首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theophylline was microencapsulated in composite whey protein-based wall systems containing different proportions of dispersed apolar filler, anhydrous milkfat. Wall emulsions exhibited uni-modal particle size distribution and had a mean particle size of 0.36-0.38 microm. Microcapsules were cross-linked by glutaraldehyde-saturated toluene via an organic phase. Spherical microcapsules ranging in diameter from 150 to larger than 700 microm were obtained and exhibited some surface cracks that could be attributed to the fragile nature of a peripheral, highly cross-linked 'shell' layer around the capsules. Core content ranged from 46.9-56.6% (w/w) and filler content ranged from 12.0-33.4% (w/w). Core and filler retention during microencapsulation ranged from 84.9-96.9%) and from 85.1-89.6%, respectively. Core retention was proportionally related to the proportion of filler embedded in the wall matrix. Core release into SGF and SIF was affected by microcapsule size, type of dissolution medium and wall composition. Rate of core release was inversely proportional to filler content of the wall matrix. This could be attributed to effects of filler content on diffusion through the wall matrix and probably on swelling properties of microcapsules. Results indicated that incorporation of apolar filler in wall matrix of whey protein-based capsules provided the means to enhance retention of a water-soluble core during the microencapsulation process and to decrease the rate of core release into aqueous dissolution media.  相似文献   

2.
A model drug with limited water-solubility, chlorothiazide, was successfully encapsulated in whey protein-based wall systems cross-linked by glutaraldehyde-saturated toluene via an organic phase. The effects of drug content of the core-in-wall suspension and of cross-linking conditions on core retention and on microcapsule size, structure and core release properties were investigated. Spherical, surface cracks-free microcapsules ranging in diameter from approximately 200-1300 microm were obtained. Particle size distribution of microcapsules was affected by core content and cross-linking conditions. Core retention in microcapsules prepared at different cross-linking conditions and different wall-to-core ratios ranged from 48.9-81%, from 42.2-76.1% and from 37.3-67.2% in large (L), medium-size (M) and small (S) microcapsules, respectively. In all cases, drug crystals were physically entrapped and embedded throughout the cross-linked protein matrix. Core release from the microcapsules into enzyme-free simulated gastric fluid was governed by a diffusion-controlled mechanism and did not involve erosion or softening of the wall matrix. Rate of core release was significantly affected by a combined influence of core content, microcapsule size and cross-linking density. Complete core release from L, M and S microcapsule prepared at different wall-to-core ratios and cross-linking conditions ranged from 28.6-81.2 h, from 16.8-28.6 h and from 7.2-15.9 h, respectively. Results suggested that whey protein-based wall matrix cross-linked by GAST may provide significant opportunities in modulating the release of an encapsulated core with a limited water solubility.  相似文献   

3.
A method, consisting of double emulsification and chemical cross-linking with glutaraldehyde was used to prepare whey protein-based microcapsules containing anhydrous milk fat as a model core. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were investigated. In all cases, core retention higher than 88% was accomplished and, in most cases, was not significantly affected by emulsion composition. In all cases, spherical microcapsules, 10-80 microm in diameter, were obtained. Outer topography and the inner structure of microcapsules were significantly affected by the pH of the emulsion. In all cases, microcapsules were practically water-insoluble. Microcapsules similar to the developed prototype may be suitable for controlled core release in application fields where chemical cross-linking is acceptable.  相似文献   

4.
Captopril microcapsules were prepared using four different viscosity grades of ethyl cellulose (core: wall ratios 1:1, 1:2 and 1:3) by temperature induced coacervation from cyclohexane. In vitro dissolution studies in 0.1 M hydrochloric acid showed that the drug release was dependent on the core to wall ratio, the viscosity grade of the ethyl cellulose and thus the total viscosity of the coacervation system. Viscosity grade of greater than 100 c.p. was unsuitable for microencapsulation by coacervation method at the concentration used. The surface characteristics of a 1:2 core to wall ratio were studied by scanning electron microscopy. The surface of the microcapsules prepared with 10 c.p. viscosity grade was comparatively more porous with larger size pores than 50 c.p. viscosity grade of ethyl cellulose. However, 300 c.p. viscosity grade showed incomplete wall formation. The microcapsules did not fragment during dissolution, alter in shape or size, or show evidence of enlargement of the surface pores. The tensile strength of tablets prepared at constant pressure from each batch of microcapsules (mean diameter 675 microns) increased as both the core to wall ratios and the viscosity of ethyl cellulose increased. The dissolution rate of the drug from tableted microcapsules was significantly delayed. The in vitro release gave best correlation with first order release kinetics when compared to zero-order and square-root-of-time equations.  相似文献   

