首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tamoxifen citrate, a non-steroidal anti-oestrogen has potential applications in treatment of breast cancer. Biodegradable microspheres of' PLGA 65:35 were prepared by o/w emulsification solvent evaporation method. In this study, different batches of varying concentration of drug, polymer, polyvinyl alcohol and solvent were prepared. All the batches prepared were characterized by particle size distribution, encapsulation efficiency and in vitro release behaviour. Drug, polymer and PVA concentrations were varied to obtain optimum release profile for sustaining the action of drug.  相似文献   

2.
Abstract

Sustained-release metoclopramide microspheres were successfully prepared using cellulose propionate polymer at 1:2 drug to polymer ratio employing solvent evaporation technique and using acetone as the polymer solvent. The prepared microspheres at three stirring speeds were characterized with regard to their drug content, particle size distribution, surface topography using SEM and their release profiles at two different pHs at 37°C. The surface of all samples was smooth with very few irregular elevations or depressions. The average particle size decreases as the rotational speed increases and was found to be 1320, 774 and 345 μm at 600, 900 and 1200rpm, respectively. The average % drug entrapped was found to be 90.5, 100.1 and 60.0% at 600, 900 and 1200 rpm, respectively. Small differences in the release rate were observed due to different rotation speeds with an apparent lower dissolution for batches produced at 1200 rpm probably due to the properties of the coat. The effect of storage under accelerated conditions for 10 weeks on the release characteristics of these microspheres was also studied. The release properties of the microspheres did not change after storing them at 40°C/80% relative humidity for 10 weeks.  相似文献   

3.
Spherical agglomerates of ezetimibe (EZT) were prepared with hydrophilic polymers; polyvinyl pyrrolidone K30 (PVP) and/or poloxamer 188 (poloxamer) at drug to polymer ratios of 1:1 (w/w) by spherical crystallization technique, in order to improve its physicochemical and micromeritic properties. Three different bridging liquids; chloroform, dichloromethane and/or ethyl acetate along with good solvent acetone and poor solvent water were used to form six batches of agglomerates. Initial characterization of all batches in terms of micromeritic and physicochemical properties resulted in optimization of (A3, EZT:PVP:ethyl acetate) and (B3, EZT:poloxamer:ethyl acetate) batches and hence further investigated for drug–polymer interaction, crystallinity and morphology using FTIR, XRPD, DSC and SEM techniques. The results indicated presence of hydrogen bonding, crystallinity and spherical shape in agglomerates. Therefore, the optimized agglomerates (B3) were directly compressed into tablet. Unfortunately, drug release from the tablet was not satisfactory, suggesting a need of disintegrant from dissolution point of view. Therefore, these agglomerates were recompressed incorporating certain excipients and evaluated as per pharmacopoeia. The dissolution rate of prepared tablet was similar to that of marketed tablet (p > 0.05). It could be concluded that spherical crystallization could be one of the effective and alternative approaches for improved performance of EZT and its tablet formulation.  相似文献   

4.
The aim of the study was to prepare PLGA microparticles for prolonged release of mirtazapine by o/w solvent evaporation method and to evaluate effects of PVA concentration and organic solvent choice on microparticles characteristics (encapsulation efficiency, drug loading, burst effect, microparticle morphology). Also in vitro drug release tests were performed and the results were correlated with kinetic model equations to approximate drug release mechanism. It was found that dichloromethane provided microparticles with better qualities (encapsulation efficiency 64.2%, yield 79.7%). Interaction between organic solvent effect and effect of PVA concentration was revealed. The prepared samples released the drug for 5 days with kinetics very close to that of zero order (R2?=?0.9549 – 0.9816). According to the correlations, the drug was probably released by a combination of diffusion and surface erosion, enhanced by polymer swelling and chain relaxation.  相似文献   

