首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: The purpose of this study was to determine the roles of alginate composition and gelling cations on bead swelling, which affects its durability. METHOD: Using a 2-channel droplet generator, microspheres were generated with 1.5% solutions of low viscosity high-mannuronic acid (LVM), medium viscosity high-mannuronic acid (MVM), low viscosity high-guluronic acid (LVG) and medium viscosity high-guluronic acid (MVG) alginate. They were gelled by cross-linking with 1.1% solution of either BaCl2 or CaCl2. The diameters of the microbeads were measured and recorded on day 0. The microbeads were subsequently washed and incubated in saline at 37 degrees C for 2 weeks with size assessment every 2 days. The data were normalized by calculation of the percentage change from control (day 0) for all groups of microbeads. RESULTS: Diameters of all beads were between 550-700 microns on day 0. Viscosity had no effect on swelling of Ba++- and Ca++-alginate microbeads. Ca++-alginate microbeads were more prone to swelling than the corresponding Ba++-alginate beads. High G-Ba++ beads had only a modest increase in size over time, in contrast to the high M-Ba++. CONCLUSION: Alginate composition and the gelling cation have significant effects on bead swelling.  相似文献   

2.
Effect of alginate composition and gelling cation on micro-bead swelling   总被引:1,自引:0,他引:1  
PURPOSE: The purpose of this study was to determine the roles of alginate composition and gelling cations on bead swelling, which affects its durability. METHOD: Using a 2-channel droplet generator, microspheres were generated with 1.5% solutions of low viscosity high-mannuronic acid (LVM), medium viscosity high-mannuronic acid (MVM), low viscosity high-guluronic acid (LVG) and medium viscosity high-guluronic acid (MVG) alginate. They were gelled by cross-linking with 1.1% solution of either BaCl2 or CaCl2. The diameters of the micro-beads were measured and recorded on day 0. The micro-beads were subsequently washed and incubated in saline at 37 degrees C for 2 weeks with size assessment every 2 days. The data were normalized by calculation of the percentage change from control (day 0) for all groups of micro-beads. RESULTS: Diameters of all beads were between 550 and 700 microm on day 0. Viscosity had no effect on swelling of Ba++- and Ca++-alginate micro-beads. Ca++-alginate micro-beads were more prone to swelling than the corresponding Ba++-alginate beads. High G-Ba++ beads had only a modest increase in size over time, in contrast to the high M-Ba++. CONCLUSION: Alginate composition and the gelling cation have significant effects on bead swelling.  相似文献   

3.
The sustained release dosage form which delivers melatonin (MT) in a circadian fashion over 8 h is of clinical value for those who have disordered circadian rhythms because of its short half-life. The purpose of this study was to evaluate the gelling properties and release characteristics of alginate beads varying multivalent cationic species (Al+++, Ba++, Ca++, Mg++, Fe+++, Zn++). The surface morphologies of Ca- and Ba-alginate beads were also studied using scanning electron microscope (SEM). MT, an indole amide pineal hormone was used as a model drug. The Ca++, Ba++, Zn++, Al+++, and Fe+++ ions except Mg++ induced gelling of sodium alginate. The strength of multivalent cationic alginate beads was as follows: Al+++?Fe+++<Zn++<Ca++?Ba++. In case of Al+++, the induced hydrogel beads were very fragile and less spherical. Fe-alginate beads were also fragile but stronger compared to Al-alginate beads. Ba-alginate beads, had a similar gelling strength but was less spherical when compared to Ca-alginate beads. Zn-alginate beads were weaker than Ca- and Ba-alginate beads. Very crude and rough crystals of Ba- and Ca-alginate beads at higher magnifications were observed. However, the type and shape of rough crystals of Ba- and Ca-alginate beads were quite different. No significant differences in release profiles from MT-loaded multivalent cationic alginate beads were observed in the gastric fluid. Most drugs were continuously released upto 80% for 5 h, mainly governed by the passive diffusion without swelling and disintegrating the alginate beads. In the intestinal fluid, there was a significant difference in the release profiles of MT-loaded multivalent cationic alginate beads. The release rate of Ca-alginate beads was faster when compared to other multivalent cationic alginate beads and was completed for 3 h. Ba-alginate beads had a very long lag time (7 h) and then rapidly released thereafter. MT was continuously released from Fe-and Zn-alginate beads with initial burstout release. It is assumed that the different release profiles of multivalent cationic alginate beads resulted from forces of swelling and disintegration of alginate beads in addition to passive diffusion, depending on types of multivalent ions, gelling strength and drug solubility. It was estimated that 0.2 M CaCl2 concentration was optimal in terms of trapping efficiency of MT and gelling strength of Ca-alginate beads. In the gastric fluid, Ca-alginate beads gelled at 0.2 M CaCl2 concentration had higher bead strength, resulting in the most retarded release when compared to other concentrations. In the intestinal fluid, the decreased release of Ca-alginate beads prepared at 0.2 M CaCl2 concentration was also observed. However, release profiles of Ca-alginate beads were quite similar regardless of CaCl2 concentration. Either too low or high CaCl2 concentrations may not be useful for gelling and curing of alginate beads. Optimal CaCl2, concentrations must be decided in terms of trapping efficiency and release profiles of drug followed by curing time and gelling strength of alginate beads.  相似文献   