5.
Microcapsules containing the pharmaceutical substance alkannin were prepared by the solvent evaporation method to enhance alkannin stability (reduce photo-oxidation, polymerization), to decrease its hydrophobicity and to control its release rate. The effect of various parameters, such as the type of polymeric matrix, the type of surfactant used for microcapsules preparation and the addition of Pistacia lentiscus resin in the core, on the characteristics of the produced microcapsules and the release rate of alkannin were investigated experimentally. Among the polymers tested for matrix, ethylcellulose of viscosity 46cp was the most successful, while ethylcellulose 10cp gave microcapsules with good morphological characteristics but high release rate. Beeswax resulted in flocculation and P. lentiscus resin with or without colophony as the matrix resulted in compact particles with no pores and much slower release, but did not allow alkannin to release easily from the matrix. Sodium dodecyl sulfate resulted in microcapsules with desirable morphological and physicochemical characteristics, while acacia and tragacanth gums were not indicated as surfactants in alkannin microencapsulation since they gave a high release rate and a great extent of particle size, respectively. The incorporation of Pistacia lentiscus resin in the capsule core increased loading and microencapsulation efficiency. Ethylcellulose of 46cp viscosity with sodium dodecyl sulfate as surfactant had the best characteristics studied for alkannin microencapsulation. Finally, the dissolution rate of alkannin from microcapsules was studied in a simulated intestinal and gastric environment and an external environment. Alkannin-containing microcapsules with improved properties can be used internally and externally as a new drug-delivery system.  相似文献   

6.
7.
Abstract

Microcapsules containing a liquid metal alloy core of gallium–indium (Ga–In) are prepared via in situ urea–formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245?µm to 3?µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.  相似文献   

8.
Norbormide, a selective rat toxicant, was microencapsulated to both mask the flavour and delay the release until after a lethal dose has been ingested by the rat. To this end, gelatine microspheres containing norbormide were made and over coated with either shellac resin or an equal mixture of shellac and Eudragit RS in a fluid-bed coating machine. The microcapsules absorb water, swell and burst to release their contents. In rats an 8 h window is available to delay the release of encapsulated material. In initial experiments, a shellac coating of 20% w/w was established as suitable for delaying the release. A capsule size range of 200-400 microm was selected, from capsule mastication experiment, for oral gavaging and feeding studies in rat. Oral gavage study has demonstrated for the first time that a substantial delay in release of a lethal dose of an acute poison has been achieved by microencapsulation. Feeding test has demonstrated that there is a fine balance between the size and density of the capsules in the bait to overcome mastication of the capsules by rats. A combination of shellac and Eudragit RS resins is a viable polymeric wall material to control the rate of penetration of water in to microcapsules.  相似文献   

9.
Microcapsules containing the pharmaceutical substance alkannin were prepared by the solvent evaporation method to enhance alkannin stability (reduce photo-oxidation, polymerization), to decrease its hydrophobicity and to control its release rate. The effect of various parameters, such as the type of polymeric matrix, the type of surfactant used for microcapsules preparation and the addition of Pistacia lentiscus resin in the core, on the characteristics of the produced microcapsules and the release rate of alkannin were investigated experimentally. Among the polymers tested for matrix, ethylcellulose of viscosity 46cp was the most successful, while ethylcellulose 10cp gave microcapsules with good morphological characteristics but high release rate. Beeswax resulted in flocculation and P. lentiscus resin with or without colophony as the matrix resulted in compact particles with no pores and much slower release, but did not allow alkannin to release easily from the matrix. Sodium dodecyl sulfate resulted in microcapsules with desirable morphological and physicochemical characteristics, while acacia and tragacanth gums were not indicated as surfactants in alkannin microencapsulation since they gave a high release rate and a great extent of particle size, respectively. The incorporation of Pistacia lentiscus resin in the capsule core increased loading and microencapsulation efficiency. Ethylcellulose of 46cp viscosity with sodium dodecyl sulfate as surfactant had the best characteristics studied for alkannin microencapsulation. Finally, the dissolution rate of alkannin from microcapsules was studied in a simulated intestinal and gastric environment and an external environment. Alkannin-containing microcapsules with improved properties can be used internally and externally as a new drug-delivery system.  相似文献   