5.
The aim of this study was to develop ethylcellulose microspheres for prolonged drug delivery with reduced burst effect. Ethylcellulose microspheres loaded with ibuprofen were prepared with and without polystyrene, which was used to retard drug release from ethylcellulose microspheres. Ibuprofen-loaded ethylcellulose microspheres with a polystyrene content of 0–25% were prepared by the solvent evaporation technique and characterized by drug loading, infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The in vitro release studies were performed to study the influence of polystyrene on ibuprofen release from ethylcellulose microspheres. The microspheres showed 28–46% of drug loading and 80–92% of entrapment, depending on polymer/drug ratio. The infrared spectrum and thermogram showed stable character of ibuprofen in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 0.1–4μm. Ethylcellulose/polystyrene micro-spheres showed prolonged drug release and less burst effect when compared to microspheres prepared with ethylcellulose alone. Microspheres prepared with an ethylcellulose/polystyrene ratio of 80:20 gave a required release pattern for oral drug delivery. The presence of polystyrene above this ratio gave release over 24 h. To find out the mechanism of drug release from ethylcellulose/polystyrene microspheres, the data obtained from in vitro release were fitted in various kinetic models. High correlation was obtained in Higuchi and Korsmeyer-Peppas models. The drug release from ethylcellulose/polystyrene microspheres was found to be diffusion controlled.  相似文献   

6.
Sustained release diclofenac sodium microcapsules were prepared using polymerized rosin as a novel wall-forming material by a solvent evaporation technique. A novel method developed in our laboratory with the potential for scale-up and production of polymerized rosin microcapsules is detailed. These microcapsules might have application for development of implant/depot systems, primarily due to a sustained/controlled release capability and potential biocompatibility of polymerized rosin. The effect of variables like solvent systems, stirring speed and temperature were previously optimized. The solution system of drug and polymerized rosin dissolved in iso-propyl alcohol and acetone is sprayed with the help of a 0.5 mm nozzle spray gun in liquid paraffin maintained at 60 degrees C in the stirring condition. Varying drug:polymer ratios, namely 1:1, 1:2, 2:1, 1:3 and 3:1, were employed for microcapsule preparation. The prepared microcapsules were evaluated for size, shape, drug content and in vitro drug release. The morphology of microcapsules was characterized by scanning electron microscopy. The microcapsules show sustained release curves at pH 7.4 phosphate buffer for up to 10 h. The data obtained from the dissolution profiles were compared in the light of different kinetics models and the regression coefficients were compared. The in vitro dissolution study confirmed the Higuchi-order release pattern. Particle size and release data analysis from five consecutive batches prepared in the laboratory indicated suitable reproducibility of the proposed solvent evaporation process.  相似文献   

7.
The present study involves preparation and evaluation of floating microspheres with cimetidine as model drug for prolongation of gastric residence time. The microspheres were prepared by the solvent evaporation method using polymers hydroxypropylmethyl cellulose and ethyl cellulose. The shape and surface morphology of prepared microspheres were characterized by optical and scanning electron microscopy, respectively. In vitro drug release studies were performed and drug release kinetics was evaluated using the linear regression method. Effects of the stirring rate during preparation, polymer concentration, solvent composition and dissolution medium on the size of microspheres and drug release were also observed. The prepared microspheres exhibited prolonged drug release (approximately 8 h) and remained buoyant for > 10 h. The mean particle size increased and the drug release rate decreased at higher polymer concentration. No significant effect of the stirring rate during preparation on drug release was observed. In vitro studies demonstrated diffusion-controlled drug release from the microspheres.  相似文献   

8.
Domperidone microspheres for intranasal administration were prepared by emulsification crosslinking technique. Starch a biodegradable polymer was used in preparation of microspheres using epichlorhydrine as cross-linking agent. The formulation variables were drug concentration and polymer concentration and batch of drug free microsphere was prepared for comparisons. All the formulations were evaluated for particle size, morphological characteristics, percentage drug encapsulation, equilibrium swelling degree, percentage mucoadhesion, bioadhesive strength, and in vitro diffusion study using nasal cell. Spherical microspheres were obtained in all batches with mean diameter in the range of above 22.8 to 102.63 μm. They showed good mucoadhesive property and swelling behaviour. The in vitro release was found in the range of 73.11% to 86.21%. Concentration of both polymer and drug affect in vitro release of drug.  相似文献   

9.
Abstract

Ethylcellulose microspheres containing 5-fluorouracil (5-FU) were prepared by a solvent evaporation technique using light mineral oil as the continuous phase. The drug was suspended in the acetone solution of the polymer. Three drug/polymer ratios (1/1, 1/2 and 1/3) were utilized. The microspheres were studied with respect to size, drug content and surface characteristics; the higher the polymer content, the smoother the microspheres. The drug was suspended in the polymer and the drug loading was important (more than 90%) with the three types of microspheres. In vitro dissolution studies in phosphate buffer showed that the 5-FU release was dependent on the drug/polymer ratio for the 400–500 üm granulometric fraction.  相似文献   

