首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of alginate coated on tetracycline (Tc) loaded poly (D, L-lactic-co-glycolic acid) (PLGA) microspheres fabricated by double emulsion solvent evaporation technique for local delivery to periodontal pocket were investigated. Alginate coated PLGA microspheres showed smoother surface but enlarged their particle sizes compared with those of uncoated ones. In addition, alginate coated microspheres enhanced Tc encapsulation efficiency (E.E.) from 11.5 +/- 0.5% of uncoated ones to 17.9 +/- 0.5%. Moreover, all of the coated PLGA microspheres even fabricated at different conditions could prolong Tc release from 9-12 days with 50% or higher in cumulative release of Tc compared with those of uncoated ones. The swelling ratios of PLGA microspheres for alginate coated or uncoated ones, one of the possible mechanisms for enhancing Tc release for the coated ones, were measured. The results showed that 20% or higher in swelling ratio for the coated microspheres at the earlier stage of hydration (e.g. < or = 24 h) could be an important factor to result in high Tc release compared to the uncoated ones. In conclusion, alginate coated Tc loaded PLGA microspheres could enhance Tc delivery to periodontal pocket by enhancing drug encapsulated efficiency, released quantities and sustained release period compared with uncoated ones.  相似文献   

2.
Large porous microparticles of PLGA entrapping insulin were prepared by solvent evaporation method and evaluated in diabetes induced rat for its efficacy in maintaining blood sugar level from a single oral dose. Incorporation of Eudragit L30D (0.03% w/v) in the external aqueous phase resulted in formation of pH responsive enteric coated polymer particles which release most of the entrapped insulin in alkaline pH. At acidic pH, release of insulin from uncoated PLGA microparticles and Eudragit L30D coated PLGA microparticles was 31.62?±?1.8% and 17.5?±?1.29%, respectively, for initial 30 min. However, in 24 h, in vitro released insulin from uncoated PLGA and Eudragit coated particles was 96.29?±?1.01% and 88.30?±?1%, respectively. Released insulin from composite polymer particles were mostly in monomer form without aggregation and was stable for a month at 37°C. Oral administration of insulin loaded PLGA (50 : 50) and Eudragit L30D coated PLGA (50 : 50) microparticles (equivalent to 25 IU insulin/kg of animal weight) in alloxan induced diabetic rats resulted in 37.3?±?11% and 62.7?±?3.8% reduction in blood glucose level, respectively, in 2 h. This effect continued up to 24 h in the case of Eudragit L30D coated PLGA microparticles. Results demonstrate that use of stabilizers during PLGA particle formulation, large porous particle for quick release of insulin and coating with Eudragit L30D resulted in a novel oral formulation for once a day delivery of insulin.  相似文献   

3.
Alginate microspheres loaded with dexamethasone were prepared by the droplet generator technique. Important parameters affecting drug release, including initial drug content, the type of polyelectrolyte coating, and a combination of different ratios of coated and uncoated microspheres were investigated to achieve in vitro dexamethasone delivery with approximately zero order release kinetics, releasing up to 100% of entrapped drug within 1 month, wherein dexamethasone released at a steady rate of 4.83 μg/day after an initial burst release period. These findings imply that these polyelectrolyte-coated alginate microspheres show promise as release systems to improve biocompatibility and prolong lifetime of implantable glucose sensors.  相似文献   

4.
The purpose of this study was to investigate the influences of drying methods on the risperidone (RIS) release profiles of RIS-loaded PLGA microspheres. These microspheres were fabricated with an O/W emulsion solvent evaporation method. The wet microspheres were dried with freeze drying and vacuum drying methods. The microspheres were mono-dispersed spheres with an average diameter of 100?μm. Studies found that drying methods had great influence on the porosity, morphology, and release profiles of RIS-loaded PLGA microspheres. Specifically, the freeze-dried microspheres had higher porosity (78.46?±?1.64%) than those vacuum-dried ones (52.45?±?2.68%), and they showed higher RIS release rates (p?<?0.05). In the accelerated release tests (45?°C), these microspheres dried under the pressures of 700?mmHg and 200?mmHg gave faster release rates than those ones dried under the pressure of 450?mmHg. Importantly, the accelerated release test (45?°C) had a high correlation with the real-time test (37?°C) (R2?>?0.99). These studies exhibited a significance in the precise preparation of RIS-loaded PLGA microspheres.  相似文献   

5.
Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N–vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83?±?0.15 and 82.6?±?5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes.  相似文献   