10.
The mechanism of papaverine hydrochloride release from ethyl cellulose-walled microcapsules in both simulated gastric and intestinal fluid is discussed. The microcapsules were prepared by coacervation using different core: wall ratios. The rupture of the thin-walled microcapsules after release in simulated gastric fluid was shown and attributed to the internal osmotic pressure, supporting a mechanism for drug dissolution. The internal osmotic pressure produced only a few small holes in the thin-walled microcapsules after release in simulated intestinal fluid. No rupture of the thick-walled microcapsules after release in either medium was shown. Therefore these release data fitted diffusion-type kinetics. It is suggested that the internal osmotic pressure developed after penetration of the medium is affected by the ratio between the core dissolution rate and the drug diffusion rate through the wall.  相似文献   

11.
Microcapsules containing sodium phenobartitone cores in ethyl cellulose have been used to prepare tablets at from 3-9 to 358-9 MPa compression pressures. The tensile strength of these tablets is related linearly to the core: wall ratio and to the microcapsule size. Dissolution of the drug from the microcapsules, is also related to the core:wall ratio and microcapsule size, but except at low compression pressures is almost independent of the pressure used during preparation. The tablet matrix remains intact during the dissolution and the equations developed by Schwartz, Simonelli & Higuchi (1968) are followed. Large microcapsules 1:2 core: wall ratio produce friable tablets with rapid release of contents.  相似文献   

12.
Microcapsules of phenethicillin potassium as a model water-soluble drug, coated with ethyl cellulose, have been prepared (core: wall ratios 1:1, 1:2 and 1:3) in which the taste has been masked, the odour almost eliminated and the release retarded. Sieve analysis showed that with decreasing core: wall ratios there was a trend towards increasing amounts of larger sized microcapsules. At constant core: wall ratios in vitro release of drug was generally greatest from the larger microcapsules. This result correlated with the surface areas of the microcapsules which became less as the asymmetry of the microcapsules diminished with decrease in microcapsule size. There was a linear relation between the amount of ethyl cellulose and the time for 60% release of drug, and the release pattern was analogous to that from insoluble porous matrices. Scanning electron micrographs showed the microcapsules to be irregularly shaped with circular surface pores, and they did not alter in shape or size during dissolution. Tableting of 1:1 core: wall ratio microcapsules significantly further retarded the dissolution.  相似文献   

13.
Microencapsulation of oils using whey protein/gum Arabic coacervates   总被引:3,自引:0,他引:3  
Microencapsulating sunflower oil, lemon and orange oil flavour was investigated using complex coacervation of whey protein/gum arabic (WP/GA). At pH 3.0-4.5, WP and GA formed electrostatic complexes that could be successfully used for microencapsulation purposes. The formation of a smooth biopolymer shell around the oil droplets was achieved at a specific pH (close to 4.0) and the payload of oil (i.e. amount of oil in the capsule) was higher than 80%. Small droplets were easier to encapsulate within a coacervate matrix than large ones, which were present in a typical shell/core structure. The stability of the emulsion made of oil droplets covered with coacervates was strongly pH-dependent. At pH 4.0, the creaming rate of the emulsion was much higher than at other pH values. This phenomenon was investigated by carrying out zeta potential measurements on the mixtures. It seemed that, at this specific pH, the zeta potential was close to zero, highlighting the presence of neutral coacervate at the oil/water interface. The influence of pH on the capsule formation was in accordance with previous results on coacervation of whey proteins and gum arabic, i.e. WP/GA coacervates were formed in the same pH window with and without oil and the pH where the encapsulation seemed to be optimum corresponded to the pH at which the coacervate was the most viscous. Finally, to illustrate the applicability of these new coacervates, the release of flavoured capsules incorporated within Gouda cheese showed that large capsules gave stronger release and the covalently cross-linked capsules showed the lowest release, probably because of a tough dense biopolymer wall which was difficult to break by chewing.  相似文献   