4.
Background: Alginate is commonly used to microencapsulate islets in experiments with islet allografts and xenografts for the treatment of Type I diabetes. The purpose of the present study is to determine the effects of alginate composition and purity on the morphology and size of microspheres. Methods: Microcapsules produced with the impure alginate types, medium-viscosity high-guluronic acid (IMVG), low-viscosity high-G (ILVG), low-viscosity high-mannuronic acid (ILVM) and medium-viscosity high-M (IMVM) were compared with one another and others generated with a highly purified LVM (HPLVM) alginate. Droplets of 1.5% alginate from an air-syringe pump were gelled in 1.1% CaCl2 solution. While leaving the alginate pressure and needle recess constant, the air-jacket pressure was varied between 9.5–10.5 PPSI to enhance stable microcapsule generation and different batches of microbeads were made from each alginate type. Results: The sizes of the high-guluronic acid alginate microbeads were consistently bigger than those of the corresponding high-mannuronic acid alginate beads at all air-jacket settings. At the optimal air-jacket pressure of 9.0 PPSI, the mean+SD diameter of the IMVG microbeads was 780+20?µm, while that of IMVM was 607+44?µm (p<0.0001, n?=?30). Similarly, the mean ILVG microbead diameter was 816+28 µm compared to 656+26?µm for ILVM capsules (p<0.0001, n?=?30). Less polymorphism was found with the HPLVM microspheres than with the ILVM microbeads. Conclusion: Highly purified high-mannuronic acid alginate will provide smaller, spherical microcapsules suitable for islet cell transplantation.  相似文献   

5.
Effect of alginate composition and purity on alginate microspheres   总被引:1,自引:0,他引:1  
BACKGROUND: Alginate is commonly used to microencapsulate islets in experiments with islet allografts and xenografts for the treatment of Type I diabetes. The purpose of the present study is to determine the effects of alginate composition and purity on the morphology and size of microspheres. METHODS: Microcapsules produced with the impure alginate types, medium-viscosity high-guluronic acid (IMVG), low-viscosity high-G (ILVG), low-viscosity high-mannuronic acid (ILVM) and medium-viscosity high-M (IMVM) were compared with one another and others generated with a highly purified LVM (HPLVM) alginate. Droplets of 1.5% alginate from an air-syringe pump were gelled in 1.1% CaCl2 solution. While leaving the alginate pressure and needle recess constant, the air-jacket pressure was varied between 9.5-10.5 PPSI to enhance stable microcapsule generation and different batches of microbeads were made from each alginate type. RESULTS: The sizes of the high-guluronic acid alginate microbeads were consistently bigger than those of the corresponding high-mannuronic acid alginate beads at all air-jacket settings. At the optimal air-jacket pressure of 9.0 PPSI, the mean+SD diameter of the IMVG microbeads was 780 + 20 microm, while that of IMVM was 607 + 44 microm (p < 0.0001, n=30). Similarly, the mean ILVG microbead diameter was 816+28 microm compared to 656+26 microm for ILVM capsules (p<0.0001, n=30). Less polymorphism was found with the HPLVM microspheres than with the ILVM microbeads. CONCLUSION: Highly purified high-mannuronic acid alginate will provide smaller, spherical microcapsules suitable for islet cell transplantation.  相似文献   

6.
Abstract

Objective: This investigation aimed to synthesize amphiphilic hexyl amidic derivative of alginate to be used in the preparation of glibenclamide-loaded release system of improved dissolution rate.