10.
The present study was aimed at developing intranasal polymer based solutions as alternative route for systemic delivery of Bupranolol hydrochloride (BPH). It is a potent β-blocker drug which upon oral administration undergoes extremely high hepatic first-pass metabolism (>90% in humans). The polymeric solutions were prepared using varying concentrations of polymers like sodium alginate, chitosan, sodium carboxymethylcellulose, methylcellulose (MC), polyvinyl alcohol, carbopol, hydroxypropyl MC, and hydroxypropyl cellulose. The prepared formulations were evaluated in terms of pH of the solution, angular viscosity, drug content, gel strength, gelation temperature, in vitro drug release, in vivo pharmacodynamic studies, histopathological, and stability studies. Except MC based solutions, a biphasic pattern of drug release was obtained in all other cases. Nasal administration of selected batches of polymeric solutions were found to be nontoxic and were able to improve drug bioavailability when compared to oral, nasal, and intravenous solution administrations of BPH.  相似文献   

11.
Low density porous carriers are widely used in the pharmaceutical applications. Response surface methodology, using 3(2) factorial design was used to study drug adsorption on and its release patterns from microporous polypropylene (Accurel MP 1000) in the absence of additives. Ibuprofen, as model drug, was adsorbed on the polymer by solvent evaporation using two organic solvents methanol (M) and dichloromethane (DCM). The amount of carrier (100 mg) and its particle size range (250-350 microm) were kept invariant while solvent volume (X1) and drug amount (X2) were taken as variables. Drug adsorption pattern depended on the type and amount of solvent used. DSC, XRD, FTIR and TGA, predict crystalline nature and physical form of adsorption. SEM showed the penetration and adsorption of the drug in and on the microporous polymer. Accurel MP 1000 had a pore volume of 1.992 g/cm3 and surface area of 55.9855 m2/g as detected by mercury porosimetery. On drug adsorption, pore volume ranged from 0.413 to 1.198 g/cm3 for methanol and 0.280-0.759 g/cm3 for DCM. Similarly surface area was in the range 38.445-25.497 m2/g for methanol and 18.710-32.528m2/g for DCM. The drug release was investigated in phosphate buffer pH 7.2. All batches showed excellent in vitro floating property. Drug release was partial with recovery to complete dependent on type and volume of solvent. R2 values relating to bulk density, pore volume, surface area and drug release at 60, 120 and 180 min were estimated. Effect of solvent properties shows a positive influence on drug adsorption and release. Release profiles of some batches could be considered as gastroretentive drug delivery system.  相似文献   

12.
The aim of this work was to define the time of microsphere solidification during the solvent evaporation process. Microspheres were prepared by the solvent evaporation method, using acetone/liquid paraffin solvent system, ketoprofen as a model drug and Eudragit RS as a matrix polymer. Two sets of experiments were performed--in the first one the initial temperature of the emulsion system was 5 degrees C and in the second one 25 degrees C. In each set, two batches of microspheres were compared at constant emulsion stirring rate 250 and 1000 rpm and intermediate batches where the emulsion stirring rate was lowered from 1000 to 250 rpm at pre-defined times after the beginning of the inner phase solvent evaporation. By comparison of the properties of these microspheres, an insight was obtained into the mechanism of microspheres formation. The criterion for determination of microsphere solidification time was the resemblance between the microsphere properties of the batches prepared by stirring rate change and the batch prepared by constant stirring at 1000 rpm. A stirring rate change after the solidification has no influence on microsphere properties, that means that they are the same as of the batch prepared by constant stirring at 1000 rpm. The results of the sieve analysis and particle size distribution of microspheres show that the time of microspheres solidification is in the interval between 15-20 min if the initial temperature is 5 degrees C and between 10-20 min if the initial temperature is 25 degrees C. From the release profiles of ketoprofen, one can infer that the times of solidification for both initial temperatures are a bit lower. The microscopic pictures, which enable one to follow the processes in the system, confirmed the result obtained by the sieve analysis. In spite of its inability to distinguish between single particles and agglomerates, the sieve analysis enabled one to determine the actual time of solidification, while the drug release determination was not sensitive enough to trace small differences in surface area due to particles aggregation.  相似文献   