6.
The anti‐leukemic drug, etoposide (ETO), has variable oral bioavailability ranging from 24–74% with a short terminal half‐life of 1.5 h i.v. necessitating continuous infusion for 24–34 h for the treatment of leukemia. In the present study, etoposide‐loaded PLGA‐based surface‐modified nanoparticles (NPs) with long circulation were designed as an alternative to continuous i.v. administration. PLGA‐mPEG and PLGA‐PLURONIC copolymers were synthesised and used to prepared ETO‐loaded NPs by high‐pressure homogenization. The mean particle size of ETO‐loaded PLGA‐MPEG nanoparticles was 94.02±3.4 nm, with an Entrapment Efficiency (EE) of 71.2% and zeta potential value of −6.9±1.3 mV. ETO‐loaded PLGA‐pluronic nanoparticles had a mean particle size of 148.0±2.1 nm, an EE of 73.12±2.7%, and zeta potential value of −21.5±1.6 mV. In vitro release of the pure drug was complete within 4 h, but was sustained up to 7 days from PLGA‐mPEG nanoparticles and for 5 days from PLGA‐pluronic nanoparticles. Release was first order and followed non‐Fickian diffusion kinetics in both instances. ETO and ETO‐loaded PLGA nanoparticles labeled with 99mTc were used in blood clearance studies in rats where the two coated NPs, 99mTc‐ ETO‐PLGA‐PLU NP and 99mTc‐ ETO‐PLGA‐mPEG NP, were found to be available in higher concentrations in the circulation as compared to the pure drug. Biodistribution studies in mice showed that ETO‐loaded PLGA‐MPEG NP and PLGA‐PLURONIC NP had reduced uptake by the RES due to their steric barrier properties and were present in the circulation for a longer time. Moreover, the NPs had greater uptake in bone and brain where concentration of the free drug, ETO, was negligible. Drug delivered from these NPs could result in a single i.v. injection that would release the drug for a number of days, which would be potentially beneficial and in better control of leukemia therapy. Drug Dev Res 71: 228–239, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The aim of the present work was to design a film dosage form for sustained delivery of ipriflavone into the periodontal pocket.For this purpose, monolayer composite systems made of ipriflavone loaded poly(D,L-lactide-co-glycolide) (PLGA) micromatrices in a chitosan film form, were obtained by emulsification/casting/evaporation technique. Multilayer films, made of three layers of polymers (chitosan/PLGA/chitosan), were also prepared and compared to monolayer films for their "in vitro" characteristics. Morphology and physico-chemical properties of the different systems were evaluated. The influence of pH, ionic strength and enzymatic activity on film degradation, was also investigated. Significant differences in swelling, degradation and drug release were highlighted, depending on film structure and composition. In vitro experiments demonstrated that the composite micromatricial films represent a suitable dosage form to prolong ipriflavone release for 20 days.  相似文献   

8.
A spray-drying technique was used to prepare poly(lactide-co-glycolide) (PLGA) drug loaded microspheres. Ketoprofen was chosen as a model NSAID drug. The microspheres were characterized in terms of morphology, drug content and release behaviour. The spray-dried particles were subject to a direct compression process for the preparation of biodegradable matrix tablets. The spray-dried powders were found to have good compaction properties. Tablets were also prepared from a mixture of microspheres and microcrystalline cellulose, mannitol and hydroxypropylmethylcellulose or sodium alginate. The release of ketoprofen in phosphate buffer (pH 7.4) was significantly sustained, indicating the suitability of using tabletted spray-dried PLGA microspheres for controlled drug delivery. The results show that spray-dried PLGA particles have promising properties as direct compression and release controlling excipients in matrix tablets for oral administration.  相似文献   

9.
Large porous microparticles of PLGA entrapping insulin were prepared by solvent evaporation method and evaluated in diabetes induced rat for its efficacy in maintaining blood sugar level from a single oral dose. Incorporation of Eudragit L30D (0.03% w/v) in the external aqueous phase resulted in formation of pH responsive enteric coated polymer particles which release most of the entrapped insulin in alkaline pH. At acidic pH, release of insulin from uncoated PLGA microparticles and Eudragit L30D coated PLGA microparticles was 31.62 +/- 1.8% and 17.5 +/- 1.29%, respectively, for initial 30 min. However, in 24 h, in vitro released insulin from uncoated PLGA and Eudragit coated particles was 96.29 +/- 1.01% and 88.30 +/- 1%, respectively. Released insulin from composite polymer particles were mostly in monomer form without aggregation and was stable for a month at 37 degrees C. Oral administration of insulin loaded PLGA (50 : 50) and Eudragit L30D coated PLGA (50 : 50) microparticles (equivalent to 25 IU insulin/kg of animal weight) in alloxan induced diabetic rats resulted in 37.3 +/- 11% and 62.7 +/- 3.8% reduction in blood glucose level, respectively, in 2 h. This effect continued up to 24 h in the case of Eudragit L30D coated PLGA microparticles. Results demonstrate that use of stabilizers during PLGA particle formulation, large porous particle for quick release of insulin and coating with Eudragit L30D resulted in a novel oral formulation for once a day delivery of insulin.  相似文献   

