increased.  相似文献   

19.
This study aimed to use the biocompatibility features of the biodegradable polymers to prepare depot injectable finasteride (FIN) microspheres for the treatment of benign prostatic hyperplasia. FIN microspheres were prepared utilising an emulsion–solvent evaporation/extraction technique. The Box–Behnken experimental design was adopted to optimise the preparation process. FIN plasma levels in albino rabbits were determined after injection with optimised FIN microspheres formula and compared with oral FIN suspension. Results revealed that the optimum microspheres displayed an amended sustained release pattern with lower initial burst. The cumulative FIN % released after 25 days was in the range 27.83–73.18% for F4 and F1, respectively. The optimised formula, with 50.0% (X1), and 22.316% (X2) and 1.38% (X3) showed 6.503?μm, 93.213%, 14.574%, and 64.838% for Y1, Y2, Y3, and Y4, respectively. In vivo studies displayed a sustained release pattern with minimal initial burst release when injected into rabbits.  相似文献   

20.
The present study aimed to develop an oral sustained release microparticulate system for acid labile enzyme-Serratiopeptidase. A 32 full factorial experiment was designed to study the effects of the external aqueous phase volume and stabilizer (Tween® 80) concentration on the entrapment and size of Eudragit S100 microspheres prepared by a modified double emulsion solvent evaporation technique. The results of analysis of variance tests for both effects indicated that the test is significant. The effect of external aqueous phase volume was found to be higher on the entrapment efficiency of microspheres (SSY1 = 1362.63; SSY2 = 250.13), whereas Tween® 80 produced a significant effect on size of microspheres (SSY1 = 944.01; SSY2 = 737.26). Scanning electron microscopy of microspheres demonstrated smooth surface spherical particles. The effect of formulation variables on the integrity of enzyme was confirmed by in vitro proteolytic activity. Microspheres having maximum drug encapsulation (81.32 ± 3.97) released 4–5% enzyme at pH 1.2 in 2 h. The release of enzyme from microspheres followed Higuchi kinetics (R2 = 0.987). In phosphate buffer, microspheres showed an initial burst release of 25.65 ± 2.35% in 1 h with an additional 62.96 ± 4.09% release in the next 5 h. Thus, formulation optimization represents an economical approach for successful preparation of Eudragit S100 microspheres involving fewest numbers of experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号