Materials and methods: Hexyl amine was associated to the activated carboxylic acid moieties of alginate to synthesize alginate hexyl amide polymer (AHAP). This polymer in comparison to alginate was used in different concentrations for preparing beads containing glibenclamide by an ionic gelation using Ca++ as gelling ion. The prepared beads were characterized by DSC, FTIR and scanning electron microscope. The swelling behavior, drug loading capacity and release behavior were studied.

Results and discussion: The results showed that the prepared AHAP beads were smaller in size and more spherical. The surface was highly corrugated with much and wider pore size. The beads showed a high drug loading capacity and efficacy that was affected by the polymer concentration. The drug release rate from AHAP beads reached 100% after 4, 8 and 12 hours in comparison to 75.3%, 73.2% and 69.2% from alginate beads at 3%, 2% and 1% polymer concentrations, respectively.

Conclusion: It can thus be concluded that the amphiphilic AHAP-based bead is a simple and efficient delivery system of promising industrial significance for the improvement of the dissolution rate.  相似文献   

7.
This study investigated the influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification. Tensile properties of films were determined while the yield, size, drug contents and release characteristics of the microspheres were examined. Tensile properties of calcium alginate matrix were significantly affected by the orientation and arrangement of the polymer chains. High viscosity alginates gave rise to higher yields and bigger microspheres. Generally, microspheres with high drug content and slower rate of drug release had high Ca2+ contents and were produced from alginates of higher viscosity. Within an alginate microsphere batch, small sized microsphere fractions had higher drug contents but showed faster drug release rates. Microspheres having a defined size range revealed great dependence of encapsulation efficiency and drug release rates on viscosity and extent of Ca2+-alginate interaction. Viscosity appeared to exert a predominant influence on the microsphere properties.  相似文献   

8.
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of ~300 #181;m. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F GG #44 0.20) resulted in ~30% smaller beads than alginates with a high G block content (F GG #44 0.60). This is explained as a result of differences in the shrinking properties of the beads.  相似文献   

9.
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.  相似文献   

10.
The Controlled Release of Prednisolone Using Alginate Gel   总被引:2,自引:0,他引:2  
In a release study of alginate gel beads, swelling and erosion of the beads were observed at pH 6.8, whereas no swelling occurred at pH 1.2. The amount of released prednisolone (PL) was greater at pH 6.8 than at pH 1.2. The lower the ratio of mannuronic acid block to guluronic acid block in alginate, the slower the release of PL. An increase in loaded PL in the beads resulted in a slower release of PL. The decrease in bead size caused a rapid release of PL. The addition of sodium alginate propylene glycol ester elevated the extent of PL release. The plasma profile of PL showed sustained-release behavior after the oral administration of the beads to beagles. Furthermore, the correlation between in vitro release and in vivo absorption of PL for various alginate gel beads was evaluated using deconvolution and convolution methods. The in vivo absorption of PL was correlated with the PL release at pH 1.2, and it differed from that at pH 6.8. The release of PL from alginate gel beads in vivo appeared to occur under conditions that cause little swelling.  相似文献   

11.
A recombinant aminopeptidase (90 kDa) of Lactobacillus rhamnosus S93 produced by E. coli was encapsulated in alginate or chitosan-treated alginate beads prepared by an extrusion method. This study investigated the effects of alginate, CaCl2, chitosan concentrations, hardening time, pH and alginate/enzyme ratios on the encapsulation efficiency (EE) and the enzyme release (ER). Chitosan in the gelling solution significantly increased the EE from 30.2% (control) to 88.6% (coated). This polycationic polymer retarded the ER from beads during their dissolution in release buffer. An increase in alginate and chitosan concentrations led to greater EE and lesser ER from the beads. The greatest EE was observed in a pH 5.4 solution (chitosan-CaCl2) during bead formation. Increasing the CaCl2 concentration over 0.1 M neither affected the EE nor the ER. Increasing hardening time beyond 10 min led to a decrease in EE and the alginate:enzyme ratio (3 : 1) was optimal to prevent the ER.  相似文献   

12.
Ovarian follicle encapsulation in synthetic or natural matrixes based on biopolymers is potentially a promising approach to in vitro maturation (IVM) process, since it maintains follicle 3D organisation by preventing its flattening and consequent disruption of gap junctions, preserving the functional relationship between oocyte and companion follicle cells. The aim of the work was to optimise physico-chemical parameters of alginate microcapsules for perspective IVM under 3D environments. On this purpose alginate and cross-linking agent concentrations were investigated. Alginate concentration between 0.75% and 0.125% w/w and Mg2+, Ba2+, Ca2+?at concentration between 100 and 20?mM were tested. Follicle encapsulation was obtained by on purpose modified diffusion setting gelation technique, and evaluated together with beads, chemical and mechanical stability in standard and stressing conditions. Beads permeability was tested towards albumin, fetuin, pyruvate, glucose, pullulan. Results demonstrated that 0.25% alginate cross-linked in 100?mM CaCl2 beads is suitable to follicle encapsulation.  相似文献   