14.
Microencapsulation of materials rich in volatile compounds by spray drying presents the challenge of removing water by vapourization without loss of odour and/or flavour components. Crioconcentrated coffee extracts rich in odour components were used as a substrate core to evaluate microencapsulation with cashew gum from Anacardium occidentale L. In Brazil, cashew gum is a low cost alternative to the traditional Arabic gum. A suspension containing coffee extract and the wall material was dissolved in water and then passed through a spray dryer. Core microcapsules were microwave-assisted extracted (MAE) and the aroma protection of the microcapsules produced was evaluated using gas chromatography and mass spectroscopy (GC/MS). The external morphology and size distribution of the microcapsules were obtained by scanning electron microscopy (SEM) and light scattering techniques, respectively. When comparing Arabic and cashew gum microencapsulation of coffee extracts both wall materials were observed to have similar aroma protection, external morphology and size distribution. Sensory analysis was employed to examine flavour protection and consumer preference with microencapsulation. These biochemical, sensory and structural data suggest that low cost cashew gum is a well suited alternative for odour microencapsulation to the more costly Arabic gum currently used in Brazil.  相似文献   

15.
Stable polyelectrolyte microcapsules with size 6.5 microm were produced by means of the layer-by-layer adsorption of sodium alginate and protamine to surface of melamine formaldehyde microparticles. Core decomposition at low pH leads to formation of polyelectrolyte multilayered capsules filled with alginate gel. A proteolytic enzyme, alpha-chymotrypsin, was loaded into these microcapsules by embedding in alginate gel with high efficacy. The protein in the capsules was found to retain a high physiological activity of about 70% showed with fluorescent product. The protein was found to keep inside the microcapsules in water and acid (HCl solution, pH 1.7) during 24 and 4 h, respectively, while 75-85% of protein can be revealed in supernatant after 6 h incubation at pH 8.0 (0.05 M Tris buffer) in the presence of 2.5% w/v of sodium deoxycholate. The release rate of enzyme from multilayer alginate/protamine microcapsules can be regulated by additional adsorption of polyelectrolytes onto the microcapsules with encapsulated protein. Such protein-loaded capsules can be proposed as a drug delivery system with controllable release properties.  相似文献   

16.
Microencapsulation of phenylpropanolamine to achieve sustained release   总被引:1,自引:0,他引:1  
Phenylpropanolamine HCl was initially microencapsulated with cellulose acetate butyrate, however, the microcapsules did not show acceptable sustained release. A reduction of the drug particle size prior to microencapsulation resulted in a reduction in drug release rate from the microcapsules. The desired drug release profile was attained only when the drug powder was replaced with a drug-resin complex in the microencapsulation process. The pH of the dissolution media had an effect on the drug release profile.  相似文献   

17.
Abstract

Using cellulose triacetate as an added complementary coating material in preparing sustained-release ethylcellulose-cellulose triacetate microcapsules of theophylline, three microencapsulation techniques were investigated. Ethylcellulose-cellulose triacetate composite microcapsules, ethylcellulose-cellulose triacetate dual-walled microcapsules and ethylcellulose microcapsules containing cellulose triacetate matrices were prepared using the non-solvent addition phase separation method. The effects of cellulose triacetate on the release of theophylline from the different ethylcellulose-cellulose triacetate microcapsules were obtained from dissolution studies. The results showed that the release rates of ethylcellulose-cellulose triacetate microcapsules were slower than those obtained from the ethylcellulose microcapsules prepared with similar core to wall ratios. The ethylcellulose microcapsules containing cellulose triacetate matrices had longer release half-times and smaller surface areas than the other capsule preparation. The release patterns of theophylline from the different ethylcellulose-cellulose triacetate microcapsules fitted first-order kinetics. Scanning electron micrographs showed that the surfaces of various ethylcellulose-cellulose triacetate microcapsules were different from those of theophylline, cellulose triacetate matrices of cellulose triacetate microcapsules, and that the surface morphology of ethylcellulose-cellulose triacetate microcapsules was affected by the preparative method.  相似文献   