13.
The objective of this study was to investigate the in vitro drug (diltiazem hydrochloride and buserelin acetate) release from different in situ forming biodegradable drug delivery systems, namely polymer solutions (in situ implants) and in situ microparticle (ISM) systems. The drug release from ISM systems [poly(d,l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA)-solution dispersed into an external oil phase] was investigated as a function of the type of solvent and polymer, polymer concentration and internal polymer phase:external oil phase ratio and was compared to the drug release from in situ implant systems and microparticles prepared by conventional methods (solvent evaporation or film grinding). Upon contact with the release medium, the internal polymer phase of the ISM system solidified and formed microparticles. The initial drug release from ISM systems decreased with increasing polymer concentration and decreasing polymer phase:external oil phase ratio. The type of biocompatible solvent also affected the drug release. It decreased in the rank order DMSO>NMP>2-pyrrolidone. In contrast to the release of the low molecular weight diltiazem hydrochloride, the peptide release (buserelin acetate) was strongly dependent on the polymer degradation/erosion. One advantage of the ISM system when compared to in situ implant systems was the significantly reduced burst effect because of the presence of an external oil phase. ISM systems resulted in drug release profiles comparable to the drug release of microparticles prepared by the solvent evaporation method. Therefore, the ISM systems are an attractive alternative to existing complicated microencapsulation methods.  相似文献   

14.
Diltiazem hydrochloride-ethylcellulose microspheres were prepared by the water-in-oil emulsion-solvent evaporation technique. Small and spherical microspheres having a mean microsphere diameter in the range of 40-300 µm and entrapment efficiency of ~60-90% were obtained. Scanning electron micrographs of drug-loaded microspheres showed the presence of uniformly distributed small pores and absence of drug crystals on their surface, indicating simultaneous precipitation of drug and the polymer from the solvent during solvent evaporation. Differential scanning calorimetric analysis confirmed the absence of any drug-polymer interaction. The in vitro release profile could be altered significantly by changing various processing parameters to give a controlled release of drug from the microspheres. The stability studies of the drug-loaded microspheres showed that the drug was stable at storage temperatures, 5-55°C, for 12 weeks.  相似文献   

15.
Microparticles were prepared by a film grinding method, whereby thin drug-containing ethylcellulose films were cryogenically ground into microparticles. The particle size and shape of the microparticles could be controlled by the thickness of the films and by the milling time. The encapsulation efficiency as well as the in vitro drug release depended on the physical state of the drug in the ethylcellulose matrix (dispersed vs dissolved). Increased drug loadings and decreased particle size and film thickness increased the drug release. Microparticles prepared from cast films were more dense and had a slower drug release compared to microparticles prepared from sprayed films or from films prepared from an aqueous colloidal ethylcellulose dispersion, Aquacoat ECD. Lamination of the drug-containing film with a drug-free polymer layer on both sides resulted in a reduced drug release. Hydrophilic plasticizers acted as pore-formers and accelerated drug release, while lipophilic plasticizers reduced the drug release. The solubility of the drug in the organic polymer solution was one of the main parameters to achieve high encapsulation efficiencies and extended drug release, while dispersed drug was released much faster. The drug release from microparticles prepared by film grinding was faster than from microparticles prepared by the solvent evaporation method. The faster release was attributed to the fractured surface of the ground particles. Grinding of microparticles, which were prepared by the solvent evaporation, also resulted in a faster release.  相似文献   

16.
The purpose of this research was to investigate the potential of surface modified Poly (l-lactic acid) (PLA) microspheres as a carrier for site-specific delivery of anti-inflammatory drug, ketoprofen, for the treatment of rheumatoid arthritis. Microspheres were prepared by solvent evaporation method using 20% w/w PLA in methylene chloride and 100 mL of a 2.5% poly vinyl alcohol (PVA) solution. Formulations were optimized for several processing parameters like drug to polymer ratio, stirring rate and volume of preparation medium etc. The surface of PLA microspheres was modified with gelatin to impart fibronectin recognition. The microspheres were characterized by surface morphology, size distribution, encapsulation efficiency, and by in vitro drug release studies. The prepared microspheres were light yellow, discrete, and spherical. Formulation with optimum drug to polymer ratio exhibited smallest vesicle size (43.02), high drug encapsulation efficiency (81.11) and better process yield (83.45). The release of drug was extended up to 24 h with Higuchi pattern of drug release. The in vivo results showed that the gelatin modified formulation reduced paw edema at greater extent than pure drug and PLA microspheres and it could be a promising carrier system for controlled and site-specific delivery of ketoprofen with possible clinical applications.  相似文献   