10.
Microparticle protein delivery systems based on calcium alginate were fabricated using a very convenient method, i.e. directly shredding the protein-loaded calcium alginate beads into microparticles in a commercial food processor for 3 min. Bovine serum albumin (BSA) as a model protein was encapsulated in the calcium alginate microparticles. The obtained protein-loaded microparticles were then coated with chitosan. This fabrication method offered high encapsulation efficiency and a high particle yield. Compared with beads, the microparticles exhibited a faster release rate in the initial release stage. By comparing the release profiles of uncoated beads/microparticles and chitosan-coated beads/microparticles, it was found that the releases from chitosan-coated beads/microparticles were slower. To examine whether the loaded protein denatured during the microparticle fabrication, trypsin was encapsulated in the calcium alginate microparticles and the bioactivity of trypsin released from the microparticles was measured.  相似文献   

11.
In this study, hepatitis B surface antigen (HBsAg) loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared and coated with chitosan and trimethyl chitosan (TMC) to evaluate the effect of coating material for nasal vaccine delivery. The developed formulations were characterized for size, zeta potential, entrapment efficiency, and mucin adsorption ability. Plain PLGA microparticles demonstrated negative zeta potential. However, coated microparticles showed higher positive zeta potential. Results indicated that TMC microparticles demonstrated substantially higher mucin adsorption when compared to chitosan-coated microparticles and plain PLGA microparticles. The coated and uncoated microparticles showed deposition in nasal-associated lymphoid tissue under fluorescence microscopy. The coated and uncoated microparticles were then administered intranasally to mice. Immune-adjuvant effect was determined on the basis of specific antibody titer observed in serum and secretions using enzyme-linked immunosorbent assay. It was observed that coated particles showed a markedly increased anti-HBsAg titer as compared to plain PLGA microparticles, but the results were more pronounced with the TMC-coated PLGA microparticles.  相似文献   

12.
目的制备蛋白的海藻酸-壳聚糖-聚乳酸羟乙醇酸(PLGA)复合微球,以增加蛋白药物的包封率、减少突释和不完全释放。方法以牛血清白蛋白为模型药物采用修饰的乳化、醇洗法制备小粒径海藻酸微囊,再以壳聚糖孵育制得海藻酸-壳聚糖双层微囊,并进一步用PLGA包裹制得复合微球。采用微量BCA试剂盒测定蛋白浓度,考察其包封率及释放行为,改变各种制备因素调节微球的释放特性。结果复合微球粒径约30 μm,形态圆整。与单纯PLGA微球相比,包封率由60%-70%上升至80%以上。复合微球在磷酸盐缓冲液的1 h突释量由40%-50%下降至25%以下,在生理盐水中则进一步下降至5%以下。结论海藻酸-壳聚糖-PLGA复合微球提高了蛋白药物的包封率,减少了药物的突释,并可通过调节PLGA比例调节药物的释放。  相似文献   

13.
Methotrexate (MTX) loaded poly (lactic-co-glycolic) acid (PLGA) microspheres were prepared by emulsion solvent evaporation technique. The mean diameter of the microspheres was affected by the type of emulsion stabilizer, polymer concentration, aqueous and organic phase volume and stirring speed. The in vitro release was triphasic and was dependent on copolymer composition and molecular weight of the polymer. Antitumor efficacy in Sarcoma-180 tumor bearing mice exhibited increased volume doubling time (18 ± 2.7 days) compared to plain subcutaneous injection of methotrexate (8 ± 0.7 days). Preliminary pharmacokinetic studies following subcutaneous administration of MTX loaded PLGA microspheres illustrated the controlled release of the drug. The studies demonstrated the feasibility of employing PLGA as an effective carrier for antineoplastic drug like methotrexate.  相似文献   