13.
The objective of this study was to prepare and evaluate biodegradable alginate beads as a controlled-release system for a water-insoluble drug, mefenamic acid (MA), using 3 × 22 factorial design by ionotropic gelation method. Therefore, the mefenamic acid dispersion in a solution of alginate was dropped into the cross-linking CaCl2 solution and a fairly high yield (71–89%) of MA-alginate beads were obtained. Their encapsulation efficiencies were in the range of 79.3–98.99%. The effect of drug:polymer ratio, CaCl2 concentration, and curing time on the time for 50% of the drug to be released (t50%), and the drug entrapment efficiency were evaluated with factorial design method. It was found that drug:polymer ratio and interaction of drug:polymer ratio and curing time had an important effect on the drug to be released (t50%). The effect of CaCl2 concentration is also important on the drug release. On the other hand, all factors except CaCl2 concentration were effective on the drug entrapment efficiency. The swelling properties of beads were also studied. The release mechanism was described and found to be non-Fickian, Case II, and Super Case II transport for the formulations. This study suggested a new mefenamic acid alginate bead formulation for oral delivery of nonsteroidal anti-inflammatory drugs, which cause gastric irritation.  相似文献   

14.
Context: Methyl salicylate–lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.

Objectives: This study aims to determine the influence of chitosan coating over the beads on drug entrapment efficiency (DEE) and release characteristics in artificial saliva compared to that of the uncoated beads.

Results and discussion: Changes in formulation parameters (gelation time, concentrations of Ca2+ and alginate) resulted in decrease in DEE of chitosan-uncoated beads (p?<?0.05). This is due to the combined effects of drug leach-out from the physical mixture by Ca2+ ions, alginate gel matrix cross-linking and free drug diffusion from chitosan-uncoated beads. However, an increment in the DEE was seen for chitosan-coated beads. A rapid drug release profile was noted for uncoated beads, but for chitosan-coated beads a sustained release profile was depicted depending upon the coating conditions. Chitosan-coated beads had reduced swelling and erosion properties and thus behaved as a physical barrier to drug release. Shifting from anomalous transport type to Fickian transport confirmed the formation of physical barrier onto chitosan-coated beads.

Conclusion: Calcium alginate beads could be used as a controlled-release system for methyl salicylate–lactose physical mixture.  相似文献   

15.
Abstract

Calcium alginate microbeads have been widely used in tissue engineering application, due to their excellent biocompatibility, biodegradability, enhanced mechanical strength and toughness. Bone powder containing abundant hydroxylapatite, type I collagen and growth factors such as BMP2 and BMP4, possesses good osteoinductive activity. Herein, a hybrid calcium alginate/bone powder microbead was therefore prepared. Afterwards, different seeding density of adipose-derived stem cells (ADSCs) in these hybrid microbeads was discussed systematically for further in vitro expansion. Optimised microbeads suitable for in vitro expansion and differentiation of ADSCs were prepared using the droplet method under overall considering suitable concentrations of calcium alginate and calcium chloride as well as the density of bone powder through an orthogonal experiment. The results showed that the concentration of sodium alginate had the most influence on inside mass transfer and mechanical strength of the hybrid microbeads, secondly the calcium chloride, then the density of bone powder. The hybrid microbeads could be optimally performed while the concentrations of sodium alginate and calcium chloride were 2.5% and 4.5%, as well as 5.0?mg/mL bone powder, respectively. Live/Dead assay showed that the expanded ADSCs differentiated well with an initial embedding density of 5?×?106 cells/mL.  相似文献   

16.
Attempts to determine conditions or processes within alginate gel beads often suffer from inaccuracies due to an improper roundness of the analysed beads. Therefore, a novel solvent-based method for the preparation of alginate beads with improved shape was developed: An aqueous solution of 2% (w/v) alginate in water was injected into a solvent layering consisting of hexane, n-butanol, n-butanol with 1% (w/v) CaCl2 and finally 2% (w/v) CaCl2 in water. Beads of up to 3.5?mm in diameter obtained with this method had a roundness which was ~5% better than comparable beads prepared by dropping an alginate solution into a CaCl2-hardening bath. This was determined by a software supported quantitative analysis of bead size and shape. Additionally, the novel solvent-based method allows for highly reproducible preparation of alginate beads with exactly predictable sizes. The biggest beads obtained with this method were 9?mm in diameter. Thus, with the solvent-based preparation of alginate beads it is now possible to easily obtain beads of exactly the type needed for a specific analytical purpose.  相似文献   

17.
Abstract

Context: An oral dosage form containing floating bioadhesive gastroretentive microspheres forms a stomach-specific drug delivery system for the treatment of Helicobacter pylori.