17.
The aim of the present investigation was to develop a pulsatile drug delivery system based on an insoluble capsule body filled with theophylline microspheres and sealed with a swellable novel polymer plug isolated from the endosperm of seeds of higher plant Delonix regia family-Fabaceae. Theophylline microspheres were prepared by solvent evaporation method using Eudragit S 100. The swellable plugs of varying thickness and hardness were prepared by direct compression, which were then placed in the capsule opening. The drug delivery system was designed to deliver the drug at such a time when it was needed most to offer convenience to the chronic patients of asthma. Formulated dosage forms were evaluated for an in vitro drug release study, which showed that the release might be consistent with a release time expected to deliver the drug to the colon depending on the thickness and hardness of the hydrogel plug. Thus, thickness and hardness of the novel polymeric plug plays an important role in controlling the drug release from the formulated drug delivery system.  相似文献   

18.
Cellulose propionate (CP) microparticles containing captopril (CAP) were prepared by solvent evaporation technique. The effects of polymer molecular weight, polymer composition and drug?:?polymer ratios on the particle size, flow properties, morphology, surface properties and release characteristics of the prepared captopril microparticles were examined. The anti-hypertensive effect of the selected CAP formulation in comparison with aqueous drug solution was also evaluated in vivo using hypertensive rats. The formulation containing drug?:?polymer blend ratio 1?:?1.5 (1?:?1 low?:?high molecular weight CP), namely F7, was chosen as the selected formulation with regard to the encapsulation efficiency (75.1%), flow properties (θ?=?24°, Carr index?=?5%, Hausner ratio?=?1.1, packing rate?=?0.535) and release characteristics. Initial burst effect was observed in the release profile of all examined formulations. DSC and SEM results indicated that the initial burst effect could be attributed to dissolution of CAP crystals present on the surface or embedded in the superficial layer of the matrix. The release kinetics of CAP from most microparticle formulations followed diffusion mechanism. After oral administration of the selected microparticle formulation (F7) to hypertensive rats, systolic blood pressure decreased gradually over 24?h compared to reference drug solution. These results may suggest the potential application of cellulose propionate microparticles as a suitable sustained release drug delivery system for captopril  相似文献   

19.
Chitosan treated alginate microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA) using an inexpensive, simple and fast method, enhancing dermal localization and sustaining the release of ATRA into the skin. Microparticles characterization, drug–polymer interaction, release profile and in vitro skin retention were investigated. Microparticles presented spherical shape and drug loading capacity of 47%. The drug content of these microparticles was affected by ATRA concentration and by the solvent used and it was more weakly affected by chitosan concentration. The release of ATRA was also affected by chitosan concentration. Microparticles prepared with 0.4% chitosan (w/w) resulted in drug release with a more sustained profile. The results of in vitro retention studies showed that chitosan treated alginate microparticles decreased the drug retention in the stratum corneum (SC), where occur the skin irritation, but maintained the ATRA concentration in the deeper skin layers, where occur the pathologies treated with ATRA. Then, the microparticles developed in this work can be a good candidate to improve the topical therapy with retinoid.  相似文献   

20.
In the present study, potential of polymeric microspheres for treatment of allergic conjunctivitis was investigated. Azelastine hydrochloride loaded Eudragit RL100 microspheres were prepared by solvent evaporation technique. The change in drug–polymer ratio on the particle size, zeta potential, entrapment efficiency and in vitro drug release was investigated. As Eudragit concentration ranged from 40 to 80?mg/ml the size range obtained was 4.18–7.36?µm with positive zeta potential. With the increase in drug polymer ratio, the entrapment efficiency was increased with maximum 14.56%. In vitro release studies demonstrated prolonged release of the drug over the period of 6?hr. Scanning electron micrographs showed that microspheres were spherical with distinct solid dense structure. Fourier transform infrared and differential scanning calorimetry studies concluded slight change in peak intensities of drug in microspheres. In vivo studies in rat model indicated that reduction in eosinophil count number was more pronounced in azelastine hydrochloride microspheres than marketed formulation, Azelast®.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号