18.
Microencapsulating sunflower oil, lemon and orange oil flavour was investigated using complex coacervation of whey protein/gum arabic (WP/GA). At pH 3.0–4.5, WP and GA formed electrostatic complexes that could be successfully used for microencapsulation purposes. The formation of a smooth biopolymer shell around the oil droplets was achieved at a specific pH (close to 4.0) and the payload of oil (i.e. amount of oil in the capsule) was higher than 80%. Small droplets were easier to encapsulate within a coacervate matrix than large ones, which were present in a typical shell/core structure. The stability of the emulsion made of oil droplets covered with coacervates was strongly pH-dependent. At pH 4.0, the creaming rate of the emulsion was much higher than at other pH values. This phenomenon was investigated by carrying out zeta potential measurements on the mixtures. It seemed that, at this specific pH, the zeta potential was close to zero, highlighting the presence of neutral coacervate at the oil/water interface. The influence of pH on the capsule formation was in accordance with previous results on coacervation of whey proteins and gum arabic, i.e. WP/GA coacervates were formed in the same pH window with and without oil and the pH where the encapsulation seemed to be optimum corresponded to the pH at which the coacervate was the most viscous. Finally, to illustrate the applicability of these new coacervates, the release of flavoured capsules incorporated within Gouda cheese showed that large capsules gave stronger release and the covalently cross-linked capsules showed the lowest release, probably because of a tough dense biopolymer wall which was difficult to break by chewing.  相似文献   

19.
Microcapsules containing sodium phenobarbitone cores in ethyl cellulose have been used to prepare tablets at from 3·9 to 358·9 MPa compression pressures. The tensile strength of these tablets is related linearly to the core: wall ratio and to the microcapsule size. Dissolution of the drug from the microcapsules is also related to the core: wall ratio and microcapsule size, but except at low compression pressures is almost independent of the pressure used during preparation. The tablet matrix remains intact during the dissolution and the equations developed by Schwartz, Simonelli & Higuchi (1968) are followed. Large microcapsules of 1:2 core:wall ratio produce friable tablets with rapid release of contents.  相似文献   

20.
Adhesive and cohesive properties of chlorpromazine hydrochloride (CP) crystals were modified to improve their powder processing, e.g., direct tabletting and microencapsulation, by agglomeration. Moreover, sustained-released gelling microcapsules of CP were devised to prolong the pharmacological effect. The spherical crystallization technique was applied to prepare agglomerates for direct tabletting and microencapsulation to use them as core materials. The ethanolic solution dissolving CP was poured into a stirred cyclohexane, yielding spherically agglomerated crystals. The resultant agglomerates were free-flowing and easily packable spheres with average diameters of 200 to 1000 µm. The agglomerates reserved the high compressibility of the original powder having a small particle size (14 µm). The compression behavior represented by Heckels equation suggested that the agglomerates were disintegrated to individual primary crystals at low compression pressures, and then they were closely repacked and plastically deformed at higher pressures. After agglomeration, microencapsulation was continuously performed in the same batch by a phase separation method. Coacervate droplets produced by pouring cyclohexane into a dichloromethane solution, dissolving poly vinyl acetate as a coating polymer, were added to the crystallization system under stirring, to prepare the microcapsules. By filling the microcapsules in gelatin hard capsules or tabletting them, their drug release rates became retarded compared with the physical mixture treated in the same way, having the same formulation as the microcapsules. This phenomenon was due to the gelation of poly vinyl acetate of the microcapsules in the dissolution medium, whose glass transition temperature is very low. This novel sustained-release dosage form is termed gelled microcapsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号