Objectives: To prepare and evaluate controlled release floating bioadhesive gastroretentive chitosan-coated amoxicillin trihydrate-loaded Caesalpinia pulcherrima galactomannan (CPG)-alginate beads (CCA-CPG-A), for H. pylori eradication.

Materials and methods: CCA-CPG-A beads were prepared by ionotropic gelation, using 23 factorial design with quantity of drug, combination of CPG with sodium alginate and concentration of calcium chloride as variables. Beads facilitated mucoadhesion to gastric mucosa with floating nature caused by chitosan coating for wide distribution throughout GIT. Developed beads were evaluated for characteristics like beads size-morphology, entrapment efficiency, DSC, XRD, FTIR, swelling ratio, in vitro mucoadhesion, in vitro drug release, in vitro floating and in vitro H. pylori growth inhibition studies. CCA-CPG-A beads were studied in Wistar rats for in vivo gastric mucoadhesion, in vivo H. pylori growth inhibition studies using PCR amplification of isolated DNA, rapid urease test.

Result: Developed beads possess drug release of 79–92%, entrapment efficiency of 65–89%, mucoadhesion of 61–89%. In vivo mucoadhesion study showed more than 85% mucoadhesion of beads even after 7th hour. In vitro–in vivo growth inhibition study showed complete eradication of H. pylori.

Discussion: CPG-alginate and chitosan in beads interacts with gastric mucosubstrate surface for prolonged gastric residence with floating bioadhesion mechanism for H. pylori eradication in rats.

Conclusion: Floating bioadhesive CCA-CPG-A beads offer a promising drug delivery system for H. pylori eradication at lower dose, reduced adverse effect and enhance bioavailability.  相似文献   

18.
In this paper, compendial sodium alginate beads have been manufactured by laminar jet break-up technology. The effect of polymer concentration, viscosity and polymeric solution flow rate on the characteristics of beads was studied. Size distribution of alginate beads in the hydrated state was strongly dependent on the flow rate and viscosity of polymer solutions, since a transition from laminar jet break-up conditions to vibration-assisted dripping was observed. The re-hydration kinetics of dried beads in simulated gastric fluid (SGF) showed that the maximum swelling of beads was reached after 1-2 h, with an increase in volume of two to three times and a time lag dependent on the polymer concentration. The re-hydration swelling profiles in simulated intestinal fluid (SIF) showed no time lag and higher swelling volume; moreover, in this medium after the maximum swelling was reached, the bead structure was quickly disaggregated because of the presence in the medium of phosphate able to capture calcium ions present in the alginate gel structure.  相似文献   

19.
Abstract

Low molecular weight heparin (LMWH) and standard heparin are widely used anticoagulants. However, they have very poor oral bioavailability and have to be administered by the parenteral route. Alginates are biodegradable, biocompatible and mucoadhesive polymers which can be used for advantage for the oral administration of LMWH. The aim of the study was to develop LMWH–alginate beads for oral delivery. Alginate beads were prepared based on the 23 factorial design. In vitro characterization studies of the beads were carried out. In vivo studies were performed on rabbits. The LMWH solutions (5000?IU/kg, with and without 5% dimethyl-β-cyclodextrin), as well as the LMWH–alginate beads were administered to rabbits. The IV solution was also administered (100?IU/kg). The anti-Xa activity was measured in plasma. Area under curve (AUC) and Cmax values were determined. Histological investigations were also carried out. The formulation consisting of a 1:2 drug/alginate ratio and cured using 0.5?M CaCl2 for 15?min gave the best result in terms of encapsulation efficiency and the time for 50% of the drug to be released (t50%). A significantly higher bioavailability was observed for LMWH–alginate beads than for LMWH solutions. It was concluded that, anticoagulant effectiveness was achieved using alginate beads containing LMWH after oral administration to the rabbits.  相似文献   

20.
The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 × 22 factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 ± 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t50 % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg?1), blank and MA (100 mgkg?1) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号