14.
Mitomycin-C loaded and chitosan-coated alginate microspheres were prepared for use in chemoembolization studies. In this respect, first alginate microspheres were prepared by using a spraying method using an extrusion device with a small orifice and following suspension cross-linking in an oil phase. Chitosan-coating onto the alginate microspheres was achieved by polyionic complex formation between alginate and chitosan. CaCl2 was used as a cross-linker for alginate microspheres. The obtained chitosan-coated alginate microspheres were spherical shaped and ~100–400?µm average size. The microspheres were evaluated based on their swellability and the swelling ratio was changed between 50–280%. CaCl2 concentration, stirring rate, chitosan molecular weight, chitosan concentration and time for coating with chitosan were selected as the effective parameters on microsphere size and swelling ratio. Equilibrium swellings were achieved in ~30?min. On the other hand, chitosan molecular weight, chitosan concentration and time for coating with chitosan were found as the most effective parameters on both drug loading ratio and release studies. Maximum drug loading ratio of 65% was achieved with high molecular weight (HMW) chitosan, highest chitosan concentration (i.e. 1.0% v/v) and shortest time for coating with chitosan (i.e. 1?h) values.  相似文献   

15.
This study aimed to prepare biodegradable microspheres containing flurbiprofen sodium, a nonsteroidal anti-inflammatory drug (NSAID), as the drug delivery system to the periodontal pocket. Microspheres were prepared from biodegradable copolymers of poly (D,L-lactic-co-glycolic acid) (PLGA) using solvent evaporation method. The effects of the different copolymers and amounts of polyvinyl alcohol (PVA) as a dispersing agent on characteristics of the microspheres were evaluated. Although there was no correlation between microsphere size and amount of PVA, an optimum PVA concentration was essential to achieve narrower size distributions of microspheres. As the concentration of PVA increased, the drug loading of the microspheres increased. The effect of PVA on drug loading was found to be statistically significant for those microspheres prepared from PLGA 50:50 (p < 0.05). Regarding copolymer composition, PLGA 85:15 provided higher drug loading into the microspheres than PLGA 50:50 (p < 0.05). The recoveries of microspheres (60-80%) were affected neither by different PVA concentrations nor by copolymer compositions (p > 0.05). According to the first-order release rate constants of the microspheres, the microspheres of PLGA 50:50 released the drug at the highest rate consistently, with the highest hydrophilicity of this copolymer.  相似文献   

16.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

17.
Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052?±?0.057?μm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.  相似文献   

18.
Chitosan-coated alginate microspheres containing a lipophilic marker dissolved in an edible oil, were prepared by emulsification/internal gelation and the potential use as an oral controlled release system investigated. Microsphere formation involved dispersing a lipophilic marker dissolved in soybean oil into an alginate solution containing insoluble calcium carbonate microcrystals. The dispersion was then emulsified in silicone oil to form an O/W/O multiple phase emulsion. Addition of an oil soluble acid released calcium from carbonate complex for gelation of the alginate. Chitosan was then applied as a membrane coat to increase the mechanical strength and stabilize the microspheres in simulated intestinal media. Parameters studied included encapsulation yield, alginate concentration, chitosan molecular weight and membrane formation time. Mean diameters ranging from 500 to 800 micron and encapsulation yields ranging from 60 to 80% were obtained. Minimal marker release was observed under simulated gastric conditions, and rapid release was triggered by transfer into simulated intestinal fluid. Higher overall levels of release were obtained with uncoated microspheres, possibly due to binding of marker to the chitosan membrane coat. However the slower rate of release from coated microspheres was felt better suited as a delivery vehicle for oil soluble drugs.  相似文献   

19.
Chitosan-coated alginate microspheres prepared by emulsification/internal gelation were chosen as carriers for a model protein, hemoglobin (Hb), owing to nontoxicity of the polymers and mild conditions of the method. The influence of process variables related to the emulsification step and microsphere recovering and formulation variables, such as alginate gelation and chitosan coating, on the size distribution and encapsulation efficiency was studied. The effect of microsphere coating as well its drying procedure on the Hb release profile was also evaluated. Chitosan coating was applied by either a continuous microencapsulation procedure or a 2-stage coating process. Microspheres with a mean diameter of less than 30 microm and an encapsulation efficiency above 90% were obtained. Calcium alginate cross-linking was optimized by using an acid/CaCO(3) molar ratio of 2.5, and microsphere-recovery with acetate buffer led to higher encapsulation efficiency. Hb release in gastric fluid was minimal for air-dried microspheres. Coating effect revealed a total release of 27% for 2-stage coated wet microspheres, while other formulations showed an Hb release above 50%. Lyophilized microspheres behaved similar to wet microspheres, although a higher total protein release was obtained with 2-stage coating. At pH 6.8, uncoated microspheres dissolved in less than 1 hour; however, Hb release from air-dried microspheres was incomplete. Chitosan coating decreased the release rate of Hb, but an incomplete release was obtained. The 2-stage coated microspheres showed no burst effect, whereas the 1-stage coated microspheres permitted a higher protein release.  相似文献   

20.
PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks?=?645?M?1). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4?±?2.53?nm and???31.9?±?(?3.08)?mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3?±?0.11?µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号